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8ICFO-Institut de Ciències Fotòniques, Parc Mediterrani de la Tecnologia, 08860 Castelldefels (Barcelona), Spain

9Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Berlin, Germany
10Istituto Nazionale di Ottica (INO-CNR), Largo E. Fermi 6, I-50125 Firenze, Italy

(Dated: May 20, 2013)

A key aim in metrology is to find new physical meth-
ods for enhancing measurement precision. In this re-
spect, quantum metrology bears a great promise, but is
unlikely to become practical in the near future. Its con-
cepts can nevertheless provide inspiration for classical or
hybrid methods of immediate value. Here, we demon-
strate NOON-like photonic states of m quanta of angular
momentum, with m as high as 100, in a setup that acts as
a “photonic gear”, converting, for each photon, a mechan-
ical rotation of angle θ into an amplified rotation of the
optical polarization by the angle mθ. When seen through
polarizers, this leads to an “amplified” Malus’ law, ex-
hibiting 2m fringes per turn, instead of the usual two. Ex-
ploiting this effect, we demonstrate single-photon angu-
lar measurements with the same precision as that of the
polarization-only quantum strategies with m photons, but
robust to photon losses. In addition, we demonstrate the
capability of combining the gear rotational enhancement
with the quantum correlation effects of entangled photons,
thus exploiting the advantages of both approaches. The
high “gear ratio” m translates into a similarly high sen-
sitivity enhancement of optical non-contact angular mea-
surements, boosting the current state-of-the-art by almost
two orders of magnitude.

The precise estimation of a physical quantity is a relevant
problem in many research areas. Classical estimation theory
asserts that by repeating an experiment N times, the precision
of a measurement, defined by the inverse statistical error of its
outcome, can be increased at most by a factor of

√
N . In quan-

tum physics, this scaling is known as the standard quantum or
shot-noise limit, and it holds for all measurement procedures
that do not exploit quantum effects such as entanglement. Re-
markably, using certainN -particle entangled states it could be
possible to attain a precision that scales as N . This is known
as the Heisenberg limit, and is the ultimate bound set by the
laws of quantum mechanics1. Proof-of-principle demonstra-
tions of these quantum-metrology concepts have been given
in recent experiments of optical-phase estimation, magnetic-
field sensing and frequency spectroscopy2–9. In photonic ap-
proaches, the optimal measurement strategy typically relies on
the preparation of “NOON” states10, in which all N photons

propagate in one arm or the other of an interferometer. How-
ever, the experimental preparation of NOON states with large
N is extremely challenging, and to date only N = 3, N = 4,
and N = 5 photonic NOON states have been reported2–5.
Moreover, as N grows, N -photon entangled states become
increasingly sensitive to losses, as the loss of a single pho-
ton is enough to destroy all the phase information11. It has
been proved that, in the presence of losses or other types of
noise, no two-mode quantum state can beat the standard limit
by more than just a constant factor in the limit of largeN 12–15.

Here we demonstrate the preparation of single-photon
NOON-like quantum states that are superpositions of eigen-
states of light with opposite total angular momentum quan-
tum numbers. By total angular momentum, we refer here to
the sum of the spin-like angular momentum (SAM), associ-
ated with left and right circular polarization states, and of the
orbital angular momentum (OAM) that characterizes helical
modes of light16,17. While SAM can have only two values±~,
where ~ is the reduced Planck constant, the OAM per photon
can generally be given by l~, where l is an arbitrarily large
positive or negative integer. The SAM-OAM superposition
states that we generate involve m = l + 1 quanta of angular
momentum ~, oriented either parallel or anti-parallel to the
propagation axis of each photon. By exploiting such states in
the single-photon regime, mechanical rotations can be mea-
sured with a precision scaling as m times the square root of
the number of probes used. Such enhanced sensitivity can
be seen as resulting from a “super-resolving” interference be-
tween the two m-quanta angular momentum orientations ap-
pearing in the superposition, analogously to the two arms of
the NOON-state interferometers. Notably, in this regime ev-
ery photon is disentangled from all others and hence the loss
of a photon does not affect the overall phase coherence, mak-
ing the scheme loss-robust. Moreover, the experimental state
production and detection are exponentially more efficient than
for N -photon entangled states. We notice that algorithms for
photonic phase estimation without multi-photon entanglement
have already been realized18. However, these rely on repeated
applications of the unknown phase-shift to be measured, and
remotely coordinated (between Alice and Bob) adaptive mea-
surements. Furthermore, these approaches are exponentially



