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Weyl semimetals are paradigmatic topological gapless phases in three dimensions. We here address the
effect of disorder on charge transport in Weyl semimetals. For a single Weyl node with energy at the
degeneracy point and without interactions, theory predicts the existence of a critical disorder strength
beyond which the density of states takes on a nonzero value. Predictions for the conductivity are divergent,
however. In this work, we present a numerical study of transport properties for a disordered Weyl cone at
zero energy. For weak disorder, our results are consistent with a renormalization group flow towards an
attractive pseudoballistic fixed point with zero conductivity and a scale-independent conductance; for
stronger disorder, diffusive behavior is reached. We identify the Fano factor as a signature that

discriminates between these two regimes.
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Introduction.—Topological considerations not only
can be used to describe and classify band insulators and
superconductors [1,2], they were also found to apply to
gapless phases of matter [3—10]. Perhaps the best known
example of a topologically nontrivial gapless band structure
is that of graphene [11], which has four topologically
protected band touchings. The paradigmatic example of a
topological gapless phase in three dimensions is the Weyl
semimetal [12—14], which features pairs of topologically
protected gap closing points in its Brillouin zone. The
dispersion in the vicinity of a single isotropic nodal point
can be described by the effective Hamiltonian

Hy(k) = thve - k, (1)

where v is the Fermi velocity, ¢ is the vector of Pauli
matrices, & denotes the chirality, and k measures the Bloch
wave vector relative to the momentum in the Brillouin zone
at which the gap closing appears.

Weyl semimetals have attracted considerable attention
due to the prediction of protected surface states with a
Fermi arc [13] and the chiral anomaly in an electromagnetic
response [15]. An ideal Weyl semimetal with Fermi energy
at the Weyl point ¢ = 0 has a vanishing conductivity o, but
a finite conductance [16], making it neither conducting nor
insulating. The excitement is further fueled by the existence
of concrete theoretical proposals for material candidates
for Weyl semimetals, both in the solid state [13,17,18] and
in cold atom systems [19], as well as the experimental
identification of “Dirac semimetals” [20-22], which have a
pair of Weyl nodes forced to overlap by time-reversal and
inversion symmetry. Although spectroscopic confirmation
of a Weyl node in a real material is still lacking, magneto-
transport signatures consistent with Weyl nodes were
reported for BiSb [23].
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An important question that concerns the comparison of
theory and experimental realizations is about the stability
of the Weyl nodes to the presence of disorder [24]. This
question is of particular fundamental interest if the disorder
is sufficiently smooth that scattering between different
Weyl nodes is avoided, since disorder that does not satisfy
this condition immediately removes any topological pro-
tection and leads to a trivial gapping of the spectrum and/or
localization of the wave functions.

In the theoretical literature, the study of the effect of
disorder on a single Weyl node, without the inclusion of
electron-electron interactions, goes back to the mid 1980s
[25,26]. Far away from the Weyl point, the expected
behavior resembles that of normal metals: Disorder leads
to diffusive dynamics, with a conductivity ¢ that decreases
with increasing disorder strength. However, unlike a normal
metal, a Weyl semimetal has no transition into an Anderson-
localized phase in the limit of strong disorder [27]. Exactly
at the Weyl point € =0 a completely different picture
emerges: There is consensus that weak disorder is irrelevant
[25,26,28,29], so that the vanishing density of states v/(¢) «
€2 of the Hamiltonian, Eq. (1), is maintained at finite disorder
strength [30,31], up to possible rare-region effects [32]. For
stronger disorder, a quantum phase transition takes place,
beyond which 1(0) is finite. There is no consensus for the
implications of this scenario for the conductivity o, however.
Using the self-consistent Born approximation (SCBA),
Ominato and Koshino [31] find ¢ = 0 up to the critical
disorder strength, and a finite conductivity that increases
for stronger disorder, whereas the renormalization group
approach of Ref. [29] gives a finite conductivity for
subcritical disorder strengths. Boltzmann theory also gives
a Weyl-point conductivity that is a decreasing function of
disorder strength, but there is no critical disorder strength
and o is finite throughout [28,31,33].
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Remarkably, the question about the effect of disorder on
a single Weyl node has never been put to the test numeri-
cally. Recently, similar physics has been investigated for a
disordered Dirac semimetal employing diagonalization of a
large tight binding model [34]. The extension of these
results to a Weyl semimetal is problematic, however,
because any tight binding model with a Weyl node
inevitably comes with its opposite-chirality partner node
[35], coupling to which cannot be fully avoided. Yet,
resorting to a numerical test is particularly relevant in
the present case, because none of the theoretical methods
applied in the analytical theory cited above are fully
controlled at the Weyl point ¢ = 0 (see Ref. [29] for a
critical discussion).

