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We present a first principles approach to compute the response of the molecular electronic charge
distribution to a geometric distortion. The scheme is based on an explicit representation of the lin-
ear electronic susceptibility. The linear electronic susceptibility is a tensor quantity which directly
links the first-order electronic response density to the perturbation potential, without requiring self-
consistency. We first show that the electronic susceptibility is almost invariant to small changes in
the molecular geometry. We then compute the dipole moments from the response density induced
by the geometrical changes. We verify the accuracy by comparing the results to the corresponding
values obtained from the self-consistent calculations of the ground-state densities in both geometries.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819070]

I. INTRODUCTION

The equilibrium state of a physical system is of fun-
damental importance for understanding its structural prop-
erties. However, especially spectroscopic experiments often
rely on excitations of the system of interest.1–5 It is there-
fore necessary to include these excitations in the molecular
simulation to link experiment and theory and gain a deeper
understanding of the spectroscopic processes.6–12 Since the
perturbation causing the excitation is usually small compared
to the Hamiltonian of the unperturbed ground-state, it is con-
venient to use perturbation theory. Within this framework, a
multitude of external perturbations can be considered, such
as electric and magnetic fields or the excitation of vibra-
tional modes.13–22 The latter, or phonons in the context of
solids, are derivatives of the total energy with respect to all
nuclear coordinates, which results in a set of 3N perturba-
tion calculations for a system with N atoms. Especially for
small wavevectors q, which stretch across several unit cells,
the number of required calculations grows quickly.15 In view
of this scaling, it is highly desirable to reduce the effort nec-
essary for each perturbation calculation. An alternative to
the most common scheme, a fully self-consistent perturba-
tion calculation, is based on the linear electronic susceptibil-
ity, a tensor quantity which links the perturbation potential
directly to the electronic response density.23–26 Once com-
puted for the system of interest, it therefore allows to per-
form perturbation calculations as simple matrix-vector prod-
ucts. In a first proof-of-principle article,26 we have illustrated
the algorithm and its potential for modelling supramolec-
ular interactions at the level of density functional theory
(DFT).27, 28

Correctly predicting the response of the electronic
state due to geometrical distortions is the key require-

a)Electronic mail: daniel.sebastiani@chemie.uni-halle.de

ment for applying any perturbation theory to phonon
calculations.4, 12, 29–31 In this paper, we show that the linear
electronic susceptibility is almost invariant to geometrical
changes and well suited to predict the electronic response den-
sity by computing the dipole moments induced by the geomet-
rical distortions.

Density functional perturbation theory is commonly ex-
pressed in terms of a linear system of equations for the per-
turbed orbital states:

(H0 − εi)ψ
1
i = −H1ψ

0
i , (1)

where H0 is the unperturbed Hamiltonian operator, εi the
Kohn-Sham energy value for the unperturbed orbital ψ0

i ,
and ψ1

i is the perturbation correction due to the perturbation
Hamiltonian H1. The explicit dependence of the DFT Hamil-
tonian on the electronic density leads to an additional term
on the right-hand side of this equation, which requires an it-
erative self-consistent approach for the numerical solution of
ψ1

i .13–15, 17

This set of equations can be represented in a different
way, employing the inverse of the unperturbed Hamiltonian
operator (H0 − εi)−1. In the case of a purely local perturba-
tion potential, this formulation can be developed into an ex-
pression for the first order electronic density response n(1)(r)
as function of the perturbation potential,26

n(1)(r) =
∫

dr′χ (r, r′)H1(r′). (2)

In this formula, χ (r, r′) is the linear electronic susceptibility
tensor, which allows the direct calculation of the perturbed
electronic density without a self-consistent scheme. However,
for the application of Eq. (2) the explicit shape of χ (r, r′)
is required, a non-trivial computational task for a complex
molecular system. In particular, the susceptibility tensor is a
function of the inverse of the unperturbed Hamiltonian, which
in principle requires the knowledge of the entire manifold of
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its eigenvalues and eigenstates (here, the Kohn-Sham energies
and orbitals). To circumvent this problem, we make use of the
Hermitian property of χ (r, r′). This allows us to represent it
by its eigenstates χi(r) and eigenvalues χ i,

χ (r, r′) =
∑

i

χi(r) χi χi(r′). (3)

In a previous paper, we presented a computational scheme
for the electronic susceptibility based on this representa-
tion and analysed the properties of the susceptibility eigen-
states and eigenvalues in a water molecule. Furthermore, we
benchmarked the scheme with response densities and the po-
larizability tensor. In the present work, we investigate how
strongly the electronic susceptibility tensor depends on the
molecular geometry of the underlying system. In this context,
we also focus on the calculation of the electronic charge re-
arrangement due to geometric variations by means of the sus-
ceptibility determined at the equilibrium geometry. Specif-
ically, we compute the electric dipole moment of a wa-
ter molecule in different geometries by using the Coulomb
potential difference between the geometries as perturbation
potential in Eq. (2).