2

FIG. 1: Photonic gear concept. (a) A sender Alice prepares and sends to a receiver Bob photonic probes to measure the relative angle θ
between their reference frames. (b) Equivalent interferometric scheme. Upper panel: polarization-only states are used. The physical rotation
introduces a relative phase between the right- and left-circular components of the photon, corresponding to a rotation of the final photon
polarization by the same angle θ. The measurement is repeated ν times, and polarization fringes Pπ(θ) = cos2 θ are recorded, from which
the angle θ is retrieved with a statistical error ∆θ. Middle and lower panels: hybrid SAM-OAM photon states are used. The physical rotation
introduces a relative phase between the two components which varies m = 2q + 1 times faster than the polarization-only case, so that the
output photon polarization rotates m times faster (photonic gear effect). The recorded polarization fringes now present a periodicity ∝ 1/m,
leading to an improved angular sensitivity ∆θ/m. The intensity and phase patterns of the linear and circular polarization components of
the employed SAM-OAM states are also shown. (c) Experimental setup. In the single-photon regime, Alice uses photons generated by a
parametric down-conversion heralded source. In the classical regime, Alice uses coherent laser pulses. The quantum regime, in turn, uses
entangled photons and is described in Fig. 4. Bob’s detection apparatus is mounted in a compact and robust stage which can be freely rotated
around the light propagation axis28. Legend: QWP - quarter-wave plate, HWP - half-wave plate, PBS - polarizing beam-splitter, APD -
fiber-coupled single-photon detector.

(in the number of applications) sensitive to losses. Although
quantum-inspired, our approach is essentially classical, be-
cause the enhancement does not come from quantum entan-
glement but results instead from the rotational sensitivity of
large angular momentum eigenmodes. In fact, our photonic
gears can operate also in the fully classical regime, as de-
scribed by coherent states.

As a purely classical photonic effect, our result is remark-
able in the fact that the sensitivity enhancement for a given
mechanical rotation is obtained in the form of an “ampli-
fied” rotation of the uniform polarization state of the light,
that is the mentioned “polarization gears” effect. Rotation
sensors based on OAM have been reported before19–23, but
our approach is qualitatively different from all other OAM-
related proposals in the fact that we use SAM-OAM com-
bined states that allow us to “read” the rotation by a sim-

ple polarization measurement, thus without introducing the
large photon losses arising from diffraction or transmission
in the angular masks usually needed to read the OAM state.
When inserting the photonic gears between polarizers, we ob-
serve an “amplified” Malus’ law, reminiscent of the amplified
polarization-correlations visible with multi-photon quantum
states3, but which appears in both the classical light or single
photon regimes. The key element for our photon state manip-
ulations is the q-plate, a novel liquid crystal device that effi-
ciently maps pure polarization states into hybrid SAM-OAM
states and vice versa24–26.

In this work, we tested our photonic gears in three dif-
ferent regimes: (i) classical intense laser light; (ii) single-
photon regime, that we adopted to quantitatively compare the
achieved angular sensitivity with the shot-noise and Heisen-
berg limits; (iii) quantum regime of entangled photons, in
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which we demonstrated that the photonic gears can be com-
bined with quantum correlations, leading to different kinds of
“amplified” rotational correlations between the two measure-
ment stages receiving the two photons. In particular, we pro-
duced a quantum state that is metrologically equivalent to a
NOON state, leading to a hybrid quantum-classical enhance-
ment of the angular sensitivity. The precision attained in this
case scales as mN times the square root of the number of
probes used, the m originating from the gear ratio and the
N from quantum entanglement. We performed a proof-of-
principle demonstration with N = 2 and total angular mo-
mentum up to 18.