In this Letter, we report numerical calculations of the
transport properties of a single Weyl node in the presence
of a random potential. We limit ourselves to transport
at the Weyl point € = 0, which is the energy at which the
differences between a Weyl semimetal and a normal metal
are most pronounced. The focus on the nodal point is not
entirely academic: In contrast to the two-dimensional case
(graphene or surface states of topological insulators), where
unintended doping generically shifts the chemical potential
away from the nodal point, in the bulk of three-dimensional
Weyl semimetals € = 0 can be expected from the stoichio-
metric filling of the energy bands [30].

Our results for the conductivity are qualitatively similar
to the predictions of the SCBA [31], although quantitatively
the numerical results for the critical disorder strength and
for the conductivity approximately differ by a factor of 2. In
the weak-disorder phase the system is better characterized
by its conductance, which is finite, than by its conductivity,
which is zero within the accuracy of our calculations.
A transport signature that is nonzero in both phases is the
Fano factor F, the ratio of the shot-noise power and the
conductance, which we show to be an excellent indicator
to discriminate between the pseudoballistic transport of the
weak-disorder phase and the diffusive transport of the
strong-disorder phase.

Model and numerical method.—Our numerical pro-
cedure closely follows Refs. [36,37], which considered
the effect of disorder on the conductivity of graphene.
We consider a Weyl semimetal of length 0 < x < L and
transverse dimensions 0 < y, z < W with Hamiltonian

H=H,+ U(r), (2)

where U(r) is a Gaussian random potential with zero mean

(Uq) = 0 and fluctuations

KEn*v?

—_2F 2
w2L ¢ rel Oq.q'> (3)

<UqU:;/> -

where £ is the correlation length and K the dimensionless
disorder strength. A similar random potential has been used

in studies of the Dirac equation in two dimensions [36].
For x < 0 and x > L the Weyl semimetal is connected to
ideal leads, which we model as Weyl semimetals with
Hamiltonian H, + V, taking the limit V — —oco [38]. We
numerically compute the transmission matrix ¢ at zero
energy and determine the zero-temperature conductance
using the Landauer formula G(L, W) = (e*/h)trtt" and the
Fano factor F(L) = tr[tt' (1 — #7)] /trtt’. To quantize trans-
verse momenta, we apply periodic or antiperiodic boundary
conditions in the y and z directions, and truncate at
|ayl. 1q.| <2M /&, where we verified that the results do
not depend on the cutoff M. To ensure bulk behavior, the
width W is taken large enough that the results do not
depend on the boundary conditions and the scaling
G « W2, F independent of W, holds.

Pseudoballistic regime.—For the low-disorder regime,
we rescale the calculated conductance G(L,W) to find
the dimensionless conductance g(L) of a cube with linear
dimension L,

9’

e*W?2

G(L,W) :Wg

(L). (4)
In the absence of disorder, g and the Fano factor F are
independent of L [16], taking the values

In2 1
go=—-—c¢ Fo=7

. ~0574
2n 3+6ln2 0.574, (5)

with ¢ a numerical factor that takes the value ¢ = 1 (so that
go ~0.110) for an isotropic Weyl cone. The results of
numerical calculations of ¢g(L) and F(L) for disorder
strengths K =1, 2, and 3 are shown in Fig. 1. The
numerical data show that the presence of the random
potential U(r) leads to a bulk conductance g that is always
larger than the pseudoballistic value gy, but also that the
conductance g(L) is a bounded function of L and mono-
tonically decreases in the large-L limit. For the system sizes
within our reach this decrease is most pronounced for
weak disorder (K = 1), and less pronounced for stronger
disorder (K = 3), which is consistent with the theoretical
expectation that weak disorder is an irrelevant perturbation
at € = 0 [28,29]. The fact that g(L) remains bounded as a
function of L is consistent with a vanishing conductivity
0 =0. [A finite conductivity would correspond to
g(L) o L; see the inset in Fig. 1.] The Fano factor F takes
the pseudoballistic value F, for all system sizes considered.
We postpone a further discussion of these results until the
end of this article.