II. COMPUTATIONAL SCHEME AND SYSTEM SETUP

A. Calculation of the electronic susceptibility

Under the assumption that the eigenvalue spectrum of
the electronic susceptibility features a fast decay, only a fi-
nite number of states contribute significantly to Eq. (3), and
higher states have only a negligible contribution. This in turn
would allow to truncate the summation after only a small part
of the spectrum, using the largest eigenvalues only. This prop-
erty of the linear electronic susceptibility tensor has been in-
vestigated in depth in a previous report.26

In our approach, the largest eigenvalues and eigenfunc-
tions of the linear susceptibility tensor are computed using
the iterative Lanczos diagonalization scheme. This scheme
requires the application of the matrix that shall be diagonal-
ized (i.e., the susceptibility tensor χ̂ ) to an arbitrary vector.
In the framework of DFT, the action of the electronic sus-
ceptibility tensor on a particular perturbation potential (yield-
ing directly the first-order electronic response density) is re-
alized in practice by solving the conventional perturbation
theory equations for that specific potential13–15, 17 according
to Eq. (1). The Lanczos diagonalization scheme for a ma-
trix (here, the tensor χ̂) consists now in repeatedly applying
this tensor on the previous result (here, the response den-
sity). This protocol iteratively generates a series of func-
tions/vectors, which form a growing so-called Krylov sub-
space. As the final step, the tensor is then projected into this
subspace, and the resulting tridiagonal matrix is diagonal-
ized. The quality of this diagonalization (i.e., the degree to
which the eigenvalues/vectors in this subspace correspond to
the values and vectors of the unprojected tensor) depends on
the number of iterations performed, i.e., the dimension of the
subspace.

B. Dipole moments induced by geometrical changes

One possible application of the electronic susceptibil-
ity is the prediction of molecular dipole moments induced
by geometrical distortions. When the molecular geometry is
changed (from “geometry 1” to “geometry 2”), a change in
the dipole moment is induced,

dsc
induced = dsc

total(geo 2) − dsc
total(geo 1), (4)

where dsc
total are the dipole moments of the respective ge-

ometries. These are calculated directly from the ground-state
charge density ntotal(r), which contains nuclear and electronic
charges,

dsc
total =

∫
ntotal(r)r dr. (5)

In common density functional theory, this requires two self-
consistent wave function optimisations. Alternatively, the ge-
ometry variation can be seen as a perturbation, characterized
by a perturbation Hamiltonian, which is just the difference of
the nuclear Coulomb potential between the two geometries.
This in turn enables the application of perturbation theory, ei-
ther in its self-consistent formulation13–15, 17 or in the form
presented above24–26, 32 using the linear electronic suscepti-
bility tensor. In the framework of density functional theory
using effective core potentials, the potential (see Eq. (6)) is
composed from the nuclear electrostatic potential Ves and the
local part of the effective core potential Vloc,

V (1)(r) = V geo 2
es (r) − V geo 1

es (r)

+ V
geo 2
loc (r) − V

geo 1
loc (r). (6)

The susceptibility approach requires the explicit knowledge
of the tensor according to Eq. (3), but once its spectrum
is computed in the equilibrium geometry, the electronic re-
sponse to any molecular geometric change can be computed
by means of relatively simple scalar products between the
eigenstates and the perturbation potential. Hence, no explicit
self-consistent calculation is needed to compute the correc-
tion to the charge density n

(1)
total(r) resulting from any geomet-

ric variation. The induced dipole moment dχ

induced thus can be
computed according to

dχ

induced =
∫

n
(1)
total(r)r dr (7)

without any self-consistent electronic structure cycle other
than the actual calculation of the spectrum of the electronic
susceptibility. Eventually, the total dipole moment in the new
geometry is then given by

dχ

total = dsc + dχ

induced. (8)

