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We present a study of the correlated transport regimes of a double quantum impurity system with mutual
capacitive interactions. Such system can be implemented by a double quantum dot arrangement or by a quantum
dot and nearby quantum point contact, with independently connected sets of metallic terminals. Many-body spin
correlations arising within each dot-lead subsystem give rise to the Kondo effect under appropriate conditions. The
otherwise independent Kondo ground states may be modified by the capacitive coupling, decisively modifying the
ground state of the double quantum impurity system. We analyze this coupled system through variational methods
and the numerical renormalization group technique. Our results reveal a strong dependence of the coupled system
ground state on the electron-hole asymmetries of the individual subsystems, as well as on their hybridization
strengths to the respective reservoirs. The electrostatic repulsion produced by the capacitive coupling produces
an effective shift of the individual energy levels toward higher energies, with a stronger effect on the “shallower”
subsystem (that closer to resonance with the Fermi level), potentially pushing it out of the Kondo regime and
dramatically changing the transport properties of the system. The effective remote gating that this entails is found
to depend nonlinearly on the capacitive coupling strength, as well as on the independent subsystem levels. The
analysis we present here of this mutual interaction should be important to fully characterize transport through
such coupled systems.
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I. INTRODUCTION

Dramatic advances in fabrication techniques and control
of nanostructures have led to a deeper understanding of the
behavior of solid-state systems at the nanoscale. The transition
from simple structures to more complex arrangements of
fundamental building blocks has allowed the study of systems
that exhibit rich physical behavior involving charge and spin
degrees of freedom in many-body states; many of these
structures also exhibit potential for technological applications.

Interesting examples of such complex architectures are
arrays of quantum dots (QD), nanostructures with discrete en-
ergy spectra that act effectively as zero-dimensional quantum
objects, containing one or few electrons. Originally built on
semiconductor heterostructures, QDs have been implemented
in a variety of systems, including carbon nanotubes and
semiconductor nanowires [1]. It is possible to control the state
of the QDs in the complex by a variety of external probes, for
instance, source-drain bias voltages, gate voltages, magnetic
fields, and even mechanical deformations [2]. Systems con-
sisting of two [3–5], three [6,7], or more QDs have been built,
which exhibit many interesting properties, such as coherent
electron tunneling [3,8,9] and novel many-body ground states.

The Kondo effect [10–13] is a paradigmatic many-body
phenomenon that has been repeatedly observed in QDs since
the late 1990s [14], and whose understanding is of fundamental
importance in condensed matter physics [15]. It arises due to
spin or pseudospin [5,16,17] correlations between a quantum
impurity and the itinerant electrons in the metallic reservoir
in which it is embedded. The important role of the Kondo
effect in the behavior of complex nanoscale systems has
been demonstrated time and again: It has been observed in

measurements of the dephasing by a quantum point contact (a
charge detector on a nearby QD) [18]. An unusual variety of
Kondo effect with SU(4) symmetry has been theoretically pre-
dicted [19–22] and recently observed experimentally [23,24]
in a system of two identical, capacitively coupled QDs. Many
other examples exist [8]. Capacitively coupled QDs have been
recently predicted to exhibit a spatial rearrangement of the
screening cloud under the influence of a magnetic field [25].

In this work, we present a study of the correlated transport
regimes of a system of two independently contacted quantum
impurities, each possibly in the Kondo regime, and coupled
to each other through capacitive interactions (see Fig. 1).
We aim to understand how the Kondo correlations in one of
them are affected by the presence and controlled variation of
the other subsystem for general system parameters, departing
from the symmetric impurity case which has been previously
studied [26,27]. To this end, we carry out an analysis of
the coupled system within the Kondo regime; the study
utilizes a variational as well as a numerical approach to
the problem. The variational analysis gives us interesting
insights into the effects of the capacitive coupling on the
ground state of the coupled QD system. We further evaluate
dynamic and thermodynamic properties of the system using
the numerical renormalization group (NRG) method. We put
special emphasis on the conductances of both subsystems,
which can be measured experimentally.

