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Abstract. One of the main milestones in the study of opto- and electro-
mechanical systems is to certify entanglement between a mechanical resonator
and an optical or microwave mode of a cavity field. In this work, we show
how a suitable time-periodic modulation can help to achieve large degrees of
entanglement, building upon the framework introduced in Mari and Eisert (2009
Phys. Rev. Lett. 103 213603). It is demonstrated that with suitable driving,
the maximum degree of entanglement can be significantly enhanced, in a way
exhibiting a nontrivial dependence on the specifics of the modulation. Such time-
dependent driving might help to experimentally achieve entangled mechanical
systems also in situations when quantum correlations are otherwise suppressed
by thermal noise.
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1. Introduction

Opto-mechanical [1-7] and electro-mechanical systems [8—13] are promising candidates for
realizing architectures exhibiting quantum behavior in macroscopic structures. Once the
quantum regime is reached, exciting applications in quantum technologies such as realizing
precise force sensors are conceivable [15, 16]. One of the requirements to render such an
approach feasible, needless to say, is to be able to certify that a mechanical degree of freedom is
deeply in the quantum regime [16-20]. The detection of entanglement arguably constitutes the
ultimate benchmark in this respect. While effective ground state cooling has indeed been closely
approached experimentally [6, 10] and achieved [7, 9, 13], the detection of entanglement is still
in progress.

In this paper, we emphasize that a mere suitable time modulation of the driving field may
significantly help to achieve entanglement between a mechanical mode and a radiation mode of
the system. We extend the idea of [21], putting emphasis on the improvement of entanglement
by means of suitable modulations [21-23]. This time dependence of the driving indirectly
affects the effective radiation pressure coupling between the two modes and generates non-
trivial entanglement resonances. In comparison with single-mode squeezing, which is the main
subject of [21], here we show that two-mode squeezing is optimized at different modulation
frequencies related to the normal mode splitting of the system.

Several other schemes have been proposed in the literature for squeezing or entangling a
mechanical mode with an optical or microwave field. These are based on driving one single
sideband [14, 19, 20, 30], driving two sidebands with the same power [23], driving two
independent modes of the cavity [29] and directly modulating the frequencies of the modes
(parametric amplification) [22]. In our system, a single cavity mode is externally driven with
a red-detuned main carrier and modulated with a weak blue sideband tuned at particular
resonance frequencies. In this way, the system is stable and with the appropriate choice of the
driving pattern, large degrees of two-mode squeezing can be reached. Moreover, in our scheme,
entanglement appears in the long time limit as a stationary property without the need for any
post-selection of the state conditioned on external measurement results.

The body of the paper is organized into four sections. In the first two sections the classical
dynamics of the system and its quantum fluctuations are studied in a very general framework.
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In the third section, we focus on the main result of the paper: the appearance of entanglement
resonances for particular choices of the modulation frequencies. In section 4, this resonance
phenomenon is applied to two examples of opto- and electro-mechanical systems, whose
parameters have been realistically chosen in agreement with recent experiments.

2. Modulated opto- and electro-mechanical systems

We consider the simplest scenario of a mechanical resonator of frequency w,, coupled to a single
mode of the electromagnetic field of frequency w,. This radiation field could be an optical
mode of a Fabry—Perot cavity [1-7, 18, 19, 24] or a microwave mode of a superconductive
circuit [8—10, 14]. It can be shown that the Hamiltonians associated with this two experimental
settings are formally equivalent [14, 19] and therefore the theory that we are going to introduce
is general enough to describe both types of systems.

We assume that the radiation mode is driven by a coherent field with a time-dependent
amplitude E(¢) and frequency w;. The particular choice of the time dependence is left
unspecified but we impose the structure of a periodic modulation such that E(t+t) = E(t)
for some 7 > 0 of the order of w;,'. In this sense, the driving regime that we are going to study
is intermediate between the two opposite extremes of constant amplitude and short pulses. The
Hamiltonian of the system is

H =hw,a’a+ihw,(p*+q*) —hga'aq +ih[E(He 'a” — E*(1)e'a], (1)

where the mechanical mode is described in terms of dimensionless position and momentum
operators satisfying [¢g, p] = i, while the radiation mode is captured by creation and annihilation
operators obeying the bosonic commutation rule [a,a’] = 1. The two modes interact via a
radiation pressure potential with a strength given by the coupling parameter g.

In addition to this coherent dynamics, the mechanical mode will be unavoidably damped at
a rate yn,, while the optical/microwave mode will decay at a rate k. These dissipative processes
and the associated fluctuations can be taken into account in the Heisenberg picture by the
following set of quantum Langevin equations [14, 17-19]:

g = Wnp,
p: —a)mq—)/mp+gaTa+§, (2)
a=—(k+iA)a+igaq+E(t)+~2ka™.