C. System setup

We chose the water molecule as a benchmark system
for our approach, because of its enormous importance as sol-
vent in physics, chemistry, and biology. Beyond the equilib-
rium geometry, we used several modified molecular struc-
tures which were chosen along the normal modes of the
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water molecule (see Table I). These distorted structures are
acquired by applying the linear approximation of the displace-
ment caused by one vibrational mode with different prefactors
to gain the desired energetic range. The actual atomic dis-
placements from the equilibrium geometry were chosen such
as to include deviations of different magnitude scales; the en-
ergetic differences relative to the equilibrium structure corre-
spond to vibrational excitation temperatures of about 15 K,
375 K, 1200 K, and 3350 K of a single degree of freedom. In
more chemical terms, they are approximately equal to 0.5%,
15%, 50%, and 150% of the strength of a hydrogen bond. All
calculations were performed with the CPMD-package,33 us-
ing a plane wave cutoff of 70 Ry. For the sake of simplicity,
periodic boundary conditions were used in combination with
a large supercell (12 × 12 × 12 Å) to prevent interaction of
a molecule with its periodic images. If not stated otherwise,
Goedecker-Teter-Hutter pseudopotentials were used.34, 35

We used the BLYP gradient-corrected exchange-
correlation functional36, 37 which is commonly used in
condensed-phase electronic structure calculations within pe-
riodic boundary conditions.27, 38–40 There is evidence that this
functional gradually overestimates the strength of hydrogen
bonds and the molecular polarizability.41–43 However, the use
of hybrid functionals including explicit orbital exchange op-
erators yields a prohibitive computational cost in the frame-
work of plane wave basis sets due to the nonlocality of the
exchange operator in this basis. As a consequence, we use
the BLYP functional also for our reference calculation. Nev-
ertheless, it should be mentioned that the approach as such is
not restricted to local and semi-local xc functionals, only our
present implementation is.

Our basis set is composed of plane waves, which have
no bias towards any molecular symmetries or atomic coordi-
nates, and therefore has a very high dimensionality. Our plane
wave cutoff corresponds to a total of 460 000 plane waves,
which allow a great flexibility for the susceptibility eigen-
states. This choice allows us to push the number of considered
eigenvalues/eigenfunctions for the susceptibility up to a value
of 7500. This number appears large, but has been chosen to
investigate the dependence of the significance of the states as
carefully as possible, and to ensure that we certainly reach
proper basis set convergence for the spectrum of χ .

III. RESULTS

A. Eigenvalue spectrum convergence

To empirically validate the assumption of the fast decay
of the eigenvalue spectrum, we have computed the relevant

FIG. 1. Eigenvalue spectrum of the electronic susceptibility tensor χ (r, r′)
of a water molecule in different geometries and a H2S molecule in its ground
state. The upper plot shows the 7500 largest eigenvalues on a logarithmic
scale, the second one is a close-up version of the largest 100 states. In our
calculations, we use atomic units, so that the response eigenvalues are ob-
tained in elementary charges per hartree and cubic bohr.

fraction of the eigenvalue spectrum of a water and an H2S
molecule, shown in Figure 1. For both molecules, the shape
of the spectrum exhibits the desired decay, with a somewhat
slower decrease for H2S. This effect is most likely due to the
smaller HOMO/LUMO gap of the latter, resulting in the un-
occupied molecular orbitals being accessible at lower exci-
tation energies. When comparing the various geometries of
the water molecule, we observe that the decay of the suscep-
tibility spectrum of water is virtually invariant to geometric
distortions.

B. Transferability

To judge the transferability of the eigenstates from one
molecular geometry to another, we compare the individual
eigenvalues and the spatial shape of corresponding eigenstates
χi(r) of our water molecule in two of the modified geometries
(C and E, see Table I) with the equilibrium structure. The
eigenvalue spectra for different H2O geometries are shown
in Figure 1. The eigenvalue spectrum shows no significant
dependency on the geometry, even for the most significant
eigenvalues (see the close-up at the bottom of Figure 1).

For the spatial shape of the eigenstates, it is sufficient to
evaluate the absolute scalar product

∫ |χgeo 1
i (r)χgeo 2

i (r)|dr.
The absolute value is taken because Eqs. (2) and (3) are in-
variant under sign changes of χi(r). In Figure 2, the abso-
lute scalar products between eigenstates obtained from three
different geometries are shown. To take into account that the

TABLE I. Internal coordinates and energy differences (compared to geometry A, the equilibrium state) of the analysed water geometries.