Our results show that the effects of the capacitive coupling
can be absorbed into a positive shift of the local energies of the
impurities, as one could anticipate. However, for the generic
case of nonidentical subsystems, the size of the effective
shifts strongly depend on the relative magnitudes of the level
depths with respect to the Fermi level, and the hybridization
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FIG. 1. (Color online) Illustration of the model system studied:
two quantum impurities, d and q, capacitively coupled with interac-
tion strength u. Each impurity i(= d, q) is coupled to its own set of
metallic terminals with hybridization energy �i/2.

of each impurity to its electronic reservoirs. Moreover, the
asymmetric shifts for effectively large capacitive coupling
can drive the “shallower” subsystem into a mixed-valence
regime, or even further away from the Kondo regime, resulting
in interesting behavior of the relative Kondo temperature(s)
and response functions, including the conductance levels
through the separately connected subsystems. Interestingly, a
suppression of the unitary conductance produced by the Kondo
effect is observed in the shallow impurity when the level shift
produces a crossover out of the Kondo regime. These changes
illustrate an interesting modulation of the Kondo correlations
in one subsystem by a purely capacitive coupling, which could
perhaps be useful in more general geometries.

In fact, all of the regimes presented in this paper are already
accessible to experiments with double quantum dots, and
may be of relevance for other types of quantum impurity
systems as well. One can think in particular of the often
used configuration, where a charge detector [a properly biased
quantum point contact (QPC)] is placed in close proximity
to an active QD. It is known that a QPC exhibits Kondo
correlations [28], which will be clearly affected by the
capacitive coupling to the dot. With this in mind, in what
follows we refer to the two independently connected impurities
as the QD (d) and the QPC detector (q), and consider regimes
where they can be seen as spin- 1

2 quantum impurities coupled
to their corresponding set of current leads.

II. MODEL

We model the two subsystems as single-level Anderson
Hamiltonians of the form

Hd = εd nd + Ud nd↑nd↓ +
∑
kσ

εkσ ndkσ

+Vd

∑
kσ

(d†
σ cdkσ + H.c.), (1a)

Hq = εq nq + Uq nq↑nq↓ +
∑
kσ

εkσ nqkσ

+Vq

∑
kσ

(q†
σ cqkσ + H.c.), (1b)

where the subindices d and q indicate the QD and the
QPC, respectively, and εd and εq are the energies of the
corresponding local levels; the number operators are given
by ni = ∑

σ niσ , with σ =↑ , ↓, and Ui is the energy cost
of double occupancy of level i = d, q due to intraimpurity
Coulomb interactions. The number operators nikσ give the
occupation of the state of momentum k and spin projection
σ of the metallic terminal coupled to dot i. We consider here
a band of half-bandwidth D for each lead, with a flat density
of states ρ(ε) = �(D − |ε|)/2D, where �(x) is the Heaviside
function. Assuming that the two terminals attached to each
impurity are identical, we define the symmetric operators
cikσ = (ciLkσ + ciRkσ ) /

√
2, with indices L and R for the left

and right terminals, respectively, to which the impurity couples
exclusively. The full Hamiltonian is thus

H = Hd + Hq + u ndnq, (2)

where the mutual capacitive coupling is parametrized by
the energy u > 0. The extra energy cost of simultaneous
occupation of both impurities will produce a competition
between their otherwise separate ground states: In the case
of εi < 0 and �i = π |Vi |2/(2D) � |εi |, for both i = d, q, it
would be favorable for each impurity to be singly occupied.
The capacitive coupling, however, raises the energy of this
coupled configuration and, depending on the magnitude of u,
another occupancy may be more energetically favorable.

For interacting quantum impurities (Ui > 0) within this
parameter regime, the Kondo effect [10,14] takes place for
temperatures below a characteristic temperature scale T i

K .
However, as we find below, the added energy cost of having a
charge in a given impurity may drive the other impurity out of
the Kondo regime at a critical coupling, as the mixed-valence
regime is reached.

In order to understand the competition between different
impurities’ ground states, we use the variational approach
described in Appendix A. Because there is no charge exchange
between the two subsystems, the effect of the capacitive cou-
pling on each impurity can be absorbed into a level shift [29]
of the form εi → εi + �i , with each �i > 0 depending on the
parameters of both quantum impurities, and on u. This shift can
then be extracted variationally from a proposed wave function
based on the form expected in the strong-coupling fixed point
(SCFP) of the uncoupled systems [30,31], where the ground
state has a many-body singlet structure. The level shifts �d

and �q can be calculated by minimizing the energy of the
coupled system. Within each subsystem, the corresponding
level shift �i can be interpreted as an external gate voltage
that raises the dot level, and thus determines the nature of its
ground state [32].