In this set of equations a convenient rotating frame has been chosen a — a ™, such that
the detuning parameter is A = w, — w;. The operators £ and a™ represent the mechanical and
optical bath operators respectively, and their correlation functions are well approximated by
delta functions

(EMEA)+EWNEM)/2 = yuQ2ny + DS — 1),
(@"()a™ (")) = (ng + )8t = 1), 3)
(@™ (t)a" (1) = n 8t —1),

where n, = (exp(hw,/(kzT)) — 1)~!, is the bosonic mean occupation number at temperature 7.
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3. Classical periodic orbits: first moments

We are interested in the coherent strong driving regime when (a)>> 1. In this limit, the
semiclassical approximations (a’a) >~ |(a)|* and (ag) >~ (a)(q) are good approximations.
Within this approximation, one can average both sides of equation (2) and get a differential
equation for the first moments of the canonical coordinates

(q) = on(p),
(P) = — onlg) — vm(p) +gll@)%, “4)
(@) = — (k +1A)(a) +igla)(q) + E(1).

Far away from the well known opto- and electro-mechanical instabilities, asymptotic
T-periodic solutions can be used as ansitze for equation (4) (see the appendix for a more
detailed analysis). These solutions represent periodic orbits in phase space and are usually
called the limit cycles. These cycles are induced by modulation and should not be confused
with the limit cycles emerging in the strong driving regime due to the nonlinearity of the
system. Because of the asymptotic periodicity of the solutions, one can define the fundamental
modulation frequency as €2 = 2mn/1, such that each periodic solution can be expanded in the
following Fourier series

(0(n) = Z 0", 0=gq.p.a. (5)

n=—0o0

The Fourier coefficients {O,} appearing in equation (5) can be analytically estimated as shown
in the appendix and they completely characterize the classical asymptotic dynamics of the
system.

Finally we note that the classical evolution of the dynamical variables will shift the
detuning to the effective value of A(t) = A — g(q(t)). For the same reason, it is also convenient
to introduce an effective coupling constant defined as

g(t) = V2gla)). (6)

4. Quantum correlations: second moments

The classical limit cycles are given by the asymptotic solutions of equation (4). In order to
capture the quantum fluctuations around the classical orbits, we introduce a column vector of
new quadrature operators u = [8q, 8p, 8x, 8y]"T defined as:

8qg =q —(q(1)),

sp=p—(p()),

8x = [(a—(a@®)) +(a—(a®)] /2,
8y =—i[(a—(a®)) — (a—(a®))'] /2.

This set of canonical coordinates can be viewed as describing a time-dependent reference frame
co-moving with the classical orbits. The corresponding vector of noise operators will be

n=10,£, (@ +a™)/v2, —i(a™ —a™") /2] 8)

(7
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Since we are in the limit in which classical orbits emerge ({a) > 1), it is a reasonable
approximation to express the previous set of Langevin equations (2) in terms of the new
fluctuation operators (7) and neglect all their quadratic powers. The resulting linearized system
can be written as a matrix equation [21],

w=Au+n(), )
where
0 O 0 0
—On  —Vm NEE) Jg)
AD= e 0 -« A (19)

Ng@t) 0 —A@) —«
is a real time-dependent matrix.

If the system is stable, and as long as the linearization is valid, the quantum state of the
system will converge to a Gaussian state with time-dependent first and second moments. The
first moments of the state correspond to the classical limit cycles introduced in the previous
section. The second moments can be expressed in terms of the covariance matrix V (¢) with
entries

Ver () = (ue (0] (1) +uy (D (1)) /2. (11
One can also define a diffusion matrix D as

8(t — 1) Diy = (i (D)) (1) +n] (1 )i (1)) /2, (12)
which, from the properties of the bath operators (4), is diagonal and equal to

D = diag[0, y 2n,, + 1),k 2n,+ 1),k 2n, + 1)]. (13)

From equations (9) and (12), one can easily derive a linear differential equation for the
correlation matrix,

%V(r) =AWV +V@)AT )+ D. (14)

Since the first and second moments are specified, equations (4) and (14) provide a complete
description of the asymptotic dynamics of the system. Apart from the linearization around
classical cycles, no further approximation has been done: neither a weak coupling, adiabatic
non rotating-wave approximation. Numerical solutions of both equations (4) and (14) can be
straightforwardly found. These solutions will be used to calculate the exact amount of opto- and
electro-mechanical entanglement present in the system.

