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Abstract

All-trans retinoic acid (ATRA), the main active metabolite of vitamin A, is a powerful signaling molecule that regulates large-
scale morphogenetic processes during vertebrate embryonic development, but is also involved post-natally in regulating
neural plasticity and cognition. In songbirds, it plays an important role in the maturation of learned song. The distribution of
the ATRA-synthesizing enzyme, zRalDH, and of ATRA receptors (RARs) have been described, but information on the
distribution of other components of the retinoid signaling pathway is still lacking. To address this gap, we have determined
the expression patterns of two obligatory RAR co-receptors, the retinoid X receptors (RXR) a and c, and of the three ATRA-
degrading cytochromes CYP26A1, CYP26B1, and CYP26C1. We have also studied the distribution of zRalDH protein using
immunohistochemistry, and generated a refined map of ATRA localization, using a modified reporter cell assay to examine
entire brain sections. Our results show that (1) ATRA is more broadly distributed in the brain than previously predicted by
the spatially restricted distribution of zRalDH transcripts. This could be due to long-range transport of zRalDH enzyme
between different nuclei of the song system: Experimental lesions of putative zRalDH peptide source regions diminish
ATRA-induced transcription in target regions. (2) Four telencephalic song nuclei express different and specific subsets of
retinoid-related receptors and could be targets of retinoid regulation; in the case of the lateral magnocellular nucleus of the
anterior nidopallium (lMAN), receptor expression is dynamically regulated in a circadian and age-dependent manner. (3)
High-order auditory areas exhibit a complex distribution of transcripts representing ATRA synthesizing and degrading
enzymes and could also be a target of retinoid signaling. Together, our survey across multiple connected song nuclei and
auditory brain regions underscores the prominent role of retinoid signaling in modulating the circuitry that underlies the
acquisition and production of learned vocalizations.
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Introduction

All-trans retinoic acid (ATRA) acts as a transcriptional regulator

in many tissues. It is best known for its role as a morphogen in

vertebrate embryonic development [1], but an increasing body of

evidence shows that ATRA remains active in the postnatal brain

[2], where it is involved in numerous plasticity-related processes.

ATRA is implicated in long-term potentiation [3–5], other forms

of synaptic plasticity and homeostasis, including the regulation of

synaptic AMPA and GABAA receptor trafficking [6], neurogenesis

[7–11], spatial learning and memory [3,12–17], and modulation of

age-related cognitive decline [15,18,19].

The songbird is a particularly interesting model to examine the

role that retinoids play in postnatal behavioral plasticity [20],

because song is a complex learned vocal behavior that depends on

retinoid signaling for its normal development [21]. Furthermore,

the set of discrete brain nuclei that subserve the acquisition and

production of song (a.k.a. ‘the song system’) is well characterized

anatomically and functionally. This system has two main

subdivisions (fig. 1; reviewed by Prather [22]): 1) the posterior

vocal-motor pathway (VMP), comprising the nidopallial nucleus

HVC (used as proper name; for abbreviations, see table 1), the

robust nucleus of the arcopallium (RA), and brainstem vocal and

respiratory centers; and 2) the anterior forebrain pathway (AFP),

consisting of a pallial—basal-ganglia—thalamo—pallial loop that

includes striatal Area X, the medial part of the dorsolateral

thalamic nucleus (DLM) and the lateral magnocellular nucleus of

the anterior nidopallium (lMAN). The two pathways are

connected through HVC-to-Area X and LMAN-to-RA projec-

tions. The vocal-motor pathway is essential for singing, whereas

the AFP is required for song acquisition in juvenile birds and for

modulating song variability and auditory-dependent plasticity in

both juvenile and adult birds, as reviewed by Gale and Perkel [23].

HVC is an important node in the song system since it gives rise to

both the posterior and anterior pathways, and it is also a major

entry site for auditory information [22]. High-order auditory areas

like the caudomedial nidopallium (NCM) and the caudal

mesopallium (CM) receive input from the primary auditory

telencephalic area, field L, and are involved in the perceptual

processing and/or memorization of birdsong [22].
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The targets of ATRA in the brain are dependent on the

distribution of its synthetic enzymes, target receptors and

degradation enzymes which work in concert to locally control

levels of ATRA, and knowing how these systems operate in the

songbird brain would provide us an inference into how retinoid

signaling may regulate the ability of a bird to learn its song. In the

postnatal zebra finch brain ATRA activity has been associated

with the expression of retinaldehyde-specific aldehyde dehydro-

genase (zRalDH, a.k.a. RalDH2, or Aldh1a2 [21], see fig. 2). Yet,

other enzymes can oxidize retinal to retinoic acid: aldehyde

dehydrogenases RalDH1, RalDH3 and, as recently shown, a

cytochrome, CYP1B1, can also mediate this reaction (see [1] for a

review). Thus, while zRalDH is likely a good indicator of ATRA

synthesis in the post-natal songbird brain, we cannot exclude the

possible activity of other ATRA synthesizing enzymes whose brain

expression patterns remain unknown. However, for HVC, a

Figure 1. Neural substrates for singing and song learning. A and B: schematics of the song control system and relevant auditory structures.
Represented are the posterior vocal-motor pathway (VMP, blue), and the anterior forebrain pathway (AFP, red). HVC is the origin of both pathways
and the entry site of inputs from auditory areas (yellow) into the song system. For abbreviations, see table 1. In A, brain topography is preserved, for
easier comparison with experimental brain sections. In B, indication of broad brain subdivisions (on the right) facilitates comparison with mammalian
brains.
doi:10.1371/journal.pone.0111722.g001

Table 1. Abbreviations for zebra finch brain structures.

A Arcopallium lMAN lateral magnocellular nucleus of anterior nidopallium

Area X Area X of the medial striatum MLd dorsal part of nucleus mesencephalicus lateralis

Cb cerebellum N Nidopallium

CLM caudolateral mesopallium NC caudal nidopallium

CM caudal mesopallium NCM caudomedial nidopallium

CMM caudomedial mesopallium NIII oculomotor nerve

DLM dorsolateral medial nucleus of the thalamus M Mesopallium

DMP nucleus dorsomedialis posterior of the thalamus Ov nucleus ovoidalis

E entopallium pHVC para-HVC

GP globus pallidus PMI nucleus paramedianus internus of the thalamus

H hyperpallium RA robust nucleus of the arcopallium

Hbm nucleus habenularis medialis S Septum

HA hyperpallium apicale SNC compact part of substantia nigra

HD hyperpallium densocellulare SpL nucleus spiriformis lateralis

Hp hippocampus SpM nucleus spiriformis medialis

HVC nucleus HVC of the nidopallium St striatum

ICo nucleus intercollicularis TeO optic tectum

IM magnocellular part of nucleus isthmi TrO tractus opticus

IPC parvocellular part of nucleus isthmi V ventricle

LAD lamina of the dorsal arcopallium VTA ventral tegmental area

L2a subfield L2a of field L

doi:10.1371/journal.pone.0111722.t001
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combination of immunodetection and enzyme kinetics methods

has not revealed any evidence for the presence of multiple related

ATRA synthesizing enzyme types [24], suggesting that zRalDH

likely constitutes the major enzyme involved in ATRA synthesis in

major song nuclei of the zebra finch brain. zRalDH mRNA in

adult zebra finches is expressed in a very restricted pattern,

primarily in HVC and in a rostral nidopallial band that includes

lMAN [21,25,26]. This suggests that ATRA is produced at

discrete brain sites, a possibility supported by evidence from cell

reporter assays using tissue punches [21]. Local pharmacological

blocking of zRalDH activity in the HVC of juvenile males disrupts

normal song maturation, indicating a critical role for the ATRA

synthesized in this song nucleus [21]. However, the exact sites of

retinoid action relevant for song development are not known. Due

to its hydro-lipophilic properties, ATRA can potentially reach

brain areas several hundred micrometers away from its production

sites [27,28]. Consistent with this possibility, the brain distribution

of the retinoic acid receptors (RARs) a, b, and c, as determined by

in situ hybridization (ISH), is very broad [29], and includes areas

that are distant from sites of zRalDH expression. Importantly,

RARs need to form heterodimers with another class of nuclear

receptors, retinoid X receptors (RXRs), before they can act as

transcriptional regulators upon binding of ATRA [30–34], as

depicted in fig. 2. Thus, determining the distribution of RXRs is

essential to identify actual target sites of ATRA signaling.

Furthermore, the cytochromes CYP26A1, CYP26B1, and

CYP26C1 are the main enzymes responsible for ATRA degrada-

tion (fig. 2) [35–37], thus their brain distribution limits the spatial

extent of ATRA action.

Because the distribution of RXRs and the retinoic acid-

degrading cytochromes in the songbird brain is unknown, we

cloned the zebra finch orthologs of RXRs and of the known

retinoic-acid degrading cytochromes, and mapped their distribu-

tion by ISH in juvenile and adult zebra finch brains. We also

generated a more refined brain distribution map for ATRA

localization, by use of a modified cell culture reporter assay to

visualize ATRA-induced LacZ expression on entire brain sections.

Our results implicate song nuclei RA and Area X as major targets

for ATRA signaling, although these areas are distant from

zRalDH transcription sites. In CM, the retinoic acid degradation

enzyme CYP26B1 was expressed in a conspicuous gradient-like

pattern, indicating that ATRA levels may also be under tight

regulation in a major auditory forebrain area. Overall, our results

together with previous findings generate a comprehensive picture

of ATRA signaling components in the songbird brain.

Materials and Methods

Animals
Male zebra finches (Taeniopygia guttata) were obtained from

breeding colonies at the Freie Universität Berlin and the Max

Planck Institute for Molecular Genetics, Berlin. Birds were housed

in family or group cages in a breeding room with a 12 12h light-

dark cycle. We used a total of 68 zebra finches (50 adult males, .

120 days old; 2 male juveniles, 20 days old; 5 male juveniles, 38–

49 days old; 2 male juveniles, 50–51 days old; 4 male juveniles,

64–68 days old; 4 adult females, .120 days old; 1 embryo).