In what follows, we describe the results of both the
variational and NRG approaches, and explore the resulting
physics and measurable consequences of the capacitive cou-
pling. The NRG method consists of logarithmically discretiz-
ing the states of the metallic terminals of each impurity
through a dimensionless parameter �, and mapping them
into linear chains of fermion states with hopping terms that
decay exponentially with distance to their corresponding
quantum impurities [30,31,33,34]. These models are then it-
eratively diagonalized, truncating the energy spectrum at each
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iteration, keeping only the low-lying energy states. The NRG
calculations fully capture the many-body correlations of the
problem, and allow us to reliably calculate expectation values
of operators, as well as the dynamic and thermodynamic
properties of the system. In this work, we use � = 3.5, and
keep the 8000 lowest-energy states at every iteration.

III. EFFECTIVE GATING DUE TO
CAPACITIVE COUPLING

Results from the variational method are shown in Fig. 2(a)
as function of the capacitive coupling u, for impurities with
identical couplings to their respective metallic leads. While
εd � −�d is fixed deep in the Kondo regime, and εq(� εd )
is set closer to the mixed valence regime (εq � −�q), we see
that increasing u affects both subsystems asymmetrically. As
u increases, the level of impurity q is raised (�q increases),
while the remote gate effect due to the capacitive coupling
vanishes for impurity d (�d decreases). The remote gate
then becomes effectively larger for impurity q, indicating that
the “shallower” level is more susceptible to the capacitive
coupling. One can qualitatively understand this behavior by
examining how a shift in εq affects the Kondo temperature.

0

−1

−2

−5

−6

 0

 0.2

 0.4

 0.6

 0.8

 1

Le
ve

l c
ha

rg
e

<nd>, NRG
Var. 

<nq>, NRG
Var. 

(a)

(b)

(c)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

C
ha

rg
e 

flu
ct

ua
tio

ns

u/| q|

<nd
2>-<nd>2, NRG

Var. 
<nq

2>-<nq>2, NRG
Var. 

lo
g 1

0

Λ
d u

lo
g 1

0

Λ
q u

FIG. 2. (Color online) (a) External gating of the impurity levels
�d and �q for identical couplings (�d = �q = 0.002 D), but asym-
metric impurities, with εd = −12.5�d (= −0.025 D), εq = −5�q (=
−0.010 D), and varying u, as obtained variationally. (b) Charge
and (c) charge fluctuations of both impurities evaluated using the
variational method and NRG, showing how impurity q is depleted
as the capacitive coupling u is increased, while impurity d remains
essentially unchanged. The NRG calculations were carried out with
local Coulomb interaction strengths of Ud = Uq = 0.05 D (= 25�d ).

Substituting εq → εq + �q into the expression for the Kondo
temperature within the variational framework [35]

T i
K = D exp(−π |εi |/�i), (3)

and evaluating its total differential as a function of �q , we find

dT
q

K ≡ ∂T
q

K

∂εq

dεq = −�q

sgn[εq] πD

�q

exp(−π |εq |/�q),

(4)

which is proportional to �q and grows exponentially as |εq |
becomes smaller [36]. Notice that the Kondo temperature is a
measure of how much the impurity hybridization contributes
to the lowering of the ground-state energy of each subsystem
due to the onset of many-body correlations, with respect to
the atomic limit (�q = 0). The essence of Eq. (4) is that it is
energetically favorable for the “shallower” level to be shifted
the most when the coupling increases. A maximum shift of
�q ≈ u for large values of u is in accordance with Eqs. (A13a)
and (A13b).