Photonic gear concept

As mentioned, the key element of our photonic gears is
the q-plate, an optical device that transforms pure polarization
states with vanishing OAM into hybrid SAM-OAM states and
vice versa24–26. For a linearly polarized input, the photonic
states generated are superpositions of m = 2q ± 1 quanta
in opposite total angular momentum eigenmodes, where q is
an integer or semi-integer “topological charge” characterizing
the device. Previous achievements were limited to q-plates
with low q (up to 3)27. In particular, rotational-invariant states
with m = 0 (q = 1/2) were recently used to demonstrate
alignment-free quantum communication28. Here, we intro-
duce a new family of devices with q ranging up to 50, produc-
ing angular momentum values as large as m = 101. These
photonic states can be also classically visualized as space-
variant polarization states29. When these SAM-OAM super-
position states are passed through a second q-plate, they are
converted back into pure polarization states with zero OAM
and a uniform polarization. However, a relative rotation of
the transmitting and reading stages by a given angle θ is con-
verted into a rotation of the light optical polarization by the
angle mθ, which in our case can be as high as 101θ. It is
this “gear ratio” m that gives rise to the angular sensitivity
enhancement.

In the following, we explain in greater detail the photonic
gears concept by adopting a quantum language, with the pur-
pose of comparing our sensitivity enhancement with the shot-
noise and Heisenberg limits and to allow an easier generaliza-
tion to the hybrid case in which there is both a classical and
a quantum effect. Let us then consider the scenario where a
sender Alice and a receiver Bob wish to measure a relative
misalignment angle θ between their reference frames around
the optical axis [see Fig. 1 (a)]. A classical strategy for this
task consists of Alice sending N photons [see upper row of
Fig. 1 (b)], each one in state |ΨC〉 .= |1〉H ≡ 1√

2
(|1〉R+|1〉L),

where |n〉x denotes a state of n photons in mode x, with
x = H , R, or L, representing the horizontal-linear, right-
and left-circular polarization modes, respectively. All modes
in the vacuum state are omitted for brevity. Bob fixes a polar-
izer in the H direction in his coordinate system, where the
misalignment corresponds to a rotation by −θ of the pho-
tons’ state. In turn, the L and R polarization states are
eigenstates of rotation, so that in Bob’s frame |ΨC〉 becomes

|ΨC(θ)〉 = 1√
2
(eiθ|1〉R + e−iθ|1〉L). The conditional prob-

ability that he detects a photon in the H-polarization (of his
reference frame) given that the phase is θ is given by Malus’
law: pC(H|θ) = cos2 θ. By measuring this probability, Alice
and Bob can estimate θ. To strengthen their statistics, they
repeat the procedure ν times, consuming a total of ν×N pho-
tons, and average all the outcomes. Their final statistical error
is bounded as

∆θC ≥
[
2
√
νN

]−1
. (1)

The right-hand side is the standard quantum limit, and can al-
ways be reached in the asymptotic limit of large νN 1. Our er-
ror estimators ∆θ are standard root-mean-squared variances.
In general, for phases, a cyclic error cost-function would be
more appropriate, as for instance the Holevo variance32. How-
ever, both types of variances coincide in the small-error limit,
so for our purposes the standard variance is adequate.

Using quantum resources, the optimal strategy consists of
Alice sending ν probes, each one composed of the N -photon
entangled NOON state |ΨQ〉 = 1√

2
(|N〉R + |N〉L). In Bob’s

frame, this state is expressed as |ΨQ(θ)〉 = 1√
2
(eiNθ|N〉R +

e−iNθ|N〉L). The conditional probability that he detects the
unrotated state |ΨQ〉 is pQ(ΨQ|θ) .

= |〈ΨQ|ΨQ(θ)〉|2 =
cos2(Nθ), which resolves values of θ that areN times smaller
than pC(H|θ). Their uncertainty is then bounded as

∆θQ ≥
[
2
√
νN

]−1
. (2)

The right-hand side is now the Heisenberg limit, which can
always be reached in the asymptotic limit of large ν1.