Tables S1, S2, and S3 indicate the number of animals per

experiment, their age, and treatments.

Ethics Statement
Experiments were in accordance to Institutional guidelines and

approved by the German equivalent to the IACUC (Landesamt
für Arbeitsschutz, Gesundheit und technische Sicherheit Berlin).

Figure 2. Simplified schematic of the all-trans retinoic acid (ATRA) signaling pathway. ATRA is synthesized from retinol (Vitamin A) in a
two-step oxidation process which takes place in the cytoplasm. To induce transcription, retinoic acid receptors (RARs) need to be activated by ATRA
binding, and both RARs and retinoid X receptors (RXRs) need to bind retinoic acid response elements (RAREs) in the vicinity of target genes. Several
CYP26 isoforms are responsible for ATRA degradation. Due to its small size and hydro- and lipophilic properties, ATRA is able to cross cell membranes
and thus act in other cells.
doi:10.1371/journal.pone.0111722.g002
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In situ hybridization probes for the RXRs and retinoic
acid-degrading cytochromes (CYP26s)

Brains of a total of 34 male and 2 female zebra finches, as well

as one whole embryo, were subjected to ISH (see table S1 for

details).

Generating probes. A cDNA from the ESTIMA database

(Songbird Neurogenomics Initiative; http://titan.biotec.uiuc.edu/

songbird) was available for RXRa and was used for expression

analysis. For all other genes examined, no clones were available in

ESTIMA. We therefore PCR-cloned fragments corresponding to

their zebra finch orthologs. For this purpose, we first isolated total

brain RNA from an adult male zebra finch using the TRIzol

method. We then used reverse transcriptase SuperScript II

(Invitrogen) to transcribe total brain RNA, synthesized second

strands using T4 DNA polymerase, digested RNA with RNAse H,

and used the first-strand cDNA directly as a PCR template with

gene specific primers. We designed primer pairs for RXRc and

CYP26A1 based on the genomic sequence, aided by examination

of conserved regions identified through the alignment of the

orthologs from several species deposited in GenBank, if genomic

sequence quality was poor. The primer sequences were as follows:

For RXRc, forward 59-GGGAAGCACTATGGGGTGTA-39,

reverse 59-CTGATCGACAAGCGCCAGCG-39, predicted frag-

ment length 799 bp. For CYP26A1: forward 59-CTGAAT-

GAGTCTGCCACAG-39, reverse 59-CTTCATGTCTC-

CATCTCCAG-39, predicted fragment length 406 bp. For

CYP26B1 and CYP26C1, primer sequences for cloning were

based on primer sequences previously used for chicken CYP26B1

and CYP26C1 [38,39]. All PCR products were examined on

agarose gels, purified with the Qiaquick PCR purification kit

(Qiagen) and inserted into pGEM-T easy vectors (Promega);

resulting clones were sequenced for identification, and full-length

ORF sequences were deposited in GenBank under the following

accession numbers: RXRa: HQ830555; RXRc: HQ830557;

Cyp26A1: HQ830558; Cyp26B1: HQ830556; Cyp26C1:

HQ830559 (for Cyp26C1, only a partial ORF sequence was

cloned).

RXRa. ESTIMA zebra finch clone SB03015A2E11.f1 (Gen-

Bank accession #: DV949832) corresponds to the 39 portion of the

RXRa mRNA, extending from the middle of the coding region for

the ligand-binding domain to the polyA tail (fig. S1.A). To assess

the likelihood of cross-hybridization between this RXRa clone and

other RXRs, we blat aligned the RXRa clone sequence against

the entire zebra finch genome (UCSC browser). Whereas the EST

sequence (514bp) fully aligns with the RXRa locus with 99.7%

identity (blat score 1358), it has only a very short partial alignment

(88bp) at the RXRc locus at 89.7% similarity (blat score 71). Probe

specificity for RXRa as opposed to RXRc was further indicated

by a total lack of overlap between the two expression patterns.

RXRc. The amplified fragment was 738 bp long and spanned

large parts of the zinc finger and the ligand-binding domains (fig.

S1.B). It corresponds to the shorter of two transcript variants that

have been described in chicken; it also corresponds to the only

known RXRc variant in mammals, such as human, mouse, and

rat (UCSC genome browser). This probe produced distinct and

sparse expression patterns on both brain and embryonic sections.

As in chicken and Xenopus embryos [40–42], RXRc expression in

zebra finch embryos was highest in the eye cup (data not shown),

providing further evidence of probe specificity.

CYP26A1. The fragments used as templates for in-situ
hybridization were 590 and 406 bp long and corresponded to 59

and 39 domains respectively (fig. S2.A). Blasting these sequences

against the zebra finch genome resulted in highest scores of less

than 50%, and those were for the other zebra finch CYP26 family

members. Thus, cross-hybridization of the probes is highly

unlikely.

CYP26B1 and CYP26C1. We generated CYP26B1 and

CYP26C1 riboprobes by cloning fragments using primer sequenc-

es provided by Reijntjes et al. based on chicken [39,43]. We

obtained a 386 bp fragment for CYP26B1 that maps close to the

59 end of the gene, and a 495 bp fragment for CYP26C1, that

maps to the middle of the open reading frame (fig. S2.B,C).

Labeling of riboprobes
Plasmids containing fragments of interest were isolated from

bacteria using Qiagen’s miniprep kit (Qiagen). Templates for in
vitro transcription were re-amplified PCR products of the

fragments of interest, using M13 primers. The cloning vector of

the RXRa ESTIMA clone, pSport1 (GenBank Accession

No. U12390), contained promoters for RNA polymerases T3

and T7; the cloning vector pGEM-T easy, which was used for all

other fragments, contained promoters for SP6 and T7. The

templates were purified using Qiagen’s PCR purification kit, and

sense and antisense 33P or digoxigenin-labeled riboprobes were

generated using SP6, T3, or T7 RNA polymerases (Promega). For

radioactive 33P-labeled riboprobes, the transcription buffer con-

tained 50 mM DTT (Roche), 200mM Tris-HCl (Roth), 30mM

MgCl2 (Roth), 50mM NaCl (Roth), and 10 mM spermidine

(Roche). For transcription, we added template PCR product to a

final concentration of 40 ng/ml; rATP, rCTP, and rGTP (Roche)

to a final concentration of 0.5 mM each; 12mM rUTP (Roche),

2mCi/ml 33P-UTP (Amersham), 1mg/ml BSA (bovine serum

albumin; Sigma), 5% (v/v) RNAse inhibitor (Amersham), and

10% (v/v) of the respective polymerase. For digoxigenin-labeled

riboprobes, in vitro transcription was done with using a

commercial buffer, adding 0.4 mM of each rNTP (Roche); 36%

of the total UTP was digoxigenin labeled digUTP (Roche). 10mM

DTT (Roche), and RNAse inhibitor and polymerase were added,

as for radioactive in vitro transcription. Transcription reactions

were run for 2h at 37uC, except for SP6 reactions, which were run

at 40uC. Probes were purified using ProbeQuant G-50 Micro

Columns (GE Healthcare) according to the manufacturer’s

directions.

Radioactive and non-radioactive in situ hybridization
Adult and juvenile male zebra finches were overdosed with

isoflurane, decapitated and their brains were quickly dissected and

frozen over liquid nitrogen. Brains were cut at 14 or 16mm on a

cryostat (Leica) and stored at 275uC. For 33P ISH, we followed a

previously described protocol [44,45], with slight modifications.

Briefly, after fixation and dehydration through an alcohol series,

the slides were acetylated for 10min at RT in 0.0135%

triethanolamine (Merck) and 0.0025% acetic anhydride (Fluka)

in water. After dehydration through another alcohol series,

sections were hybridized overnight in hybridization buffer (50%

formamide (Fluka), 1ml/ml BSA (Sigma), 1ml/ml Poly A (Sigma),

2mg/ml tRNA (Sigma) in 2X SSPE) containing sense or antisense

riboprobes (56105 cpm per section). Hybridization temperatures

were 65uC for the RXRa ESTIMA probe, 56uC for the CYP26B1

probe, and 53uC for RXRc, CYP26A1, and CYP26C1 probes.

Coverslips were removed by dipping slides in 2X SSPE; slides

were then washed sequentially in 2X SSPE buffer (1h at RT) and

2X SSPE/50% formamide (Fluka; 1h at hybridization tempera-

ture), followed by two high-stringency washes in 0.1X SSPE

(30min at hybridization temperature). For the RXRc, CYP26A1,

and CYP26C1 probes, these washes were followed by RNAse A

treatment (for other probes, our high stringency ISH protocol

yielded low enough background in the sense-strand hybridized
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controls so that RNAse A treatment, which degrades Nissl

substance of neuronal cells, was unnecessary): incubation in

TNE (Tris-NaCl-EDTA) buffer for 10min, incubation in TNE

containing 20mg/ml RNAse A – Roche - for 30min, final wash for

10min in TNE, followed by dehydration in an alcohol series.

Signal was detected by exposure to a phosphorimager screen (GE

Healthcare) for six to ten days. Radiographic signal was measured

by a Storm PhosphorImager (Molecular Dynamics), and Im-

ageQuant analysis software (Molecular Dynamics) was used to

analyze the images.