A comparison between the variational and NRG approaches
is shown in Fig. 2(b), where the charges and charge fluctuations
of both impurities are presented. Impurity q is depleted due
to the external gating produced by the capacitive coupling,
in both calculations. Although it is clear from comparing to
the NRG results that the variational method overestimates the
strength of the gating, likely a consequence of the infinite-Ui

approximation that allows the simple form of the proposed
ground state, the behavior predicted by both methods is
qualitatively consistent. As u increases, 〈nq〉 decreases to zero,
while 〈nd〉 remains essentially constant �1. Correspondingly,
the characteristic fluctuations in q are significant and peak (at
〈nq〉 � 1

2 ), whereas those in d remain small throughout.
Turning to the thermodynamic properties of the system,

Figs. 3(a) and 3(c) show the temperature dependence of the
effective magnetic moment squared of impurities d and q,
respectively, given by μi(T ) = T χi(T ), with χi the magnetic
susceptibility of impurity i. Different curves correspond
to different values of the capacitive coupling. The Kondo
temperature in each case can be obtained from each curve
[T i

Kχ (T i
K ) = 0.0707], and the temperature axis can be rescaled

as in Figs. 3(b) and 3(d), in order to collapse all curves into the
universal curve that is the hallmark of Kondo physics [33]. All
curves for the d impurity demonstrate this universal behavior
in Fig. 3(b). Notice, however, that impurity-q curves for
u/D > 0.0092 fall outside the universality curve in Fig. 3(d),
indicating a crossover away from the Kondo regime for large
u, which from the variational analysis can be understood as
the large gating coming from the capacitive coupling. This is
consistent with the depletion of impurity q shown in Fig. 2(b).
The exponential dependence of the Kondo temperature T

q

K

on u [see Eq. (3)], shown in the inset of Fig. 3(c), is further
confirmation that the remote gating picture contains all features
of the system. It is important to emphasize that increasing the
gating on impurity q at first enhances its Kondo temperature.
However, beyond a threshold value of u, the impurity reaches
the mixed-valence regime, and is eventually emptied out. In
contrast, as the shallower impurity is depleted by the gating,
the Kondo temperature T d

K of impurity d is in fact restored to
its uncoupled value, as the inset of Fig. 3(c) shows.
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FIG. 3. (Color online) Magnetic moment squared of impurities (a) d and (c) q as functions of the temperature, for different values of the
capacitive coupling u, as shown in the legend in panel (b); all panels show results for the same set of u values. (b) and (c) show the same
quantities as functions of temperature, normalized to the Kondo temperature of each curve. The inset of (c) shows the dependence of the Kondo
temperatures on u. All results obtained from NRG calculations. Parameters correspond to those of Fig. 2. Notice that for u � 0.01 D (= |εq |),
impurity q is pushed away from the Kondo regime, first into mixed valence, eventually reducing nq well below unity (see Fig. 2).

To complete our analysis of this case, we present the local
spectral density of the impurities in Fig. 4. The spectral density
of impurity q is defined as

ρq
σ (ω) = − 1

π
Im〈〈qσ ; q†

σ 〉〉ω, (5)

with 〈〈A; B〉〉ω the retarded Green’s function [37] of operators
A and B. The spectral densities are evaluated using the
eigenstates obtained through the NRG procedure following
the broadening method described in Ref. [38]. The spectral
density represents the effective single-particle level density
available at energy ω, at the impurity site: the left peak
at ω ≈ −0.01 D (= εq) of the curve for u = 0 in Fig. 4(a)
(solid red line) corresponds to the occupied impurity level,
dressed by the leads’ electrons. The sharp peak at ω = 0
is the Abrikosov-Suhl resonance (ASR), a typical signature
of the Kondo effect [39–41]. As the capacitive coupling
increases, there is a clear progression of the effective q

level toward positive values, as seen in Fig. 4(c), eventually
quenching the Kondo effect at u ≈ 0.0092 D (= 0.92|εq |),
when the charge fluctuations peak, and the charge is reduced
by 50% (see Fig. 2). In fact, assuming a simple linear shift of
εq → εq + u would suggest that the mixed-valence regime
will be reached for u ≈ |εq | − �q , in agreement with the
variational result [Fig. 2(a)] that yields �q → u for u → |εq |.

That the Kondo effect is quenched for slightly larger u reflects
the overestimation of the remote gating by the variational
method, as mentioned above. Figure 4(c) also shows that
for u � 0.0092 D (= 0.92|εq |), the ASR at the Fermi level
disappears in the spectral function for the q impurity, and the
(now emptying) single-particle resonance moves increasingly
above the Fermi level. The inset in Fig. 4(c) examines the
behavior of the ρ

q
σ near the Fermi level, showing again its

decreasing value, vanishing for u � 0.0092 D as well. The
spectral density ρd

σ (ω), on the other hand, shows only a slight,
nonmonotonic shift of the impurity-d level, with a stable ASR
for all values of the capacitive coupling, also in agreement
with the variational result [see Fig. 4(b)].