In our photonic gear approach, Alice and Bob exchange
photons in SAM-OAM superposition states [see Fig. 1 (b),
lower rows]. Alice initially preparesN horizontally-polarized
photons, as in the classical strategy. However, before send-
ing them to Bob, she first has them pass through a q-plate
of charge q. The q-plate implements the bidirectional (uni-
tary) mode transformations {a†R,0 ↔ a†L,−2q, a

†
L,0 ↔ a†R,2q},

where the subscripts 0 and ±2q refer to the OAM values,
and a†π,l denotes the creation operator of a photon with po-
larization π and OAM component l25. This results in the

following transformation of Alice’s photons: |1〉H,0
q−plate−→

1√
2
(|1〉L,−2q + |1〉R,2q). Next, a half-wave plate (HWP) is

used to invert the polarization, to obtain the transmitted states

|ΨC
G〉 =

1√
2

(|1〉R,−2q + |1〉L,2q). (3)

This single-photon state represents a superposition of m =
2q + 1 quanta in opposite total (spin + orbital) angular mo-
mentum eigenmodes. Likewise, if the HWP is removed, the
case m = 2q − 1 is obtained.

In Bob’s frame, the photons arrive as |ΨC
G(θ)〉 =

1√
2
(eimθ|1〉R,−2q+e−imθ|1〉L,2q). To detect them, he first un-

does Alice’s polarization flip with another HWP, and undoes
her OAM encoding with another q-plate of the same charge q,
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FIG. 2: Single-photon experimental fringes. Experimental results for single photons and q-plate charges (a) q = 1/2, (b) q = 3, (c) q = 5,
(d) q = 25, and (e) q = 50. For each case, we report: the q-plate axis pattern, corresponding to the distribution of the liquid crystal molecular
director; the calculated intensity and phase profiles of the generated OAM fields; the theoretical and experimental intensities after projection on
the H-polarization state; the measured fringe patterns (blue dots) as a function of the mechanical rotation angle θ, accompanied by sinusoidal
best-fit curves (blue lines) and by the polarization-only case (red dots and lines). The cases m = 2q + 1 (with the HWPs) and m = 2q − 1
(without the HWPs) are shown in (b) and (c). In (d) and (e), an inset with a zoomed-in region of the fringes is also shown.

so that

|ΨC
G(θ)〉 −→ 1√

2
(eimθ|1〉R,0 + e−imθ|1〉L,0). (4)

This state corresponds to a uniform linear polarization, but
with the polarization direction forming an angle mθ with re-
spect to Bob’s H axis, resulting in the photonic gear effect.
Finally, Bob measures the probability of detecting the H lin-
ear polarization conditioned on θ as in the classical strategy.
This is again given by Malus’ law:

pCG(H|θ) = cos2(mθ), (5)

but shows now the m-fold resolution enhancement over the
polarization-only strategy.

As usual, Alice and Bob repeat the procedure a total of ν
times. Their statistical error is now bounded as

∆θCG ≥
[
2m
√
νN

]−1
, (6)

and can always saturate the bound in the asymptotic limit of
large νN , as shown in section I of the supplementary infor-
mation (SI). This represents an improvement over the stan-
dard limit (1) for polarization-only strategies by a factor ofm.

This enhancement is not quantum but due exclusively to the
coherent rotational sensitivity of high-order angular momen-
tum eigenmodes (see SI section I.C).

Remarkably, already for m >
√
N the scaling (6) becomes

better than the best precision (2) attainable with polarization-
only NOON states. Furthermore, the photonic-gear strategies,
both in the single-photon and classical regimes, greatly out-
perform the latter in realistic scenarios with largeN . First, the
production and detection of our SAM-OAM photon states is
exponentially more efficient in N than those of NOON states.
Second, since state (3) does not bear any multi-photon coher-
ences, losses reduce the total number of photons, but leave the
remaining ones unaltered. That is, total losses characterized
by an overall transmissivity 0 ≤ η ≤ 1 enter as a constant
multiplicative factor, simply rescaling in (6) the total number
of photons to νNη (see SI section I.A), in striking contrast to
NOON states11.