Digoxigenin ISH required the following modifications: It

included an additional 1 h prehybridization step at 65uC in 2%

(w/v) SDS (Roth), 2% (v/v) Blocking Reagent (Roche), 250mg/ml

tRNA (Gibco), 100mg/ml heparin (Polyscience Europe), and 50%

formamide (Fluka) in 5X SSC pH 4.5). Hybridization solution

with 1–5% (v/v) of probe was heated to 85uC for 5min before

application to the slides. After overnight hybridization, slides were

rinsed in 5X SSC, followed by four washes at hybridization

temperature (1X SSC/50% formamide for 30min, 2X SSC for

20min, 0.2X SSC for two times 20min). Digoxigenin labeling was

detected immunohistochemically using Anti-DIG-AP (1 2500,

Roche). For staining, we used standard NBT/BCIP staining

(NBT = Nitro-Blue Tetrazolium Chloride; BCIP = 5-Bromo-4-

Chloro-3’-Indolyphosphate p-Toluidine Salt). Briefly, sections

were prepared by incubation in NTMT buffer (pH 9.5) for

10min and then incubated in the dark in NBT/BCIP standard

staining solution for several days (duration depending on probe

and staining intensity as inspected by eye). Fresh staining solution

was applied every day. Slides were then rinsed in NTMT, washed

twice in Phosphate Buffered Saline (PBS), and coverslipped. For

comparison of expression patterns, additional selected sections

were hybridized with 33P and digoxigenin-labeled riboprobes for

the ATRA-synthesizing enzyme zRalDH [21]; the probe was the

same as in Denisenko-Nehrbass et al. [21] and required

hybridization at 60uC.

Analysis of RXRa expression in song nuclei to assess
circadian and age effects on expression strength

Experimental conditions, and statistics. (i) To determine

whether RXRa expression in song nuclei undergoes circadian

variations, we sacrificed 19 male birds (aged 64–783 days after

hatching (PHD), average age 455) within 20min after lights were

on and before any singing took place (‘‘morning condition’’; N = 3,

PHD 447,445,445), within ,1–1.5 h before lights off (‘‘evening

condition’’; N = 2, PHD 395 and 396), or between 2h after lights

on and 2 h before lights off (‘‘daytime’’ condition; N = 14, PHD

64–783, average 465.5). (ii) To assess the effect of the birds’ age on

RXRa expression in the telencephalic song nuclei we used

multivariate analysis of covariance (MANCOVA) using Matlab

(release 2012b, The MathWorks, Inc., Natick, Massachusetts). We

used age as the covariate, and time of the day as qualitative

variable.

Quantification of expression. To compare RXRa expres-

sion in song nuclei relative to the surrounding tissue, we analyzed

sections processed for ISH with digoxigenin-labeled probe. We

measured the sections’ optical density using the luminance feature

of Adobe Photoshop (CS2, version 9.0). The luminance values of

the gray-scale digital photomicrographs reflect the brightness of a

digital image and are inversely related to the optical density of the

object imaged. We proceeded in three steps: 1. To account for

differences in overall staining intensity between sections, we

measured luminance of a relatively large (25–40% of a brain

section) unlabeled tissue area and an equivalently sized area with

strong label. These values approximated the brightness range of a

section and were set to 0 (unlabeled) and 1 (strongly labeled). 2.

For each section, we recorded the average luminance value for

each of the song nuclei of interest as well as their surrounding area,

and normalized these values by to the section’s brightness range

(calculating in the following way: normalized_luminance =
(measured_luminance – non-labeled_reference)/(strongly_labele-
d_reference – non-labeled_reference)). 3. To determine the

labeling difference between a nucleus and its surroundings, we

used the difference between their normalized average brightness

values. The procedure was chosen empirically as it was the most

robust way to compare sections of different overall staining

intensity differences. Comparing the resulting measures across

adjacent brain sections yielded comparable results for the same

structures (e.g. inside/outside HVC), which was not the case when

we used the brightest and the darkest spot in a section.

We determined labeling strength based on the difference instead

of the ratio between nucleus and surroundings to make sure that

the values remained related to the overall brightness space covered

by the labeling of the section. This means, a labeling difference of

0.1 between a nucleus and its surrounding reflects a brightness

difference of approximately 10% of the entire section brightness

range, irrespective of whether both regions show strong or weak

labeling. We found that using the ratio instead would have resulted

in misleadingly high values in cases where both nucleus and

surroundings are only weakly labeled.

Localization of ATRA activity in brain sections using a
RARE-LacZ reporter cell assay

The F9-reporter cells which carry a b-gal reporter gene under

control of an ATRA-sensitive promoter element [46] were a gift

from Prof. Michael Wagner, State University of New York

Downstate Medical Center, Brooklyn. F9-reporter cells were

grown to subconfluence in 10 cm Petri dishes for subsequent

coculture with entire brain slices of 110mm thickness. Growth

medium for the cells was Dulbecco’s MEM (DMEM; Biochrom)

with high glucose content (4.5 mg/ml) and L-glutamine, 20% fetal

calf serum (FCS; Biochrom), 1% (v/v) Penicillin/Streptomycin

(Roth), and 0.8 mg/ml Geneticin (Gibco). Brains for coculture

were obtained from birds overdosed with isoflurane followed by

immediate intracardial perfusion with approximately 20 ml PBS

and quick dissection. Brains were placed immediately into an 1 1

ice cold mixture of PBS and DMEM medium (4.5 mg/ml glucose,

Biochrom), prepared by blending 50% frozen and 50% 4uC cold

solutions. Sagittal brain slices of 110mm thickness were cut freshly

with a vibratome (Leica). Until transfer to the cell cultures, sections

were kept in ice cold medium. Immediately prior to coculture,

growth medium in the cell dishes was replaced with a thin layer of

assay medium (serum-free, antibiotics-free DMEM medium

containing 4.5 mg/ml glucose, Biochrom). Using a brush, brain

sections were placed very carefully on top of cell monolayers

(typically three to six sections per 10 cm Petri dish) to not destroy

the cell layer, and dishes were transferred to a CO2 incubator

(Binder) for 2.5–3 h for brain slice attachment. Before moving the

dishes, medium had to be removed almost completely to prevent

sections from dislodging. In the incubator, some drops of medium

were added to each dish every 30min to keep sections and cells

wet. After 2.5–3 h attaching time additional medium up to 10 ml

was carefully added to each dish without moving it. The cocultures

were incubated for 24 h, then carefully washed with PBS, fixed

with 1% glutaraldehyde (Sigma) in PBS for 15min at room

temperature, washed again with PBS and incubated with standard

X-gal solution (0.2% X-gal (Roth), 3.3 mM K3Fe(CN)6 (Roth),

3.3 mM K4Fe(CN)6 (Roth), 150mM NaCl, 1mM MgCl2 in

phosphate buffer pH 7.0) at 37uC over one to three nights
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PLOS ONE | www.plosone.org 5 November 2014 | Volume 9 | Issue 11 | e111722



(duration depended on staining intensity as judged by inspection).

After X-gal staining, sections were washed with PBS, coverslipped

within the dishes with PBS/50% glycerol (Roth) and stored at 4uC.

Photographs of the sections were taken with a Leica Macroscope

(MacroFluo Z16APO) through the bottom of the Petri dish to

capture the cell layer as well as the sections.

Three controls were run in parallel: (1) F9-reporter cell

monolayers not exposed to brain sections but incubated with X-

gal (negative control 1), (2) F9-cells without reporter construct

cocultured with brain sections and incubated with X-gal (negative

control 2), and (3) F9-reporter cells exposed to 561028 M ATRA

and incubated with X-gal (Sigma; positive control).

Retrograde labeling of song nuclei
Stereotaxic injections with Alexa-488 conjugated latex beads

(Lumafluor) or cholera toxin subunit B conjugates (Molecular

Probes) as retrograde neuronal tracers were performed under deep

isoflurane anesthesia (1.5–2% isoflurane +2.5l O2/min). The

birds’ heads were placed in a stereotaxic apparatus (MyNeurolab)

and the retrograde tracer was injected into song nucleus RA

(stereotaxic coordinates, relative to the 0-point at the bifurcation of

the midsagittal sinus: medial/lateral 2.4 mm, anterior/posterior 2

1.8 and 21.5 mm, dorsal/ventral 22.0 and 21.8 mm; injection

needle tilted in anterior/posterior plane by -0.9 mm) with a

hydraulic micromanipulator (Narishige). Per injection site, ap-

proximately 200 nl of tracer were injected. Birds received

painkiller orally (Meloxidyl; active ingredient meloxicam, dose

0.1 mg/kg) 30min before anesthesia, and once per day for three

days post-surgery. Directly after the surgery, they are monitored

for pain or unusual behavior hourly for 5 h, and four times a day

for the following two days. Birds were allowed to survive for at

least four more days and then killed by decapitation after an

overdose of isoflurane. Brains were quickly dissected, hemispheres

were separated and frozen immediately over liquid nitrogen and

stored at 275uC until processed. Sections were cut with a cryostat

(Leica) in the sagittal plane at 14mm thickness. For immunohis-

tochemistry, birds were perfused intracardially with PBS followed

by 4% paraformaldehyde (PFA; Sigma), their brains were

dissected, post-fixed in 4% PFA overnight and stored in PBS at

4uC until cut with a vibratome (VT 1000S, Leica).

Lesion surgeries
Birds were administered a pain killer (Meloxidyl; active

ingredient meloxicam, dose 0.1 mg/kg), anesthetized with isoflur-

ane, and placed in a stereotaxic apparatus as for tracer injections.

For HVC lesions, the skull and the hippocampus overlying HVC

were opened using an injection needle to expose HVC. HVC was

then removed with the help of a Delicate Bone Scraper (Fine

Science Tools). The removed area was oval-shaped with its tip

pointing rostrally and its main axis forming a 45-degree angle with

the midline. Coordinates were medial/lateral 3.0 mm and

anterior/posterior 1.8 mm; medial/lateral 0.9 and anterior/

posterior -0.2 mm. Dorsoventral depth of the lesion was about

1 mm. For lesions of the fiber tract between HVC and RA, a knife

cut was made about 1.5 mm ventrally to the posterior end of HVC

as estimated with the above coordinates and extended about

2 mm into the tissue, about as wide laterally as covered by the

above coordinates for HVC. We cannot rule out the possibility

that this cut may have damaged fibers running from lMAN to RA

as well. After surgery, birds survived 14 days before being

sacrificed (followed by PBS perfusion if brains were to be used for

reporter assay, or PBS/PFA perfusion for immunohistochemistry).