IV. ROLE OF PARTICLE-HOLE SYMMETRY IN
THE COUPLED SYSTEM

Armed now with the basic understanding of the interim-
purity coupling model, we turn to a setup that is commonly
implemented in experiments. It is possible to independently
tune the impurity levels in a QD sample by means of gate
voltages, a common practice in electron counters for QDs [42]
and “which path” interferometers [18,43,44]. We study now
the coupled system when one of the quantum impurity levels
is controlled by an external gate.
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FIG. 4. (Color online) Spectral densities of both impurities for
varying capacitive coupling u, for parameters �d = �q = 0.002 D,
Ud = Uq = 25�d and εd = −Ud/2, εq = −Uq/5. (a) Reference
curves with u/D = 0, showing the local levels dressed by their
respective electronic reservoirs, and the ASR of each impurity at the
Fermi level. Same u = 0 curves shown in black in corresponding (b)
and (c) panels. (b) The ASR of impurity d remains well defined for all
values of u. The panel focuses on the Hubbard bands, amplifying the
lower region of the vertical axis for clarity (notice different scale). (c)
In the case of impurity q, the disappearance of the ASR and the shift
of the left Hubbard peak toward positive values of ω with increasing
u is a clear indication that the Kondo effect is being quenched. Inset
in (c) shows detailed behavior of ρq

σ (ω) for ω ≈ 0. For u � |εq |, the
q impurity is pushed out of the Kondo regime.

Considering again the case �d = �q , Fig. 5(a) shows results
of the variational method for different fixed values of u, while
varying εq but keeping εd = −0.025 D fixed. Starting at εq =
εd , both impurities experience the same gating �d = �q , as
one would expect from symmetry arguments. As the level
of impurity q moves closer to the Fermi energy, �q grows

FIG. 5. (Color online) External gating of the impurity levels �d

and �q as a function of εq , as obtained from the variational
calculation. (a) For impurities with identical couplings (�d = �q =
0.002 D), with fixed εd = −12.5�d . (b) For different couplings
(�q = 25�d = 0.05 D), with fixed εd = −10�d .

quickly, while �d decreases. Once again, it is clear that the
shallower level, that of impurity q, experiences a larger gating.
Notice that the asymmetry persists even for small u, where
�q grows fast, while �d drops only slightly. This general
behavior of the �i persists for impurities with different lead
couplings, as can be seen in Fig. 5(b), which shows results
for �q = 25�d = 0.05 D and εd = −0.02 D (= −10�d ). The
asymmetry of the subsystems is reflected in the different values
of �d and �q , even for εq � εd .

Naturally, in a QD system one can monitor the different
ground states via conductance measurements. In Fig. 6,
we present NRG calculations of the zero-bias conductance
through each impurity, with εd fixed while εq is varied. The
conductance profile of impurity q remains approximately the
same for all three values of εd shown; it is, in fact, nearly
identical to the case of a completely independent impurity
(u = 0) since it is so deep into the Kondo regime and the
interaction u does not affect it much. Impurity d, here the
shallower one, on the other hand, is strongly affected by
the capacitive coupling, especially for εq < −Uq/2, when
〈nq〉 > 1 (Fig. 6). While its bare parameters are within the
Kondo regime, the enhanced conductance of impurity d,
characteristic of the Kondo effect, is strongly suppressed as
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FIG. 6. (Color online) (a) Comparison of the spectral densities
of both impurities (in the electron-hole symmetric regime, εd =
−Ud/2), when �q � �d and Uq � Ud . (b) Conductances per spin
channel (in units of e2/h) for impurities d and q, and (c) their occu-
pations, as functions of εq , for different values of εd . All results from
NRG calculations; parameters: Uq = 10Ud = 0.5 D, �q = 25�d =
0.05 D, u = 0.01 D (= Uq/50 = Ud/5). Vertical dashed lines denote
the region in the uncoupled regime (u = 0) for impurity q (〈nq〉 = 1)
where the high conductance in the Kondo regime is expected.

the capacitive coupling to q shifts εd effectively, and reduces
its average charge [Fig. 6(c)]. In accordance with the Friedel
sum rule for the large-bandwidth limit [15], the conductance
per spin channel at zero temperature is given by