The last type of strategy we consider is a hybrid classical-
quantum one, which exploits both entanglement and high an-
gular momenta through the photonic gear. In its simplest
version, each probe may consist of an N -photon entangled
NOON state |ΨQ

G〉 = 1√
2
(|N〉R,−2q + |N〉L,2q). Following
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FIG. 3: Estimation of a rotation angle with photonic gears in the single-photon regime. Ratio between the statistical errors ∆θ0/∆θm for
the polarization-only strategy versus the gears strategy in the single-photon regime for q < 10 (a) and for all the implemented values of q (b).
In (a) for each point the pattern of the corresponding q-plate is also shown. We obtain a maximum precision enhancement of≈ 55 for q = 50,
corresponding to the generation of optical states with an OAM component with l = 100. Red dashed line: theoretical prediction for the ideal
case. Blue solid line: model taking into account experimental imperfections [see Eq. (9) and SI section I for details]. (c)-(d) Convergence
of the angle estimation procedure as a function of the number of repeated experiments ν for m = 7 (q = 3). (c) Measured angle θ versus
the number of incident photons ν (the red area corresponds to the true angle set in the apparatus, up to mechanical resolution) and (d) ratio
∆θm/∆θmmin showing the convergence to the Cramér-Rao bound (see SI).

the same steps as above, one finds this time that pQG(ΨQ
G|θ)

.
=

|〈ΨQ
G|ΨQ

G(θ)〉|2 = cos2(mNθ) and

∆θQG ≥
[
2m
√
νN

]−1
. (7)

Thus, ideally, this strategy features the Heisenberg pre-
cision scaling for hybrid SAM-OAM approaches, but it
bears in practice the same loss-sensitivity problems as the
polarization-only quantum strategy. However, for small N ,
these problems can still be efficiently dealt with and interest-
ing applications can be achieved, as we demonstrate below.

Moreover, multi-photon quantum states other than NOON
states can also be combined with the photonic gears, obtaining
other interesting effects. For example, let us consider two-
photon polarization-entangled states, where one photon is sent
to Alice and the other to Bob. Alice and Bob make localH/V -
polarization analysis in their own rotating stages, which can

be set at arbitrary angles θA and θB (see Fig. 4a). When
θA = θB = θ the system can model two photons travelling in
the same mode, subject to the same rotation, and hence yield
results analogous to the NOON-state case discussed above for
N = 2.

When θA 6= θB one can instead align two distant frames
remotely with two-photon probes produced by an unrelated
common source, which sends one photon to each frame,
by exploiting the quantum correlations among the two pho-
tons. More in detail, let us assume that the photons are
generated in the maximally entangled polarization Bell state
|ψ−〉 = 1√

2
(|1〉AR,0|1〉BL,0−|1〉AL,0|1〉BR,0). The photons, before

transmission, are sent through two q-plates with topological
charges qA and qB , respectively, and a HWP, as shown in Fig.



6

4a. Thus, the following state is distributed to Alice and Bob:

|ψ−G〉 =
1√
2

(|1〉AR,−2qA |1〉BL,2qB − |1〉AL,2qA |1〉BR,−2qB ). (8)

Alice and Bob, in their rotated frames, apply the same
transformations to the photons, thus converting them back
to pure polarization states. The probability that Alice and
Bob both detect H-polarized photons in their local frames
is then p

ψ−
G (HH|θAθB) = 1

2 sin2[(2qA + 1)θA − (2qB +
1)θB ], showing “amplified” polarization correlations. Choos-
ing qA = qB , one can for example use these correlations (in
combination with classical communication channels) to pre-
cisely estimate the relative misalignment θA − θB and re-
motely align the two distant frames. If a HWP with the
optical axis parallel to H is now inserted in Bob’s pho-
ton path after generation of the polarization-entangled state
(which corresponds to acting with a σx Pauli operator in
the R/L basis), one obtains the entangled state |φ−G〉 =
1√
2
(|1〉AL,2qA |1〉BL,2qB−|1〉AR,−2qA |1〉BR,−2qB ), instead of |ψ−G〉.

Alice’s and Bob’s HH-photon correlations have now proba-
bility pφ

−

G (HH|θAθB) = 1
2 sin2[(2qA+1)θA+(2qB+1)θB ].