Figure 3. RXRa expression in adult male zebra finch brain.
Drawings on the left depict brain areas and nuclei of serial parasagittal
sections. The corresponding sections on the right were processed for in
situ hybridization (ISH) for RXRa. For all images, anterior is to the right
and dorsal is up; medial to lateral levels are represented from top to
bottom. Scale bar = 2 mm (all panels). For abbreviations, see table 1.
doi:10.1371/journal.pone.0111722.g003
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Immunohistochemistry
Male zebra finches were perfused intracardially, and brains

were cut sagittally into 40 to 60mm sections with a vibratome

(Leica). Sections were heat-treated to 95uC for 30min in a 10 mM

sodium citrate buffer, pH 6.0 (Fluka). Sections were then

incubated with a goat anti-Human ALDH1A2 antibody (sc-

22591, 1 50, Santa Cruz Biotechnology) raised against a region

near the N-terminus of the human protein (human ALDH1A2,

mouse RalDH2 and zebra finch zRalDH are homologous); the

secondary antibody was mouse anti-goat biotinylated (1 200,

Vector Laboratories). Incubations were performed overnight at

4uC with the primary and for 2 h at RT with the secondary

antibody, and followed by several washes withPBS. Sections were

developed with the avidin-biotin peroxidase method (Vector

Laboratories) using diaminobenzidine (DAB, Sigma-Aldrich) as a

substrate, and counterstained with DAPI (4’-6-Diamidino-2-

phenylindole; Serva). As a specificity control, additional sections

were reacted in parallel with the same antibody pre-incubated

with an ALDH1A2 immunizing peptide (Santa Cruz Biotechnol-

ogy), twice as concentrated as the antibody; no staining was

observed (fig. S3).

Results

Identification of zebra finch orthologs of Retinoid X
Receptors (RXRs)

In mammals, 3 distinct RXR genes have been described,

RXRa, b, and c [47]. In order to identify zebra finch RXR

Figure 4. RXRa expression in song control nuclei of adult male zebra finch. A: Schematic of a parasagittal section at the level of song nuclei
HVC, RA, Area X, and lMAN. The dashed rectangles indicate the areas shown in B, D, and G. Photos in B–H are bright field views of parasagittal
sections hybridized with digoxigenin-labeled RXRa antisense probe. Anterior is right, dorsal is up in all panels. B, C: Expression in RA. Many cells were
strongly labeled; the surrounding arcopallium showed less labeling. D-F: Expression in lMAN and Area X. Expression is comparable to the surrounding
areas, but lower in Area X/striatum than in lMAN/nidopallium. G, H: Expression in HVC. The high expression is comparable to the adjacent
nidopallium. In C, E, F, and H, black arrows depict strongly labeled cells, gray arrows weakly labeled cells, and white arrows unlabeled cells. Scale bars
= 200mm in B, D, G; 20mm in C, E, F, H.
doi:10.1371/journal.pone.0111722.g004
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orthologs, we searched the zebra finch genome using BLAT

alignments as well as extensive blast searches of zebra finch EST/

cDNA databases, using orthologous chicken, mouse, and human

sequences as queries. We also compared the syntenic groups in

zebra finch with those in chicken, the green anole lizard and

mammals. In contrast to mammals, we could only identify RXRa
and c in birds. As in chicken, the zebra finch RXRa gene is

located on chromosome 17, similar to chicken and mammals, and

it is flanked by the Col5a1 and Wdr5b genes. Also similar to

chicken, the RXRc gene resides on chromosome 8 and is flanked

by the Sell and Lmx1a gene. This synteny is only partially shared

with mammals, where the RXRc gene is flanked by Aldh9a1 and

Lmx1a. Neither chicken nor zebra finch genomes seem to contain

an RXRb gene, in fact the entire syntenic region containing this

gene seems to be absent in birds (data to be published in a separate

study). The RXRb gene is present in lizard and turtle, suggesting

that the loss of this gene was in the avian lineage.

Expression of RXRa and RXRc in the adult zebra finch
brain

In adult males, RXRa expression was widespread, resembling

the distributions of RARa, b and c [29] rather than the more

restricted expression of zRalDH [21,25,26]. All pallial regions

(hyperpallium, mesopallium, nidopallium, and arcopallium) ex-

pressed moderate and uniform levels of RXRa, whereas expres-

sion was lower in the hippocampal formation, and very low in the

striatum, globus pallidus, entopallium and Field L2a (fig. 3).

Expression in the thalamus, hypothalamus, midbrain, pons, and

medulla was low to non-detectable, except for both subdivisions of

the nucleus spiriformis (fig. 3.D and fig. S4) and the dopaminergic

VTA/SN regions (fig. 3.A and fig. S4). In the cerebellum, the

granule cell layer expressed RXRa (fig. 3.A–C), whereas labeling

was absent in the molecular layer.

RXRa expression was moderately high in pallial HVC, RA,

and lMAN and very low in striatal Area X (fig. 4). Within HVC,

most strongly labeled cells were large with a neuron-like shape, but

Figure 5. RXRa expression in higher auditory areas of adult
male zebra finch telencephalon. A: Drawing of a parasagittal
section at the level of the auditory areas NCM, Field L2a, and CMM. The
dashed rectangle indicates the area shown in B. B–D: Bright-field views
of parasagittal sections processed for RXRa in situ hybridization.
Anterior is right, dorsal is up in all panels. B: Low power view of higher
auditory areas, with strong labeling in NCM and CMM and lower
labeling in L2a. C, D: High power views of NCM and CMM, respectively;
black arrows depict strongly labeled cells in clusters, white arrows
depict unlabeled cells. Scale bars = 200mm in B; 20mm in C, D.
doi:10.1371/journal.pone.0111722.g005

Figure 6. RXRc expression in Area X of adult male zebra finch.
A: Drawing of a parasagittal section of adult brain, indicating detail area
shown in B; anterior is to the right, dorsal is up. For abbreviations see
table 1. B: Detail view of Area X and surrounding area in section
processed for RXRc ISH showing sparse labeled cells in Area X. D: High-
magnification view of Area X; black and white arrows depict labeled
and unlabeled cells, respectively. Scale bars: 2mm in B, 200mm in C,
50mm in D.
doi:10.1371/journal.pone.0111722.g006
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cells with different degrees of labeling, as well as non-labeled cells,

were found as well (fig. 4.G,H). In RA, many cells showed high

expression, but weakly or unlabeled cells also existed (fig. 4.B,C).

In lMAN, only the large cells were strongly labeled, the several

unlabeled smaller cells contributing to the apparent lower overall

expression than in the adjacent nidopallium. (fig. 4.D,E). Area X

lacked strongly labeled cells altogether; instead, many weakly

labeled and non-labeled cells were seen (fig. 4.F). Staining in RA

differed markedly from its surrounds, where labeling was weaker

(fig. 4.B and 3.D,E), while staining was more similar between Area

X, lMAN, HVC, and their surrounds (fig. 4.D,G). lMAN

expression differed markedly across individuals, ranging from

distinctively lower to comparable to the surrounding nidopallium

(fig. 4.D, for further analysis of expression variability in lMAN, see

below).

RXRa expression was also high in auditory NCM and CMM;

fig. 5.A,B), in contrast to the low expression in the adjacent core

thalamorecipient field L2a (fig. 5.B) and in the overlying

hippocampus. Numerous high RXRa-expressing cells occurred

throughout NCM and CMM (fig. 5.C,D), although negative cells

were also present (see fig. 5.C,D; white arrows).

RXRc expression was low and could not be visualized with

phosphorimager autoradiography. However, high-power exami-

nation of sections reacted with digoxigenin-labeled riboprobes

revealed expression in a discrete cell population within Area X

(fig. 6); no other RXRc positive cells were found in the subpallium

or pallium. These RXRc positive cells were large and sparsely

distributed (fig. 6.B,C). The same pattern was found in juvenile

males (42 and 64 days old; not shown).

Regions of ATRA localization in the zebra finch brain as
determined by a reporter assay

To localize sites of ATRA presence in brain sections, we used a

reporter cell assay (fig. 7.A,B) consisting of a monolayer of mouse

F9 cells carrying a LacZ reporter under the control of a retinoic

acid response element (RARE). ATRA produced by tissue samples

placed on top of the reporter cell layer induces LacZ expression

[46,48]. To detect ATRA-induced gene expression in entire brain

sections, we used a modified assay (details in fig. 7.C–E, Methods,

and table S2). We observed spatially specific LacZ expression in all

birds (fig. 7.F). Reporter cells that were not touched by the co-

cultured tissue sections did not show any blue LacZ staining, even

if located directly adjacent to the edge of tissue that generated

staining in the cell monolayer (fig. 7.F). In addition, boundaries

between tissue regions that expressed LacZ and those that did not

could be relatively sharp, as was the case for some regions close to

HVC (fig. 7.F), indicating that ATRA did not freely diffuse across

the reporter cell monolayer, but reflects sites of ATRA presence in

the brain sections.

We detected ATRA-induced LacZ expression in all brain areas

that express zRalDH, including HVC and lMAN (fig. 8),

confirming previous results [21]. Interestingly, ATRA also

induced LacZ expression in some regions distant from zRalDH

expression sites, such as Area X and RA (fig. 9). It seems unlikely

that the RA and Area X signal was due to diffusion since there

was less LacZ expression in the arcopallial tissue surrounding RA

than inside the nucleus (fig. 9.B), which would not be the case if

ATRA had diffused from around RA into the nucleus.