Gdσ (T = 0) = e2

h
sin (π〈ndσ 〉) , (6)

and so it will be reduced as 〈ndσ 〉 < 1. The conductance curves
in Fig. 6(b) reflect the variation of 〈ndσ 〉 as the gate applied to
impurity q shifts its level [Fig. 6(b)], and it shows how, as the
impurity charge fluctuations increase and the impurity charge
drops, the conductance will be reduced. This effect is naturally
more pronounced for εd closer to the Fermi level, yet well
into the Kondo regime for u = 0. The influence of the remote
gating from impurity q on impurity d is perhaps more clearly
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the left indicates the trend of the transition out of the Kondo regime
for impurity d . All other parameters as in Fig. 6.

appreciated in Fig. 7, which shows the Kondo temperatures
of both impurities as functions of εq . The termination of
each of the curves indicates the (approximate) values of εq

at which the Kondo effect is quenched in either impurity. As
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0.5 D, �q = 25�d = 0.05 D, u = 0.01 (= Uq/50 = Ud/5) D. Verti-
cal dashed lines indicate the region 〈nd〉 = 1 for the uncoupled case
(u = 0). Notice the typical conductance plateau is shifted by ≈u to
lower εd values due to the remote gating effect.
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FIG. 9. (Color online) System regimes represented in the u-εq parameter space for (a) impurity q and (b) impurity d , for fixed εd = −Ud/2,
with Ud = Uq = 0.05 D and �d = �q = 0.002 D (= 0.04Ud ). The Kondo temperatures of both impurities for select values of εq are shown
in the central panels, as functions of u. (c) and (d) show the system regimes in the εd -εq plane for impurities q and d , respectively, for fixed
u = 0.01 D (= Ud/5), with Uq = 10Ud = 0.5 D, and �q = 25�d = 0.05 D. The shaded areas indicate that the corresponding impurity is in
the Kondo regime, and their boundaries indicate steep but continuous crossovers. The Kondo temperatures are higher closer to the boundaries
of the shaded regions.

in the conductance results, the curves for impurity q are nearly
identical to the independent impurity limit. The curves of T d

K ,
on the other hand, show a plateau structure that directly relates
to 〈nqσ 〉 [see Fig. 6(c)]: As εq grows more negative, the remote
gating on d increases with u〈nq〉, the energy contribution
of the capacitive coupling, raising the level of impurity d,
and consequently increasing T d

K until the Kondo effect is
quenched. This transition is indicated by the black, dashed
trend line in the figure. As the remote gating decreases (with
increasing εq) and the enhanced conductance is restored in d,
the Kondo temperature T d

K is reduced back to its value in the
electron-hole symmetric case. At this point, it is impurity q

that is gated the most, but given that |εq | � u, the effects of
this gating are not noticeable in either the conductance or the
Kondo temperatures. Notice that, as the q impurity is emptied
(εq > 0), T d

K settles into the isolated d-impurity value.
The same conductance analysis is repeated in Fig. 8, this

time varying the level of impurity d, which has the smaller
parameters Ud and �d . The gating effects on impurity q

are negligible, with only a slight drop in conductance (about
10%) in the case of εq = −0.010 D, when it is on the edge
between the Kondo regime and the mixed-valence regime.
Most noticeable is the overall shift of ≈ u on the conductance
profile of impurity d to lower εd values, as a result of the gating.

The results presented in this section are summarized in
Fig. 9, which shows the different system regimes in parameter

space. Figure 9(a) shows the quenching of the Kondo effect
in impurity q by the capacitive coupling strength u for fixed
εd , as a crossover from 〈nq〉 = 1 to 0, for any given value of
εq within the colored region. Figure 9(b) demonstrates how
the d impurity undergoes this crossover only for εq < εd ,
when it becomes the shallower level. The two slopes of
the left boundary of the colored region indicate different
behaviors of impurity d when 〈nq〉 = 1 and 2. The location
of these boundaries is inferred from the behavior of the
Kondo temperatures as the structure parameters change. T d

K

and T
q

K are shown in the middle panel of the figure for
typical cases. In the upper panel, q is the shallower subsystem
(|εq |/�q � |εd |/�d ), and as u increases it is q which is
effectively gated into the empty impurity regime. The middle
panel shows a fully symmetric case, where large u destroys the
Kondo regime in both subsystems simultaneously. Finally, the
bottom panel shows the case where d is shallower (|εq |/�q �
|εd |/�d ) such that the gating destroys the Kondo correlations
in d. In the asymmetric cases, it is also clear that as the
other subsystem is gated into the empty regime, the Kondo
temperature of the remaining impurity reverts to the isolated
value for increasing u.