So, in this case, for θA = θB = θ, the system is metrologi-
cally equivalent to NOON state probes |ΨQ

G〉 for N = 2 and
m = mA+mB

2 = qA + qB + 1. In particular, for N = 2
photons, θ can be estimated from the HH-correlation mea-
surements with just half the efficiency as from pQG(ΨQ

G|θ),
which would require two-photon interference detection. Full
efficiency in the estimation process can be recovered by
simply registering and considering the four possible two-
photon polarization-correlations (HH,HV, V H, V V ), which
requires no extra measurements. The same result can be gen-
eralized to N -photon entangled states.

Experimental results

Our theoretical predictions were experimentally tested by
exploiting a series of q-plates with increasing charge q. We fo-
cus first on the single-photon regime. The experimental setup
is shown in Fig. 1 (c). Figure 2 shows the polarization fringes
obtained for several values of q, corresponding to the “am-
plified” Malus’ law (5). The red curves correspond to the
polarization-only approach (q = 0), shown for comparison.
The oscillation frequency ∝ m = (2q ± 1) highlights the im-
proving angular resolution for increasing q. In Section III. A
of the SI, we also show that the initial phase of the oscillation
can be tuned by choosing the appropriate input polarization
state, and that this allows one in turn to optimize the sensitiv-
ity for any angle θ.

Experimental imperfections lead to a non-unitary fringe
visibility. As shown in section I of the SI, the loss of visibility
increases the statistical error as:

∆θm ≥
[
2mVm

√
ηm
√
νN

]−1
= ∆θmmin, (9)

where Vm is the visibility of the oscillation pattern and ηm
the efficiency of the detection system. In our case, all curves

show a visibility greater than 0.73. As a figure of merit for
the enhancement in precision, we consider the ratio between
the statistical error of the polarization-only strategy and of the
photonic gear: ∆θ0/∆θm ∝ mVm

√
ηm/η0. Figures 3 (a)

and (b) show ∆θ0/∆θm as a function of m obtained from
the interference curves. We obtain a maximum enhancement
over the polarization-only strategy by ≈ 55. To obtain the
same precision ∆θ with the polarization-only strategy, one
would have to increase the number of trials by a factor of
552 = 3025, while for the quantum NOON-state strategy, one
would require entangled states of N ≈ 55 photons each. As
shown in Figure 3 (c)-(d), our estimation protocol gives an
estimate θ which converges to the true value θ in a limited
number of trials ν ∼ 300, where ν is the number of photons
sent through the system. Furthermore, in Section II of the SI,
we discuss a three-step adaptive protocol which permits effi-
cient and unambiguous estimation of such θ even when it is a
completely unknown rotation in the full [0, 2π) interval.

In the SI, we show that the rotational sensitivity enhance-
ment due to the photonic gears effect can also be achieved in
the classical regime with an intense laser, making it imme-
diately applicable to real-world optical measurements, which
we will now briefly discuss. There, the most common problem
is to perform precise non-contact and/or remote optical mea-
surements of roll angles. These are mechanical rotations of
an object around one of its symmetry axes30,31. Polarization-
based methods, essentially relying on the Malus’ law com-
bined with suitable polarization manipulations, are among
the most convenient approaches. Depending on the details
of the scheme, this typically leads to a sensitivity of about
10−2 degrees for a dynamical range of 30 − 360◦, or about
10−4 degrees when restricting the range to ∼ 1◦. All these
polarization-based methods, irrespective of the details, can
be combined with our photonic gear tool without changes.
Their sensitivity is therefore predicted to be improved approx-
imately by the factor m × Vm, which we have shown can be
made larger than 50. For example, the method reported in
Ref. 30 combined with our photonic-gear enhancement is ex-
pected to achieve a maximal sensitivity of 10−6 degrees, or
about 0.01 arcsec. The dynamical range is also reduced by a
similar factor, but the full dynamical range can be recovered
by the adaptive protocol discussed in Section II of the SI.