Furthermore, the closest zRalDH mRNA expression sites, lMAN

Figure 7. ATRA mapping in brain sections through a reporter cell assay. A and B: Schematic overview of ATRA reporter cell assay. A:
Reporter cells (they contain a LacZ gene under a retinoic acid response element, or RARE, and express retinoic acid and retinoid X receptors - RAR/
RXRs - needed for ATRA induced gene expression) are seeded onto a Petri dish; a freshly cut brain section is placed into the dish and attaches to the
cell monolayer. B: ATRA locally generated in the brain slice reaches a reporter cell, binds to RAR/RXR complexes and causes LacZ expression, revealed
as blue label by LacZ/X-gal staining. C and D: LacZ expression in reporter cells is specifically induced by ATRA. C (negative control 1): In the absence of
ATRA, reporter cells are LacZ-negative and do not turn blue upon LacZ/X-gal staining. D (positive control): Labeling is generated when ATRA is added
to the medium. E (negative control 2): A slice co-cultured with an F9 cell line without RARE and LacZ does not generate blue signal upon LacZ/X-gal
staining. F: A slice from an adult male bird co-cultured with reporter cells results in blue labeling in regions where ATRA is present. Blue labeling is
seen under song nucleus HVC, which expresses zRalDH, but not in cells without overlying tissue (top), or in cells that underlie a part of the tissue that
does not contain ATRA (bottom). Photos in C–F were taken through the bottom of the Petri dish. Scale bars: for C, D = 200mm; for E, F = 100mm.
doi:10.1371/journal.pone.0111722.g007
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and its surrounding nidopallium, are too distant to account for

the observed distribution of ATRA-induced gene expression

(fig. 9).

Distribution of zRalDH protein in the zebra finch brain
To examine whether transport of zRalDH protein to brain sites

distant from transcription sites could account for the broad

distribution of ATRA-induced LacZ expression, we localized

zRalDH protein using immunohistochemistry (fig. S3). Table S3

summarizes the birds used for zRalDH immunohistochemistry,

and the treatments they underwent. We detected immunoreactiv-

ity not only in all brain areas that expressed the zRalDH transcript

(i.e. the rostral nidopallium including lMAN, the hyperpallium,

and HVC) but also in Area X and RA (fig. 10).

A close look revealed that while zRalDH immunolabeling in

HVC and lMAN was concentrated in cell somata (fig. 10.F,G), it

was diffuse in RA (fig. 10.E), a pattern consistent with zRalDH

distribution at synaptic endings of afferent projection fibers. When

we combined zRalDH immunohistochemistry with retrograde

tracer injections into RA, zRalDH-labeled cells in HVC and

lMAN co-localized with the retrogradely-labeled cell somata in

these nuclei, corresponding to HVCRA and lMANRA projection

neurons (fig. 11). Area X also exhibited a diffuse zRalDH

immunostaining (fig. 10.D), which could stem from either lMAN

or HVC. In the case of Area X, however, no zRalDH positive

fiber tracts were visible (fig. 10.D).

Identifying the origins of the ATRA present in RA
To determine whether terminal fibers from HVC projection

neurons might be the source of the ATRA that induced LacZ

expression in RA, we performed unilateral lesion ablations of

HVC in 7 male zebra finches (3 adults and 2 juveniles) 14 days

before subjecting their brain tissue to the ATRA reporter cell

assay. In the absence of axonal input from HVC, ATRA-induced

LacZ was strongly reduced or undetectable in RA (fig. 12.A,C). A

similar result was obtained in 2 additional adult males where,

instead of removing HVC, the fiber tracts from HVC to RA were

cut with a scalpel 14 days before sacrifice (fig. 12.B,D). This

procedure may have also affected fibers from lMAN to RA, as

these travel in parallel to the HVCRA fibers. Even though the

reporter assay used only allows a qualitative assessment of labeling

intensity, it can be inferred from the very weak LacZ staining

(specifically, very few to no cells in the reporter monolayer

retained staining) that ATRA in RA after HVC removal or fiber

cut was low to non-detectable. These findings, together with the

diffuse zRalDH immunoreactivity seen in RA, suggest that ATRA

in RA stems from outside sources; while HVC seems to be a major

source of zRalDH enzyme/ATRA in RA, we cannot discard the

possibility from these current experiments that LMAN is also a

source.

Dynamic RXRa expression: age and time of day influence
expression in lMAN

Because of the known influence of retinoid signaling on

circadian and seasonal rhythms in mammals [49] we explored

whether RXRa expression in the song system varied with time of

day, as well as age. Birds of different ages were sampled at different

times of the day (without sampling at all times of the day for each

age) and statistical significance for effects of age and time of the

day were determined using MANCOVA (for details, see Materials

& Methods). Compared to the adjacent tissue, RXRa mRNA

expression varied with both age and time of the day in lMAN, but

not in HVC, RA, or Area X (fig. 13). During the day (i.e. from 2 h

after lights turned on until 2 h before lights turn off in a 12 12 h

light cycle), RXRa expression was comparable between lMAN

and surrounds (n = 14), whereas in the morning (within 20min

after the lights turned on, before any singing took place; n = 3) and

in the evening (within the last 1.5 h before the lights turned off,

n = 2), RXRa expression was lower in lMAN than in the

surrounding nidopallium (fig. 13.A,B). In adults, lMAN expressed

less RXRa than the surrounding nidopallium. This difference was

significantly less pronounced in juveniles (fig. 13.C).

Interestingly, inspection of zRalDH immunopositive material

suggested that there may exist an age-related decline of zRalDH

expression as well (fig. S5): Similar to RXRa, zRalDH seems to be

dynamically regulated within lMAN. The older the animal, the

fewer cells per area seemed to conspicuously express zRalDH,

while the expression strength per zRalDH positive cell did not

appear to strongly vary with age (fig. S5).

Expression of retinoid degrading enzymes in higher
order auditory areas

We mapped the mRNA distribution of the retinoic acid

degrading cytochromes CYP26A1, CYP26B1, and CYP26C1 in

juvenile (6 males, PHD 20-68) and adult (7 males, 2 females) zebra

finches. CYP26A1 and CYP26C1 distributions were low, broad

and uniform, without evidence of regional enrichments (data not

shown). In contrast, we successfully detected strong labeling at the

known sites of CYP26A1 and CYP26C1 expression on sections of

a zebra finch embryo (data not shown), demonstrating the

Figure 8. ATRA-induced reporter expression in song nuclei
HVC and RA of adult male zebra finch is consistent with
zRalDH expression. The drawing illustrates regions shown in A (HVC)
and B (lMAN), abbreviations in table 1. Left panels show ISH for zRalDH,
right panels show detection of ATRA (blue label) in brain sections by
reporter assay. HVC but not the surrounds, and lMAN and its surrounds
both strongly express zRalDH and induce reporter expression. In all
panels, frontal is to the right and dorsal is up.
doi:10.1371/journal.pone.0111722.g008
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effectiveness of the probes. CYP26B1 showed a complex pattern

(fig. 14) that was partly adjacent to, but did not overlap with

zRalDH expression. Within the telencephalon, CYP26B1 expres-

sion was restricted to the caudal mesopallium (CM), with highest

expression in the dorsal-most part (fig. 14 and fig. 15) but some

expression in the most fronto-lateral part (fig. 14.C), and a very

small region in the hippocampus (fig. 14 and fig. S6.B–E). Outside

of the telencephalon CYP26B1 was expressed in the medial

habenula (fig. S6.F–H), the Purkinje cell layer of the cerebellum

(fig. 14.A,B), and some scattered cells in the brain stem (fig. 14.B).

Comparing distributions of the transcripts for the ATRA

synthesizing zRalDH and the ATRA degrading CYP26B1 reveals

differential expression combinations across the higher auditory

regions (fig. 15): In CM (including both CMM and CLM),

CYP26B1 expression varied along the dorso-ventral axis in a

gradient-like manner, while zRalDH transcript was entirely

absent. In NCM, which is devoid of CYP26B1 transcript, we

noted some zRalDH expression in scattered cells concentrating in

the most anterior part, while no zRalDH positive cells are found in

the more posterior NCM (fig. 15.A–C). Note that this is in contrast

to a previous study [25], where NCM did not show any zRalDH

expression at all. CMM and NCM are separated by a thin layer of

caudal nidopallium with high zRalDH expression, and field L2a

which did not express either of the genes (fig. 15).

The distributions of CYP26B1 and zRalDH transcripts raise the

possibility that ATRA is distributed differentially across higher

auditory areas, apparently in a gradient-like manner. Indeed, the

ATRA reporter cell assay data are consistent with this hypothesis,

showing high staining in the anterior mesopallium, and decreasing

towards its caudal and dorsal part (fig. S7). Mesopallial ATRA

may result from diffusion from the adjacent zRalDH expressing

hyper- or nidopallium, as zRalDH is not present in mesopallium,

or from synthesis by a different ATRA generating enzyme. The

lack of ATRA-induced reporter expression in the dorso-caudal

mesopallium was consistent with expression of CYP26B1 in the

same region, suggesting that CYP26B1 may create a local ATRA

sink. Consistent with this idea, CYP26B1 expression decreased

towards the rostro-ventral mesopallium, whereas ATRA-induced

LacZ staining increased.

Receptor expression patterns in the higher auditory areas are in

line with complex ATRA signaling. RXRa expression was high

throughout NCM and CM, with strongest expression in NCM

(fig. 3 and fig. 5), and all three RARs are expressed in both NCM

and CMM to different degrees and with differential distributions

[29]. Field L2a which is located between those two areas is largely

devoid of expression of any retinoid related gene (fig. 3, fig. 5,

fig. 6, fig. 14, and study by Jeong et al. [29], for RARs).

Brains of two adult females and six juvenile males (PHD 20–68)

showed comparable expression patterns as the adult males

reported above (data not shown).

Figure 9. Induction of ATRA reporter expression by song nuclei that do not express zRalDH in adult male zebra finch. Line drawing
on top indicates position of song nuclei. Left panels: detail views of zRalDH expression by ISH. Middle panels: Sites of ATRA presence by reporter cell
assay. Right panels: summary and examples of transcript distribution for retinoid receptors. Data for RAR expression are from Jeong et al., 2005. Brain
diagram on top indicates position of song control nuclei. In all panels, frontal is to the right and dorsal is up. A: Area X; B: RA. In both nuclei, zRalDH is
not expressed, but ATRA-induced reporter expression is detected, as well as receptors that may mediate ATRA effects.
doi:10.1371/journal.pone.0111722.g009
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Discussion

Distribution of retinoic acid pathway genes in the adult
song control system: General overview

Our data mapping the distribution of RXRa, RXRc,

CYP26B1, ATRA, and zRalDH in the zebra finch brain indicate

a previously unrecognized complexity of the retinoic acid signaling

system [21,29,50]. Specifically, we found that ATRA is able to

induce reporter gene expression in two song nuclei, RA and Area

X, that do not express the retinoic acid synthesizing enzyme

zRalDH. Because we detected zRalDH protein in HVC neurons

that project to RA and to Area X, as well as in lMAN neurons that

project to RA and Area X, we propose that ATRA in Area X and

RA originates in HVC and/or lMAN. Consistent with this notion,

immunoreactivity for zRalDH protein could be detected along the

fibers bundles where the fibers of the projection pathway from

HVC to RA are located and immunolabeling in the target nuclei

was diffuse, suggesting the protein is present in presynaptic

endings. More importantly, surgically disconnecting HVC and

lMAN from their targets led to reduced ATRA-induced reporter

expression in Area X and RA.