Figures 9(c) and 9(d) illustrate the parameter regimes for
fixed u, while varying εd and εq . Because |εq | is very large
with respect to u, the crossover out of Kondo is induced only
on impurity d, whose level depth εd is comparable to the
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capacitive coupling strength u. This crossover, induced by
the presence of impurity q, is shown as the left boundary
to the blue region in Fig. 9(c), and occurs for lower values
of εd as 〈nq〉 grows (for more negative values of εq) and the
capacitive interaction strength increases.

These results are important and should be considered in the
analysis of coupled systems, such as the decoherence studies
where the suppression of the zero-bias conductance through
the QD is used to measure the dephasing rate of a nearby charge
detector [18]. As shown in Fig. 6, the capacitive coupling
between the two impurities in equilibrium can significantly
suppress the enhanced conductance expected of the quantum
dot, by virtue of the competition it introduces between the
impurities’ ground states. Charge detectors for quantum dots
are commonly implemented using a quantum point contact,
and it has been suggested [45] that the anomalous behavior
observed in the dephasing rate of the QPC in the experiments
of Ref. [18] is due to the appearance of a localized level within
the QPC, which can undergo Kondo screening [46]. Our study
is thus highly relevant for the interpretation and full analysis
of these and similar experiments, as it presents an equilibrium
analysis of the experimental setup, which is typically treated
as a static system (the limit of Fig. 8). We demonstrate that
in some parameter regimes the ground state of the system is
in fact quite sensitive to capacitive coupling, and the onset
of equilibrium charge fluctuations in one of the impurity
subsystems is able to strongly influence the conductance of
the other. This sensitivity makes it a much more subtle task
to evaluate how much of the conductance suppression in one
subsystem is due to the dephasing induced by the other.

V. CONCLUSIONS

We have studied the Kondo physics of a system of two
capacitively coupled quantum impurities, by means of both
a variational method and numerical renormalization group
calculations. While the spectral properties of the system at
energies near the free orbital regime do depend strongly on its
joint charge states [47], we found that the Kondo physics can
be correctly described by absorbing the capacitive interaction
into an external gating effect that varies nonlinearly with the
capacitive coupling strength, as well as the impurities’ energy
levels. We demonstrate that the external gating to one impurity
coming from the other can induce a crossover out of the Kondo
regime, modifying its conductance properties in a way that can
be measured experimentally. Our results suggest that, as the
subtle balance of interactions strongly affects the nature of
this type of system in certain parameter regimes, it is of great
relevance to the study of dephasing effects of charge detectors
on quantum dots, where conductance suppression is used as a
measure of the dephasing rate.
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APPENDIX A: VARIATIONAL CALCULATION OF THE
TWO-IMPURITY KONDO GROUND STATE

We use a variational approach following the methods of
Ref. [35], where a variational wave function for the ground
state is proposed based on the many-body singlet nature of the
Kondo state. The d-impurity ground state is given by

|ψd〉 =
[
β0 +

∑
kσ

d†
σ βk cdkσ

]
|�d〉, (A1)

with the state

|�d〉 =
∏

|k|<kF

cdk↑†cdk↓†|0〉, (A2)

representing the leads filled up to the Fermi momentum kF .
The corresponding state for impurity q is

|ψq〉 =
[
α0 +

∑
kσ

q†
σαk cqkσ

]
|�q〉. (A3)

The set of (real) coefficients α = {α0, αk} and β = {β0, βk} are
variational parameters. These variational states are expected to
be more reliable in the limit of large Ui , as double occupancy
is omitted. The full state of the coupled system is then
proposed as

|�gnd〉 = |ψq〉 ⊗ |ψd〉, (A4)

and the energy contribution from the impurities is given by

E(α, β) = 〈�gnd|H
∣∣�gnd〉

〈�gnd|�gnd〉 = Ed + Eq + ũ, (A5)

where we have defined the separate impurity energy contribu-
tions

Eq = 2〈ψq〉−1
∑

|k|<kF

[(
εq − ε

q

k

)
α2

k − 2Vqα0αk
]
, (A6)