H2O Excitation H1 − O1 [pm] H2 − O1 [pm] ∠H1O1H2 [deg] �EgeoA [mHa]

Geometry A Equilibrium 99.0 99.0 104.5
Geometry B Shear vibration 99.4 99.4 102.4 0.04
Geometry C Shear vibration 100.9 100.9 96.3 1.19
Geometry D Asymmetric stretch 91.3 107.3 104.6 10.63
Geometry E Asymmetric stretch 94.2 103.9 104.6 3.82

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

160.45.66.177 On: Wed, 12 Mar 2014 10:04:55



094102-4 Ihrig, Scherrer, and Sebastiani J. Chem. Phys. 139, 094102 (2013)

FIG. 2. Spatial overlap matrix of eigenstates from different H2O geometries.
The scalar product amplitudes are colour coded. The green boxes are manu-
ally chosen estimates for the spanned subspaces of degenerate states.

eigenstates are possibly degenerate, we estimated that eigen-
values which differ by less than 5% belong to the same sub-
space. This heuristic approach leads to the subspaces indi-
cated by the green boxes in the plot. We compare the water
equilibrium geometry (A) with two geometries obtained from
vibrations, the shear vibration (C) and the asymmetric stretch
(E) (see Table I). In both cases, all states originating from
a given subspace in geometry A map into the corresponding
subspace of geometry C/E. The main difference between the
two cases is the degree of scattering of the minor overlap val-
ues around ≈0.1. In the case of the shear vibration, the pattern
is diffuse, while the asymmetric stretch shows a concentra-
tion close to main diagonal. We performed the same analysis
to the susceptibilities computed with different pseudopoten-
tials in the same molecular geometry (see the supplementary
material44), resulting in no observable differences.

It should be noted that the degenerate subspaces of the
eigenspectrum (visible as nonzero off-diagonal elements in
the matrix of Figure 2) correspond to eigenfunctions which
have approximately the same spatial shape but different sym-
metries. In the context of molecular orbitals, this would cor-
respond to the symmetric and antisymmetric linear combina-
tions of localized (non-canonical) orbitals. This is illustrated
in the example of the eigenstate pair with numbers 22/24 of

the water molecule (see also the off-diagonal elements at po-
sitions 22 and 24 in Figure 2) in the supplementary material.44

C. Dipole moments

An interesting follow-up question is whether it is possi-
ble to compute the structurally induced change in the molec-
ular dipole moment by means of the electronic susceptibility.
To investigate this, we computed the induced dipole moment
dχ

induced as well as the total dipole moment dχ

total with the elec-
tronic susceptibility according to Eqs. (7) and (8). As a refer-
ence, we also calculated the total dipole moments dsc

total self-
consistently (Eq. (5)), as well as the induced dsc

induced (Eq. (4)).
Analysed are transitions from the equilibrium geometry to the
geometries derived from vibrational excitations.

The final results of these calculations are listed in
Table II and the convergence of the induced dipole moment
is shown in Figure 3. The graphs indicate that the dipole mo-
ment converges quickly against its final value. A comparison
of the values listed in the table shows that the susceptibility
approach yields induced dipole moments of moderate accu-
racy with magnitude deviations below 16%, except for ge-
ometry C. The spatial orientation is reproduced correctly for
geometries based on the shear vibration (B and C). How-
ever, the induced dipole is tilted up to 26◦ for the asymmet-
ric stretch geometries. These deficiencies are most likely re-
lated to the perturbative character of our entire approach. It is
important to note that after all, our susceptibility based cal-
culation is only a linear correction of the molecular prop-
erty (here, the dipole moments) to the perturbation (here,
the geometric distortion). Quadratic or higher orders are not
taken into account. Hence, from a purist point of view, the
approach is only guaranteed to work for differentially small
perturbations. Our actual perturbations are atomic displace-
ments which correspond to a perturbing potential of the form
V (1)(r) = Z/|r − Rnew| − Z/|r − Rold|, and are thus by no
means differentially small – in fact, they have as many poles
as there are atoms in the molecule.