Finding that zRalDH enzyme can apparently be transported

between song nuclei, and detecting ATRA presence in both source

and target areas, resolves a puzzling discrepancy between zRalDH

and RAR mRNA distributions: zRalDH mRNA is strictly

confined to few brain areas including HVC, lMAN, and a

nidopallial gradient around lMAN [21], while RAR expression is

much more widespread [29]. RAR mRNA is found at sites far

Figure 10. zRalDH protein expression in areas of adult male zebra finch brain that express or lack zRalDH mRNA. A: Drawing indicates
location of images shown in other panels. B: zRalDH mRNA expression by in situ hybridization, level similar to A. C–G: zRalDH protein detection
through immunohistochemistry. C: HVC and RA, as well as the fiber tracts extending from HVC to RA (arrows) are labeled. D: lMAN and surrounding
nidopallium, as well as Area X, are labeled; labeling in Area X is diffuse and not in somata. Thus, besides HVC and lMAN, which express zRalDH mRNA,
protein is present in two song nuclei (X and RA) that lack zRalDH transcript (white arrows in B). E: Detail view of zRalDH protein in RA; labeling is
diffuse and not in somata. F: Detail view of zRalDH protein in HVC, somata are labeled. G: High power view of zRalDH in lMAN, somata are labeled. In
all panels, frontal is to the right, and dorsal is up. For abbreviations, see table 1.Scale bars for C = 0.5 mm; D–F = 100mm, G = 50mm.
doi:10.1371/journal.pone.0111722.g010
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away from zRalDH expression areas, including song nuclei RA

and Area X. We show here that RXRa also has a broadly

distributed expression, while RXRc is confined to Area X – a

region completely devoid of zRalDH transcript. Our findings are

consistent with the notion that the zRalDH enzyme is transported

from HVC and/or lMAN to Area X and RA, where locally

generated ATRA could then act at the receptors present in these

target regions.

Expression of at least one RXR and one RAR overlapped in

each one of the telencephalic song nuclei, qualifying them as

potential targets of retinoid controlled gene transcription. The two

groups of retinoid-related receptors, RXRs and RARs, are

thought to mediate ATRA induced target gene transcription

upon heterodimerization only [30–34]. But note that RXRs also

hetero-dimerize with a multitude of other nuclear receptors,

transcription factors and other peptides (reviewed by Lefebvre

[51]). Thus, RXR mRNA distribution reflects a high functional

diversity, and RXRs present in any region may serve other

functions than ATRA-mediated signaling, irrespective of local

ATRA presence. We did not investigate cellular colocalization of

RXRs, RARs, and zRalDH. Except for RXRc, however,

receptors were expressed in most cells within the respective song

nuclei, so that their expression is likely to overlap. We observed

that: (1) All song nuclei but HVC exhibit RAR/RXR receptor

expression profiles that differ from the surrounding tissue, and. (2)

Each song nucleus has its own receptor expression profile (fig. 16).

The three pallial song nuclei HVC, lMAN, and RA predomi-

nantly express RARa and RXRa, with lower levels in lMAN.

Figure 11. zRalDH immunoreactivity in HVC and lMAN neurons that project to RA (HVCRA and LMANRA). Schematic drawing on top
illustrates injection of the retrograde tracer cholera toxin subunit B (CTB) and location of retrogradely labeled neurons. A and B: High power views of
HVC (A) and lMAN (B) in zRalDH-immunolabeled sections from an adult male zebra finch that received an CTB injection into RA resulting in
retrogradely labeled neurons in HVC and lMAN. Left panels show bright field views of zRalDH protein expression, right panels show CTB signal (red)
and cell nuclei stained with DAPI (blue) in the same fields. Arrowheads point to zRalDH-immunoreactive cells that are retrogradely labeled. Scale bars:
20mm.
doi:10.1371/journal.pone.0111722.g011
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HVC expresses RARc [29]. RA has stronger RXRa expression

than HVC and lMAN. The striatal Area X differs from the pallial

nuclei most notably in that it expresses very little RXRa, but it also

expresses RXRc in a sparsely distributed population of large cells

(fig. 6.B,C). They might correspond to the tonically-active fast-

spiking pallidal cells in Area X, which provide input to the avian

versions of the direct and indirect mammalian basal ganglia

pathways [52,53].

In lMAN, RXRa expression levels show considerable variation,

which our data linked to time of day and age. However, additional

factors which we did not control for may also influence RXRa
levels in lMAN. One possibility is the social environment: some of

the birds were moved across different groups of males, or housed

at different times in smaller groups or large aviaries prior to RXRa
expression assessments. Exposure to different songs of cage mates

can lead, even in adult zebra finches with crystallized songs, to

syllable modifications [54]. Such changes require lMAN [55,56],

and might be linked to RXRa-mediated processes in that nucleus.

An important finding is the difference between zRalDH

transcript and protein within HVC: We detected zRalDH enzyme

in HVCRA projection neurons, yet these neurons do not contain

zRalDH transcript [21]. zRalDH mRNA within HVC has only

been reported for Area X-projecting neurons, which raises the

question of how the zRalDH enzyme is present in RA-projecting

cells. A similar dissociation of the cellular distributions of mRNA

and peptide in HVC has been previously described for IGF-II

[57].

While zRalDH transcript distribution was considerably more

confined than ATRA distribution, zRalDH protein distribution

did match ATRA distribution overall (fig. 9 and fig. 10). Only few

regions were ATRA-positive and zRalDH peptide-negative, e.g.

the anterior mesopallium close to lMAN, and parts of the striatum

around Area X. These sites of ATRA presence might possibly be

accounted for by diffusion, or by activity of ATRA synthesizing

enzymes other than zRalDH, for instance CYP1B1. We conclude

that within the song control system, ATRA distribution is

accounted for by zRalDH enzyme transport over long distances

to specific targets, but in other parts of the brain, ATRA diffusion

or ATRA synthesis by enzymes other than zRalDH may also

occur.

Taken together, these findings reveal unexpected complexities

of ATRA related signaling, where there may be several ATRA

targets across the different song nuclei, and suggest that ATRA

actions may differ among the different song nuclei, leading

Figure 12. In the absence of axonal input from HVC, ATRA induced reporter staining is reduced in RA of adult male zebra finches.
Experimental design and time course are indicated by diagrams on the left and on top of photomicrographs. After surgical procedure, birds were
allowed to survive for 14 days before reporter assay was performed. A–D: High power views of reporter expression induced in the monolayer by RA;
dashed circles indicate position of RA. A and C: control hemispheres with intact HVC-to-RA projections. B and D: experimental hemispheres with HVC
lesion (B) or knife-cut fibers (D).
doi:10.1371/journal.pone.0111722.g012
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potentially to differential target gene regulation in different nuclei.

The downstream cellular effects can be autocrine or paracrine in

nature, as suggested by RAR and zRalDH expression data [29].

zRalDH enzyme trafficking in the song system
What is the likely source of zRalDH protein in RA and Area X?

zRalDH mRNA is expressed in both HVC and lMAN. In the

present study we found that retrogradely labeled neurons in both

HVC and in lMAN from tracer injections in RA are also

immunopositive for zRalDH. Within HVC, however, HVCRA

projection neurons do not express zRalDH transcript (only

HVCAreaX neurons do [21]), thus a transfer of either zRalDH

transcript or protein across cell types would be required; cell type

specificity of zRalDH mRNA expression has not yet been assessed

in lMAN. To date, RalDH transcript transfer between cells has

not been described, but a case of RalDH2 protein transfer

between cells has been described (RalDH2 is homologous to zebra

finch zRalDH): rat tanycytes do not express RalDH2 mRNA but

contain RalDH2 protein, most likely taken up from the cerebro-

spinal fluid [58]. Alternatively, many HVC neurons are organized

in tight clusters, and dye coupling across cells has been observed

for both HVCRA and, more rarely, HVCAreaX neurons [59]. HVC

has gap junctions [60] that have been hypothesized to mediate dye

transfer, but peptides or nucleic acids would be too large for them,

thus the possible transfer mechanism remains undefined.

The strong immunohistochemical labeling of fiber tracts

between HVC and RA and the fact that HVC lesions almost

completely deplete RA of ATRA suggest that ATRA in RA

depends on zRalDH protein that originates in HVC. An

alternative source is lMAN, as lMANRA axon fibers traverse close

to HVC, so that some of the zRalDH positive fiber in the tracts

between HVC and RA could belong to lMANRA neurons.

Consequently, both surgeries used for lesioning HVC may have

affected axon bundles from lMAN to RA [61,62]. Furthermore, in

the reporter assay, ATRA-induced LacZ was detectable along the

fiber tracts originating in lMAN and extending caudally. These

tracts were unlikely to be confounded with HVCRA projection

neurons. Finally, we also found considerable amounts of ATRA-

induced LacZ in female RA (data not shown). HVC is an unlikely

source of this ATRA, since female HVC is small and not

connected to RA. Thus, while not conclusive, the female data

suggest that lMANRA projection neurons can be a source of

ATRA in RA.

ATRA in Area X could also originate in HVC and/or lMAN,

but here the evidence is more indirect. HVCAreaX projection

neurons are positive for zRalDH transcript [21] and could provide

Area X with the enzyme. Further, we show here that lMAN cells

that project to RA contain zRalDH enzyme. Since lMAN contains

cells that project to both RA and Area X [63], this opens up the

possibility that lMAN projection neurons also provide Area X with

zRalDH protein.