Diffusive regime.—For stronger disorder, the conduc-
tivity o becomes finite. Although o can, in principle, be
obtained from the conductance using the relation
G(L,W)=06W?/L, we employ a slightly different pro-
cedure to obtain ¢ from the numerically calculated con-
ductance G(L, W), in order to eliminate the effect of a
finite contact resistance. Figure 2 shows the resistance
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FIG. 1 (color online). Dimensionless conductance g referred to
a cubic sample of size L (top) and Fano factor F (bottom) for a
single Weyl cone with a random potential for disorder strengths
K =1, 2, and 3 in the pseudoballistic regime. The data represent
a disorder average over at least 10 realizations. The dashed lines
refer to the clean limits gy and F for an isotropic Weyl cone
(¢ = 1). For comparison, diffusive scaling of g for K = 6, 10 is
shown in the insets.

R(L,W)=1/G(L,W) and the Fano factor F(L) as a
function of length L, for disorder strengths K = 6, 10,
and 18. In the diffusive regime, one expects
R(L,W) o L/W?c, so that the conductivity can be calcu-
lated as 6! = W2?OR/OL. We indeed observe a linear R vs
L dependence for sufficiently large L. The Fano factor F
takes the diffusive value F = 1/3 for large L for the
stronger disorder strengths such as K = 18. For K =6
and K = 10, the Fano factor F is below the pseudoballistic
limit and decreases with increasing L, but no limiting value
could be determined for the system sizes available in our
calculations. The dependence of the conductivity o on
disorder strength K is summarized in Fig. 3. We estimate
that the conductivity is nonzero above a critical disorder
K. ~ 5, the behavior for K just above K. being consistent
with a linear increase o« K — K, [26,31,39]. Finite-size
effects prohibit a more accurate determination of the critical
disorder strength. Although we adopted the expression
“critical disorder strength,” we note that our numerical
analysis does not allow us to determine the precise nature
of the transition. In passing, we also note that the
conductance distribution is widest around K. (data not
shown), a behavior well known from the three-dimensional
Anderson phase transition [40].

A recent work by Ominato and Koshino [31] calculates
the Weyl-point conductivity ¢ using the SCBA but without
further approximations, employing a correlated disorder
potential compatible with the random potential used in the
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FIG. 2 (color online). Resistance R (top) and Fano factor F
(bottom) for a single Weyl cone vs system length L, for disorder
strengths K = 6, 10, and 18. The thin solid lines indicate the linear
fit for the conductivity o. The dashed lines refer to the pseudobal-
listic and diffusive limits for the Fano factor F. The data represent a
disorder average over at least 100 realizations.

present numerical simulation. Relating the impurity model
of Ref. [31] to our Gaussian model we find a theoretical
value K¥“BA ~ 11.3 and a conductivity as shown by the
dashed line Fig. 3 [41]. Both the value of K3“BA and the
slope of the SCBA conductivity vs disorder strength K are
roughly off by a factor of 2 from the numerical results.
In order to understand the quantitative failure of the
SCBA, we have analyzed the corrections to the SCBA
result for the self-energy X(k, w), which is related to the
single-particle Green function G(k, @) through the standard
relation G(k,®) = [0 — Hy — 2(k, w)]~!. The diagram-
matic expression for X(k,w) in the SCBA is shown in
Fig. 4(a), where the double lines denote the single-particle
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FIG. 3 (color online). Conductivity ¢ for the disordered Weyl
cone as a function of the disorder strength K. The data represent a
disorder average over at least 50 disorder realizations. The dashed
line refers to the SCBA theory of Ref. [31].
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FIG. 4. Diagrammatic representation of the SCBA self-energy
SCBA () and the leading correction ST (b). The double solid
lines denote the SCBA propagator; dashed lines are disorder
correlators.

Green function G with X replaced by ZS¢BA, Figure 4(b)
contains the leading correction 56X to X5CBA. The consis-
tency of the SCBA requires that X is parametrically
smaller than X5BA. Indeed, for a standard disordered
metal one finds §X/Z5BA = O(1/kgl) [42], where kj is
the Fermi wave vector and / the mean free path.

For the Weyl semimetal at zero energy one has kp = 0
and this standard argument does not apply. We have
calculated the leading correction 6% at k =0 and @ =0
using a simplified model for the disorder potential [31],
in which the Gaussian correlator (3) is replaced by a cutoff

at g = 2/¢,

B K'En*v?