Ed = 2〈ψd〉−1
∑

|k|<kF

[(
εd − εd

k

)
β2

k − 2Vdβ0βk
]
, (A7)

and the capacitive coupling contribution

ũ = u

(
2
∑

|k|<kF
α2

k

)(
2
∑

|k|<kF
β2

k

)
〈ψd |ψd〉〈ψq |ψq〉 . (A8)

We then proceed to minimize the ground-state energy Eq. (A5)
with respect to the variational amplitudes by the conditions

∂

∂α0
E(α, β) = ∂

∂αk

E(α, β) = 0, (A9a)

∂

∂β0
E(α, β) = ∂

∂βk

E(α, β) = 0. (A9b)
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The resulting variational equations are

2Vq

∑
|k|<kF

αk = α0(Eq + ũ), (A10a)

α0Vq = αk

⎡
⎣Eq − (

εq − ε
q

k

)

− 2uα2
0〈�gnd|�gnd〉−1

∑
|k|<kF

β2
k

⎤
⎦ , (A10b)

and a completely identical set for d (i.e., q → d and α → β).
We propose the relations αk ≡ αk and βk ≡ βk , with

αk = α0Vq

ε
q

k − εq − �q + Eq

, (A11a)

βk = β0Vd

εd
k − εd − �d + Ed

, (A11b)

and substitute into Eqs. (A10) and the corresponding equations
for impurity d to obtain (in the continuum limit)

V 2
d

D
ln

[
εq − Ed − εF + �q

εq − Eq + D + �q

]

= Eq + u
XqXd(

1 + Xq

)
(1 + Xd )

, (A12a)

V 2
q

D
ln

[
εd − Eq − εF + �d

εd − Ed + D + �d

]

= Ed + u
XqXd

(1 + Xq)(1 + Xd )
, (A12b)

�d = u
Xq

(1 + Xd )(1 + Xq)
, (A13a)

�q = u
Xd

(1 + Xd )(1 + Xq)
, (A13b)

where we have defined the continuum-limit quantities

α0Xq = 2
∑
k<kF

α2
k → V 2

q

(εq − Eq + �q)(εq − Eq + D + �q)
,

(A14a)

β0Xd = 2
∑
k<kF

β2
k → V 2

d

(εd − Ed + �d ) (εd − Ed + D + �d )
.

(A14b)

This system of equations is then solved numerically, in terms
of �d and �q . From these solutions, and using Eqs. (A14a)
and (A14b), we directly obtain the charge and charge fluctua-
tions of each impurity.
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FIG. 10. (Color online) Typical (a) conductance (per spin chan-
nel) and (b) charge and charge fluctuation profiles (full and empty
circles, respectively) of an interacting quantum impurity, as functions
of the level energy ε. (c) Kondo temperature as a function of ε. The
shaded region represents the range of ε/D where the Kondo effect
takes place. Curves calculated using NRG. Parameters: Uq = 0.5 D,
�q = 0.05 D.

APPENDIX B: CONDUCTANCE PROFILE OF AN
INTERACTING QUANTUM IMPURITY

As a reference to the results shown in Figs. 6 through 8,
in this section we show the typical zero-temperature behavior
of the zero-bias conductance of a single interacting spin- 1

2
quantum impurity, hybridizing with metallic leads. Parameters
are Uq = 0.5 D, �q = 0.05 D, with D (the half-bandwidth of
the leads’ density of states) being used as an energy unit.

Figure 10(a) shows the variation of the conductance through
the impurity: Coherent transport through the impurity is
possible only when the impurity level is in resonance with
the leads’ Fermi level (εF = 0). The conductance is thus zero
for εq > 0. Lowering the impurity level below zero, and within
a range �q of the Fermi level, the conductance begins to rise
as the system enters the mixed-valence regime. As the level
goes lower and the average occupation of the impurity goes to
one, the Kondo effect takes place, enhancing the conductance
to the unitary limit (Gσ −→ e2/h). The conductance then
plateaus with the occupation 〈nσ 〉 ≈ 1 [Fig. 10(b)] until εq ≈
−Uq + �q , when the conductance falls again with increasing
occupation of the impurity level, in accordance with Eq. (6).
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