A possible role for ATRA in RA
The ATRA distribution in the song system suggested by our

experiments is consistent with a possible role for balancing two

neural pathways that are essential for song, the vocal motor

pathway comprising HVC and RA on the one hand, and the AFP

with Area X and lMAN on the other hand (fig. 1). A number of

Figure 13. RXRa expression in Area X, lMAN, and RA in relation to time of day and age. A: RXRa expression across the day. Bars represent
the difference in normalized expression strength between a song nucleus and the surrounding area (‘‘D RXRa inside nucleus-outside’’, mean 6 SEM);
a 0 value indicates no expression difference, positive values indicate more expression inside than outside, negative values the opposite. At different
times, expression compared to the surrounds varied significantly in lMAN, but not in Area X or RA; asterisk indicates significance by MANCOVA (Area
X: F = 0.79, p = 0.471; lMAN: F = 5.7, p = 0.014; RA: F = 0.31, p = 0.736); for details, see Methods. During the day, the RXRa expression inside and outside
lMAN was similar, whereas RXRa expression was lower in lMAN than in the surrounding nidopallium in the morning and evening. B: Representative
bright field images of sagittal sections showing variation in RXRa expression in lMAN compared to surrounding nidopallium at different times of the
day. C: RXRa expression across ages. Plotted is the same measure of expression strength as in A vs. age (post-hatch days), and linear fits; a significant
decrease with age was seen in lMAN (MANCOVA, F = 4.72, p = 0.046) but not in Area X (F = 2.13, p = 0.165) or RA (F = 0.54, p = 0.476).
doi:10.1371/journal.pone.0111722.g013
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studies suggest that the way a bird introduces lasting changes to his

song is through balancing these two pathways: Activation of the

posterior motor pathway produces stereotyped firing (and song)

patterns, while activation of the AFP results in increased variability

of vocal output [64–67]. The bird uses AFP-generated random

exploration to eventually develop a stereotyped song that is

matching an internal sensory template [65,67–71]. Song nucleus

RA is an important interface between the ‘‘stereotyped’’ posterior

and the ‘‘exploratory’’ anterior pathways, receiving the stereo-

typed firing patterns from the HVCRA projections, while the

lMANRA projections contribute the variable input (see fig. 1).

Successful imitation of the tutor’s song patterns by the juvenile

bird is dependent on the exploratory AFP-driven pattern

production: early lMAN lesions lead to a simple, stereotyped,

prematurely crystallized song [72]. lMAN-dependent exploration

is still available to adult birds to some extent, and can be used for

dynamic re-adjustment of the motor output even after song

crystallization [55,73,74]. Both lMAN and HVC could, by

controlling the amount of ATRA they provide to nucleus RA,

locally modify synapses within RA, and thereby regulate the

respective contributions of the AFP and the motor pathway to RA

activity. Indeed, lMAN projections onto RA have been shown to

influence synaptic connectivity of the descending HVCRA inputs

in juvenile birds: lMAN lesions lead to a sudden numeric decrease
of HVCRA synapses, along with a strengthening of their excitatory

transmission [75]. Synaptic terminals of the HVCRA neurons

contain protein kinase C (PKC) [76,77], a molecule involved in

synaptic plasticity and a direct target for ATRA [78,79], and thus

a candidate mechanism for ATRA-controlled restructuring of

synapses in RA. However, other ways of ATRA controlled

synaptic alterations have been described and might be at play here

as well, such as regulating dendritic mRNA translation to induce

rapid dendritic growth, as in mouse hippocampal neurons [80–

83], or rapid AMPA or GABAA receptor trafficking at the synapse

[6,82,84–86]. This latter process is mediated by a nontranscrip-

tional function of the RARa receptor, which is expressed in RA

[29]. This mode of action of ATRA is thus an interesting

candidate mechanism for balancing stereotyped inputs from HVC

and more variable inputs from lMAN, by controlling synapse

strength in RA.

Interestingly, feeding juvenile zebra finches supplemental

ATRA increases the variability of the song when the birds reach

Figure 14. CYP26B1 expression in adult zebra finch brain. The drawings on the left depict brain areas of the parasagittal sections on the right.
The right panels show sections processed for ISH for CYP26B1. For all images, anterior is to the right and dorsal is up. A and B are medial sections, C a
lateral one. CYP26B1 expression is sparse, mostly in CMM and CLM (black arrowheads), and does not overlap with zRalDH (see fig. 14, 15, and fig. 7).
CYP26B1 is also expressed in the fronto-lateral mesopallium (empty arrow), in the medial habenula (white arrowhead), in the caudal-dorsal
hippocampus (white arrow), and in cerebellar Purkinje cells. For abbreviations, see table 1. Scale bars = 1 mm.
doi:10.1371/journal.pone.0111722.g014
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adulthood, and at the same time leads to a correlated increase of

gene expression levels in lMAN and Area X [87] – a finding that is

consistent with a possible role of ATRA in balancing the

stereotyped vs. exploratory pathways. As birds age, we found that

zRalDH enzyme in lMAN decreases, which is consistent with the

notion that as ATRA levels decline at the lMAN-RA synapse, less

variability is reaching RA and the influence of HVC becomes

stronger. This could in turn lead to more stereotyped song, which

is what happens as birds get older, even in adults [88,89].

Our observations that RXRa transcript in lMAN undergoes

circadian changes, and in addition decreases with age, are

compatible with this scenario. RXRa transcript in lMAN is

highest at young age, and in addition, it changes in a circadian

manner, increasing after waking up and decreasing before the end

of the day. While these fluctuations happen over very different

time scales – one over the course of a day and the other over the

course of several weeks or months – they are paralleled by the rate

of song change: The strongest changes to a birds’ song towards

stereotypy happen at early age, when RXRa in lMAN is generally

high. The strongest changes in syllable structure are observed in

the first 2–3 hours of singing after waking up, the syllables being

less structured in the morning as compared to the previous

evening, but regaining structure throughout the hours of morning

singing [90]. This observation has been made in juvenile birds, but

while the oscillations in syllable structure decrease with age, they

might still persist to some extent in the adult bird. The time

resolution of our circadian analysis is not fine enough to decide

whether RXRa transcription and the rate of song structure-

Figure 15. CYP26B1 and zRalDH exhibit graded expression in higher auditory areas of adult zebra finch. The drawing in the top left
indicates approximate regions shown in A–E; the drawings on the left depict brain areas shown on the right. The middle and right columns show
sections processed for ISH for CYP26B1 and zRalDH. For all images, anterior is to the right and dorsal is up; medial to lateral is represented from top to
bottom. CYP26B1 is expressed in a dorsoventral gradient-like pattern throughout the caudal, caudo-medial and caudo-lateral mesopallium (CM, CMM
and CLM; arrows in middle panels point to region of high expression). This distribution does not overlap with zRalDH mRNA expression, which is
absent in the mesopallium; some cells in the rostral part of the caudal nidopallium express zRalDH (arrows in right panels), tapering off caudally. For
other abbreviations, see table 1. Scale bar = 0.5 mm.
doi:10.1371/journal.pone.0111722.g015
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change peak at exactly the same time, or one is following the

other. However, the fluctuations of RXRa transcription in lMAN

happen in a similar rhythm or time scale as the rate of song

modification. This would be in line with a possible role of RXRa-

mediated ATRA signaling in ‘‘translating’’ those of the explor-

atory neural/song patterns that correspond to the desired template

song into long lasting synaptic alterations. Increasing RXRa after

waking up in the morning could help to consolidate synaptic states

that correspond to the desired syllable structure both within lMAN

and at the lMAN-to-RA synapse. A decrease in RXRa expression

with age would be in line with the decreasing need for exploration-

driven song changes (and thus for consolidating the desired

exploratory patterns) as the song matures.

This scenario for RXRa function in lMAN is speculative so far,

and needs further experimental research to be verified.

ATRA signaling in higher auditory areas
The CYP26B1 and zRalDH expression patterns revealed the

higher auditory regions CMM/CLM and NCM as possible targets

of complex ATRA signaling. Additionally, CYP26B1 is, to our

knowledge, the first molecular marker for CM. The lack of overlap

between CYP26B1 and zRalDH expression (fig. 14 and fig. 15)

suggests that the role of CYP26B1 in the zebra finch brain consists

in establishing regional sinks or gradients of ATRA.

NCM and CMM show high immediate early gene expression

after the awake, behaving bird has heard song, and these regions

are likely to be involved in song memorization required for song

learning and perceptual discrimination [91]. The differential,

partly gradient-like expression patterns of CYP26B1 in CM and of

zRalDH in and adjacent to NCM suggest differential ATRA

presence across these areas. The results of our reporter assay are

consistent with ATRA increasing along the dorso-ventral axis in

CM, and decreasing along the antero-posterior axis in NCM,

perhaps in a gradient-like way. Determining the exact nature of

this differential distribution would require a quantitative ATRA

detection method, such as developed by Shimozono et al. [92]

with genetically encoded fluorescent ATRA indicators.

Note that the origin of the mesopallial ATRA is unclear, since

neither zRalDH transcript nor enzyme are present there. ATRA

might diffuse from either hyper- or nidopallium to its mesopallial

sites, or be synthesized by an enzyme other than zRalDH.

Receptor expression patterns suggest in addition that the higher

auditory regions may respond in a complex way to this ATRA

distribution (e.g. RARb-mediated responses being stronger in the

anterior part of CMM than in the rest of the higher auditory

areas). To our knowledge, no similar gradients of zRalDH, or

retinoic acid degrading enzymes have been described to date for

adult mammalian brains, although they are well documented in

embryonic development [92–95]. There, ATRA gradients con-

tribute to embryogenesis and differentiation by creating regional

differences in the expression of retinoid target genes, which then

contribute to local tissue differentiation and patterning [1]. In the

adult brain, expression gradients of the enzymes that generate and

degrade ATRA might perhaps play a similar role for regional

differentiation and function: They might result in differential local

ATRA presence, or perhaps gradients, as suggested by the

observed ATRA-induced reporter distribution in the cell coculture

assay. In turn, they could contribute to regional differences in

neuronal phenotypes and function (e.g. in the different parts of the

auditory system).