For the sake of completeness, we have performed two
additional calculations of the induced dipole moment using a
classical forcefield (flexible simple point charge (SPC)) and
a high-level quantum chemical calculation (coupled cluster
singles and doubles augmented by perturbative treatment of

TABLE II. Comparison between dipole moments obtained from self-
consistent and electronic susceptibility calculations. Shown are the magni-
tudes of total and induced dipole moments, as well as the angle between dχ

and dsc. All susceptibility calculations started in the equilibrium geometry.

Final geometry

Property GeoB GeoC GeoD GeoE

‖ dsc
induced ‖ [D] 0.0295 0.114 0.196 0.118

‖ dχ

induced ‖ [D] 0.0327 0.166 0.227 0.124

‖ dsc
total ‖ [D] 1.79 1.87 1.76 1.76

‖ dχ

total ‖ [D] 1.79 1.92 1.86 1.79

�(dχ

total, dsc
total) [deg] 0.00 0.00 0.16 0.04

�(dχ

induced, dsc
induced) [deg] 0.05 0.01 25.96 17.07
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FIG. 3. Convergence of the induced dipole moments. The upper figure shows
the magnitude of the induced dipole moments as function of the number of
eigenstates incorporated, along with the corresponding target value from the
self-consistent calculation (cf. Table II). The lower plot shows the angle be-
tween the induced dipole moment calculated with the electronic susceptibility
and the self-consistent reference.

triples (CCSD(T)) with aug-cc-pvtz). The results from these
calculations are listed in Table III. As expected, the ab ini-
tio dipole moment and the distortion-induced polarization of
the self-consistent DFT and the perturbative DFT calcula-
tions are very close. The ab initio reference calculation at the
CCSD(T) level is about 5% (dipole moment) and 10% (po-
larization) larger, whereas the force field based values are off
by 30% (dipole moment) and 100% (polarization). This indi-
cates that there is a promising perspective for a perturbation
theory based calculation of electrostatic properties of strongly
polar (and polarizable) systems. It should be noted that it is
in principle straightforward to compute the linear susceptibil-
ity tensor within our scheme on the basis of any other level
of electronic structure theory (be it DFT/B3LYP or coupled-
cluster theories), which would again increase the predictive
power and numerical reliability.

TABLE III. Comparison of dipole moments from different levels of theory
for geometry C. The spatial orientation of the dipole is the same in all cases
(not shown).

Computational method

Property DFT/sc DFT/χ CCSD(T) SPC-forcefield

‖ dtotal ‖ [D] 1.87 1.92 2.00 2.59
‖ dinduced ‖ [D] 0.114 0.116 0.126 0.256

IV. CONCLUSION

In this work, we have shown that the linear electronic sus-
ceptibility tensor of a molecule can be used to compute the
electronic charge displacement due to a variation in molecu-
lar geometry. Our calculations show that the electronic sus-
ceptibility has virtually no dependency on the geometry up to
conformational energies of 10 mHa. Therefore, it is in prin-
ciple possible to describe the electronic density distribution
of a molecule (here, the water molecule) in an arbitrary ge-
ometry at high accuracy, using exclusively the (fixed) charge
distribution and the linear response tensor in the equilibrium
geometry.

Our computational scheme is able to reproduce the elec-
tric dipole of a fully self-consistent calculation in several ge-
ometries which are several kBT (at room temperature) above
the equilibrium geometry. The calculations of the dipole mo-
ment of a water molecule yield accurate total dipole moments
with minor magnitude deviations and correct spatial orien-
tation. The induced dipole moments are less accurate, hav-
ing moderate magnitude errors. In the case of the symmetry
breaking asymmetric stretch vibration, the orientation of the
induced dipole moment is somewhat tilted with respect to the
reference calculation. It should be noted that an obvious sub-
sequent step, the calculation of atomic forces and the Hessian
matrix by means of our approach, is in principle a straight-
forward extension. However, in practice, we encountered the
difficulty that the nonlocal projectors in our effective core po-
tentials significantly contribute to the Hessian matrix, while
the susceptibility approach is by design not able to take these
contributions into account.

These results show that the non-self-consistent approach
of computing electronic density variations by means of the ex-
plicit susceptibility tensor opens the path towards a molecular
dynamics scheme with DFT accuracy and full atomic flexibil-
ity at a fraction of the computational cost of a self-consistent
calculation. A future perspective for the improvement of the
results is the representation of the response functions via an
atom-centered Gaussian basis set. In such a basis set, the
dipole moment calculation can be performed analytically in-
stead of numerically by integration on a real-space grid.
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