We consider at last the quantum regime of entangled pho-
tons, using the setup shown in Fig. 4a. We demonstrate
two-photon entangled states where each photon has a differ-
ent total angular momentum, m1 and m2, with a maximum
of m1 + m2 = 18. We carried out two types of experiments.
In the first, we generated photon pairs in the “entangled pho-
tonic gear state” |ψ−G〉, given in Eq. (8). We then measured
the HH correlations for two different sets of q-plates. The re-
sults are reported in Fig. 4 (b-d) as a function of the angles θA
and θB of Alice’s and Bob’s stages. The enhancement in os-
cillation frequency in both the θA and the θB directions with
respect to the polarization-only case is clearly observed and
matches our theoretical predictions. Next, we generated the
entangled state |φ−G〉 and rotated the two stages by the same
angle θA = θB = θ, thus creating a situation analogous to
the case of NOON state probes. The measurement results are
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FIG. 4: Entangled photonic gears. (a) Experimental setup. An entangled photon pair in the polarization state |ψ−〉 is generated by type-II
spontaneous parametric down conversion. The state can be converted to the |φ−〉 state by inserting a HWP in the path of Bob’s photon. Each
photon is then converted into SAM-OAM hybrid states by the q-plates qA and qB and a HWP, as before, and is sent to a different rotation
stage for the analysis. (b) Normalized experimental correlations pψ−

G (ππ|θA, θB) (blue points), with ππ = HH , obtained with the |ψ−〉 state
by measuring the two-fold coincidences in the H-polarization bases on both modes for different values of the rotation angles θA and θB . We
observe the gear enhancement with respect to the polarization-only case (red surface, theory) in the oscillation frequencies in both directions
θA (with mA = 2qA − 1 = 2) and θB (with mB = 2qB + 1 = 11). (c) Normalized experimental correlations again with |ψ−〉 (blue points)
but formA = 2qA+1 = 7 andmB = 2qB +1 = 11. (d) Normalized experimental correlations obtained with the |ψ−〉 and |φ−〉 states when
rotating the two stages by the same angle θA = θB = θ, formA = 2qA+1 = 7 andmB = 2qB+1 = 11. The polarization correlations (blue
points: data for |ψ−〉, red points: data for |φ−〉) now present an oscillation pattern with a periodicity enhancement of (mA+mB) for |φ−〉 and
mA −mB for |ψ−〉, due to quantum entanglement combined with the gear effect. The theoretical polarization-only HH correlation (without
the gear enhancement) are also shown, for reference, as a red solid curve in the |φ−〉 state case, oscillating as 2θ, and as a blue solid curve in
the |ψ−〉 state case, which is constant and vanishing. Yellow points: experimental data for single-photon gear with m = (mA +mB)/2 = 9,
oscillating at half the frequency of |φ−

G〉. Dashed curves: best fit of the experimental data. The visibility of the pattern for |φ−〉 state is

V φ
−
G = 0.826± 0.011.

shown in Fig. 4 (d). The hybrid quantum-classical sensitivity
enhancement by the factormN = mA+mB = 2qA+2qB+2
is clearly observed, confirming again our predictions. In par-
ticular, the experimental comparison between the 2-photon
quantum case with |φ−G〉 and the single-photon case with |ΨC

G〉
shows that in the former case a quantum enhancement by a
factor 2 is superimposed to the classical photonic gear effect.

Conclusions

In summary, we have reported a photonic scheme to mea-
sure rotation angles with greatly enhanced precision. In the

regime of single-photon probes, a precision of ∼ 55νN has
been demonstrated experimentally, with νN the total num-
ber of photons. Notably, rather than in an asymptotic limit,
this precision was attained already for total photon numbers as
small as νN ≈ 102 to 104. To our knowledge, this constitutes
the highest precision per-particle reported so far4,7,9,18. In ad-
dition, we demonstrated ultra sensitive two-photon entangled
probes tailored for different target estimations. We anticipate
that immediate application of the photonic-gear concept in a
classical regime can improve current polarization-based meth-
ods for measuring roll angles to a sensitivity of less than 0.01
arcsec. These values provide substantial progress over the cur-
rent state of the art. In addition to metrological applications,
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the capability we have demonstrated to efficiently generate
and detect hybrid polarization-OAM quantum states with very
large OAM creates interesting prospects for high-rate classical
communication33, coupling with atomic systems34, quantum
information processing35, and fundamental tests of quantum
mechanics36,37.
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