Expression gradients in the postnatal brain have been described

for a limited number of other genes, e.g. in the rodent

hippocampus, where collagen gene Col15a1, crystalline (Crym),

integrin subunit a8, and kainate receptor subunits GluR-6 and

KA-1 are expressed in a gradient-like manner in fields C1 and C3

[96–100], but the function of these postnatal expression gradients

is unknown.

In the developing brain, opposing gradients of the EphA

receptor and ephrinA, its ligand, are involved in topographic

mapping, for instance of the retinotectal projection (reviewed by

Klein and Kania [101]). The reciprocal distributions of ATRA-

induced LacZ and CYP26B1 in CM are reminiscent of these

opposing gradients. Whether or not they may be involved in CM

topography is up to further investigation.

Interestingly, retinoid signaling might play a role in the early

postnatal development of the mouse auditory cortex, as mouse

RalDH3 is transiently upregulated in this region during an early

postnatal phase [102,103]. Whether or not mouse CYP26B1 is

also regulated at this site and time window is not known.

Contrasting to the songbird findings, however, neither mouse

RalDH nor CYP26B1 or any of the other retinoic acid degrading

CYP26s seem to be expressed in the adult mouse auditory cortex

(see Wagner et al. (2002), and Allen Brain Atlas; http://mouse.

brain-map.org). CYP26B1 expression in the adult mouse brain is

limited to the amygdala, parts of the hippocampal formation, and

the adjacent subiculum (Allen Brain Atlas).

Prolonged zRalDH expression in zebra finches’ higher auditory

areas might point to prolonged auditory plasticity in birds.

Expression of immediate early genes such as ZENK induced by

auditory song exposure in adult zebra finches’ higher auditory

areas is long known [44,104–106], and an electrophysiological

study has shown that adult neuronal plasticity takes place within

these areas [107]: ‘‘Tuning’’ of NCM neurons – i.e. the sound

frequencies they respond best to – is shown here to be influenced

by recent auditory experience. This example of a non-develop-

mental locally differential ATRA presence may be an interesting

target for future research.

With this study, we provide further evidence for a prominent

role of retinoid signaling in the brain of an adult vertebrate. Our

results suggest that retinoid signaling in the songbird brain shows a

previously unknown spatial complexity, with ATRA likely acting

at sites that are distant from areas that express the synthetic

enzyme. Our findings complement previous findings to generate a

comprehensive picture of likely targets of action for ATRA in the

songbird brain and song system, inviting future mechanistic studies

Figure 16. Overlapping expression of RARs and RXRs differ
across song control nuclei, as well as between most song
nuclei and their surroundings. Expression strength of all receptors
based on visual estimates are schematically represented by symbol size
(for RARs, data are from Jeong et al. (2005)). For all song nuclei except
HVC, the receptor expression profile differs from the surroundings.
Thus, each song nucleus has a unique combination of RAR(s)/RXR(s),
which may lead to nucleus-specific sets of ATRA effects.
doi:10.1371/journal.pone.0111722.g016
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investigating the long range function of retinoid signaling and its

possible role for a post-natally acquired vocal motor behavior.

Supporting Information

Figure S1 Zebra finch RXRa and RXRc domain struc-
ture and position of probes used for in situ hybridization
(ISH). Light gray bars represent the ORF, darker segments

functional domains, arrows exons. RXRs are characterized by a

zinc finger towards the 59 end of the gene, and a hormone receptor

domain towards its 39 end. Start and end nucleotides of the ORF

and domains are indicated by numbers. The zinc finger domains

of the two genes are aligned vertically. Black lines underneath

represent the probes used for ISH. A: For RXRa, a 658 bp probe

overlapping the 39 UTR was used. B: For RXRc, identity to

RXRa is indicated in percent for each part of the gene. Two

different transcriptional variants are known for RXRc in chicken.

The ORFs of these different variants are symbolized by narrow,

light bars beneath the RXRc bar. The only zebra finch RXRc we

found corresponds to the shorter variant’s sequence. We cannot

exclude that the other transcriptional variant also exists in zebra

finches. Our probe would not distinguish between the two

variants. The RXRc 738 probe yielded a distinct expression

pattern different from RXRa.

(TIF)

Figure S2 Positioning of ISH probes for the ATRA
degrading cytochrome genes. Pink bars represent coding

sequences (CDS), and in case of CYP26A1, an additional antisense

open reading frame [ORF]; regions coding for p450 domains

which are specific for this class of cytochromes are marked in dark

red. Regions covered by probes are represented as green arrows.

A: For CYP26A1, we used two different probes, one covering a

region close to the 59 end of the CDS which falls into a potential

additional antisense ORF, and one covering a region further

downstream. B: Our CYP26B1 probe covered a region close to the

59 end of the CDS. C: As the zebra finch CYP26C1 sequence is

unknown, a putative CYP26C1 sequence predicted by automated

computational analysis of the zebra finch genome is shown (NCBI

Reference Sequence: XM_002189751.1). We used a probe near

the middle of this predicted gene.

(TIF)

Figure S3 An antibody against human ALDH1A2, the
human homolog to zRalDH, specifically labels zebra
finch zRalDH. A: Parasagittal zebra finch brain section

immunolabeled with aALDH1A2 antibody visualized with DAB

staining. B (control 1): Without primary antibody, no staining

occurs. C and D (control 2): No staining occurs after preincubation

of sections with ALDH1A2 blocking peptide (C: brightfield view,

D: darkfield view; arrows indicate song nuclei HVC and RA). In

all photos, frontal is to the right and dorsal is up. Scale bar

= 1 mm.

(TIF)

Figure S4 Thalamic and midbrain expression of zebra
finch RXRs. A, C, E: Drawings of the thalamic part of frontal

brain sections shown in B, D, F. B, D, F: RXRa expression in the

thalamus by ISH, from frontal to caudal. Nucleus spiriformis

medialis and lateralis (SpL, SpM) showed the strongest RXRa
labeling. Labeled cells were also found in the ventral tegmental

area (VTA), substantia nigra (SN), and the optic tectum. G:

Comparison of thalamic RXRa and RXRc expression (parasag-

ittal sections, frontal is to the right). Drawing on the left indicates

regions shown in the right photos. RXRa expression is shown in

middle, RXRc expression on the right. Both RXRs are highly

expressed in nucleus spiriformis medialis, whereas the remaining

thalamus shows little (RXRa) or no (RXRc) labeling. For

abbreviations, see table 1. Scale bars = 0.5 mm.

(TIF)

Figure S5 Retrospective review of zRalDH immuno-
stainings and ISHs suggests that zRalDH expression in
lMAN decreases with age. Dashed rectangle in drawing on top

indicates approximate region shown in A and B. A: Immunolabel-

ing of zRalDH protein in lMAN and surrounding of four animals

of different ages. Dashed circle surrounds lMAN. Density of

immunolabeling in lMAN decreases as age increases, although

some cells are still strongly labeled at high age. B: zRalDH ISH

showing expression around lMAN region; dashed circle surrounds

lMAN. Like zRalDH protein, zRalDH mRNA in lMAN is

decreased in an aged animal as compared to a juvenile, due to

lower density of labeled cells. In all panels, frontal is to the right

and dorsal is up. Scale bar = 1 mm.

(TIF)

Figure S6 CYP26B1 is expressed in neuronal popula-
tion(s) with medium to high density. A: Drawing indicates

the CMM region shown in photos B–E. B and C: CYP26B1

expression by ISH (B), counterstained with DAPI to visualize cell

nuclei (C). B shows the dorsoventral CYP26B1 expression gradient

in CMM, a comparison to cell density in C shows that the density

of the CYP26B1 positive cell population is medium high. D and E:

Bright field and fluorescence views of CYP26B1 ISH immuno-

stained for the neuronal marker Hu (red), and counterstained with

DAPI (blue). CYP26B1 positive cells are also Hu positive (white

arrowheads). F–H: CYP26B1 expression in the medial habenula. F

shows CYP26B1 by ISH, G is the according DAPI stain, and F the

merged image. Most cells particularly at the margins of the medial

habenula express CYP26B1. Scale bars for B and C = 50mm, for D

and E = 20mm, for F–H = 100mm.

(TIF)

Figure S7 In the mesopallium, ATRA-induced reporter
decreases along the antero-posterior axis. This is consis-

tent with CYP26B1 expression but requires either ATRA diffusion

from hyper- or nidopallium, or mesopallial ATRA synthesis by

some other ATRA synthesizing enzyme such as CYP1B1.

Schematic drawing on top left depicts the approximate area

shown in panels A and B. A: zRalDH and CYP26B1 expression by

in situ hybridization. Gray dashed boxes outline region shown in

panel B. Note that zRalDH and CYP26B1 expression are non-

overlapping. B: ATRA distribution as determined by ATRA

reporter cell culture assay. Blue label indicates ATRA-induced

gene expression. The upper picture is a summing-up overview of

ATRA distribution in the dorso-caudal area (gray indicates ATRA

activity), below are corresponding examples of 5 different animals.

The dorso-caudal mesopallium is devoid of ATRA-induced

reporter, consistent with CYP26B1 expression and lack of zRalDH

expression (red arrowheads). As CYP26B1 expression decreases

towards the more rostro-ventral mesopallium, ATRA-induced

reporter increases. For more pictures of CM expression of

CYP26B1 and zRalDH in different mediolateral planes, see

fig. 15.

(TIF)

Table S1 Number and age of animals used for ISH
experiments, and treatments they underwent.
(DOCX)

Table S2 Number and age of animals used in reporter
cell assay experiments, and treatments they underwent.
(DOCX)
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Table S3 Number and age of animals used for zRalDH
immunohistochemistry experiments, and treatments
they underwent.

(DOCX)
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