<UqU:;’> - WG(Z/f - Q)‘Sq,q“ (6)

In this simplified model, one has the critical disorder
strength K,/ = 7> and the SCBA self-energy X(0, 0)5BA =
(4rihv/E)(1/K' — 1/K.)O(K' — K.') [31]. The calcula-
tion of the diagram of Fig. 4(b) for K’ close to the critical
disorder strength K, then gives [43]

52(0,0) 11
———=—=0.62+ 11 -— 7
Z(O, O)SCBA + (Kc/ K/) ’ ( )

which is not parametrically small. Since the simplified
model, Eq. (6), does not qualitatively differ from the
Gaussian model used in the numerical calculations [31],
we expect that this result carries over to that case, too.

Discussion.—In the framework of Drude transport theory
for normal metals, the quasiparticles at the Fermi energy
are endowed with a mean free path, which becomes shorter
if the disorder becomes stronger. At the same time, the
presence of a random impurity potential has a negligible
effect on the density of states. The result is a conductivity
that decreases upon increasing the disorder strength.
In contrast, for a Weyl node at the degeneracy point it is
the disorder which generates the density of states
[25,26,28-31], a finite density of states appearing only
above a certain critical disorder strength. As a result of this
vastly different physical mechanism, a Weyl node at the
degeneracy point shows behavior opposite to that of a
normal metal: Increasing disorder beyond the critical
disorder strength leads to an increase of the conductivity.
This remarkable theoretical prediction has been confirmed
in our numerical calculations.

The increase in conductivity with disorder is reminiscent
of the two-dimensional Dirac Hamiltonian H2? «
v(k,o, + kyo,), for which the conductivity ¢ was also
found to be an increasing function of disorder strength
[36,37,44]. A fundamental difference with H3? is, however,
that H3¢ has a finite conductivity for all disorder strengths,
whereas the Weyl semimetal at the degeneracy point
requires a minimum disorder strength for diffusive behavior
to set in.

For the two-dimensional Dirac Hamiltonian, the inverted
dependence of conductivity on disorder strength was found
to be related to the fact that H3? (with a disorder term but
without the condition that the disorder be smooth, because
of the absence of other Dirac nodes) is the surface theory
of a three-dimensional time-reversal invariant topological
insulator [27]. Similarly, the surface theory of a hypotheti-
cal four-dimensional topological insulator is described by
the Hamiltonian H, of Eq. (1). Thus, it is expected on
general grounds that H, evades localization [27]. Our
numerical results are consistent with this expectation.
Indeed, although the conductivity ¢ vanishes in the
weak-disorder regime, the conductance g remains finite.
It is a finite conductance, not a finite conductivity, which is
the proper signature of the absence of localization [45].

There is a subtle but important difference between the
numerical calculations we performed here and the analyti-
cal theories of the conductivity cited in the Introduction:
In our calculations, the conductivity ¢ is obtained from the
conductance G of a finite-size sample, for which the energy
€ is set to zero at the beginning of the calculation. In
contrast, in the renormalization group, SCBA, and
Boltzmann theories, the sample size is infinite and the
limit € — O is taken at the end of the calculation [28-31].
This different order of limits may be responsible for the
qualitative difference with Refs. [28-30], which predict a
finite conductivity in the limit € — 0. Which order of limits
is relevant for experiments depends on the competition
between the finite sample size L and the finite temperature
or doping [29,30]—although the latter is expected to be
intrinsically small. The order of the limits &€ — 0 and
L — oo does not affect the comparison to the SCBA,
because this theory predicts ¢ =0 even if the limit
e — 0 is taken at the end of the calculation [31]. Above
the critical disorder strength, the self-energy at ¢ =0
acquires a nonzero (imaginary) value and the order of
limits issue is no longer relevant.

Our numerical calculations have shown that the con-
ductance g and the Fano factor F contain important
additional information that is not contained in the conduc-
tivity o. This is particularly relevant for the pseudoballistic
weak-disorder regime, where ¢ vanishes, whereas g and F
take on nonzero values. A three-dimensional phase with a
finite scale-independent bulk conductance is known from
the Anderson metal-insulator transition, where it occurs at
the critical disorder strength. A crucial difference of the
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pseudoballistic phase at the Weyl point is that its scale-
independent conductance represents an attractive fixed
point, which requires no fine-tuning of disorder strength.
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