The asymptotic periodicity of the classical solutions (equation (5)) implies that, in the long
time limit, A(¢ + t) = A(¢). This means that equation (14) is a linear differential equation with
periodic coefficients and then all the machinery of Floquet theory is in principle applicable.
Here, however, since we are only interested in asymptotic solutions, we are not going to study
all the Floquet exponents of the system. The only property that we need is that, in the long time
limit, stable solutions will acquire the same periodicity of the coefficients:

Vit+1)=V (). (15)
This is a simple corollary of Floquet’s theorem. In the subsequent sections we will apply the
previous theory to some particular experimental setting and show how a simple modulation

of the driving field can significantly improve the amount of opto- and electro-mechanical
entanglement.
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5. Entanglement resonances

In this section, we are going to study what kind of amplitude modulation is optimal for
generating entanglement between the radiation and mechanical modes. As a measure of
entanglement we use the logarithmic negativity Ex which, since the state is Gaussian, can be
easily computed directly from the correlation matrix V (¢) [26-28]. We have also seen that the
correlation matrix is, in the long time limit, 7-periodic. This suggests that it is sufficient to study
the variation of entanglement in a finite interval of time [¢, ¢ + t] for large times 7. One can then
define the maximum amount of achievable entanglement as

Ex=lim max Ey(h). (16)

t—00 helt,t+1]

This will be the quantity that we are going to optimize.

We first study a very simple set of parameters (see caption of figure 1) in order to
understand what the optimal choice is for the modulation frequency. For this purpose, we impose
effective coupling to have this simple structure

gt) =g +gac™, a7
where gy is associated with the main driving field with detuning A, while gq is the amplitude
of a further sideband shifted by a frequency €2 from the main carrier. Without loss of generality
we will assume g, and gq to be positive reals. This kind of driving is a natural one and it has
been chosen for reasons that will become clear later. From now on we set the detuning of the
carrier frequency to be equal to the mechanical frequency A = w,,. This choice of the detuning
corresponds to the well-known sideband cooling setting [17, 24] and it has been shown to be
also optimal for maximizing opto-mechanical entanglement with a non-modulated driving [19].
Figure 1 shows the maximum entanglement E between the mechanical and the radiation modes
as a function of the modulation frequency 2 and for different values of the driving amplitude
go- This maximum degree of entanglement has been calculated for # > 200/, when the system

has well reached its periodic steady state.
We observe that in figure 1 there are two main resonant peaks at the modulation frequencies

Q > 20, + 3o, (18)

that we are going to carefully explain later. Note also that, if compared to [21], the choices of
modulations that give rise to the optimal local single-mode squeezing of the mechanical mode
(2 =2wy,) and the degree of entanglement (2 = 2wy, £ go) are not identical. This is rooted
in the ‘monogamous nature’ of squeezing: For a fixed spectrum of the covariance matrix, one
can either have large local or two-mode squeezing. In figure 1 we also observe that the height
of the two peaks, due to cavity filtering, is not equal: the first resonance at Q2 = 2w, — go is
better for the amount of steady state entanglement. One could also ask what the behavior of
entanglement is when we change the amplitude of the modulation. Figure 2 shows the amount
of entanglement Ey as a function of gq and for different choices of g,. We observe that
entanglement is monotonically increasing in gg up to a threshold where the system becomes
unstable.

We will now provide some intuition on why one should expect the main resonances at the
locations where they are observed. The exact dynamics of the linearized system can be studied
via equation (9). This is how figures 1 and 2 were generated. Now, however, we are going to
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Figure 1. Maximum entanglement Ex as a function of the modulation frequency
Q and for different values of the driving strength go. The chosen parameters
in units of wy, are: k =0.2, ym =10°, A=1,np=n,=0, 3o =0.1, 3o =0.2
(circles), 0.4 (squares), 0.6 (diamonds), 0.8 (triangles).
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Figure 2. Maximum entanglement E as a function of the modulation amplitude
gq and for different values of the driving strength go. The chosen parameters
in units of wy are: k =0.2, ym =100 A=1, np=n,=0, Q= 2wn— 2o,
8o =0.2 (circles), 0.4 (squares), 0.6 (diamonds), 0.8 (triangles). Beyond the
ranges of parameters shown in this plot, i.e. for gy = 0.8 and gq = 0.3, the system
is unstable.

make some strong approximations in order to better understand the physics of the problem. We
rewrite the linearized Hamiltonian as a sum of three terms:

H=H +H,+H;, (19)
H =hAd'a+honb'b, (20)
H, =—hgy(a+a")(b+b")/2, (21)
H; = —hgo@a+e a"yb+b")/2, (22)
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where the new bosonic operators a = (8x +i8y)/~/2 and b = (8¢ +i8p)/~/2 are defined with
respect to fluctuation quadratures. The three terms H,, H, and H; correspond to free evolution,
the driving carrier and the weak modulation sideband respectively. We assume the modulation
term H; to be a weak ‘perturbation of the perturbation’ H,. In other words we take two
hierarchic limits w > go > gq that will allow us to perform two successive rotating wave
approximations: first with respect to H; and then with respect to H,. In interaction picture with
respect to H; and remembering that we fixed A = w,,, we get:

H; >~ —hgo(ab’ +a'b)/2, (23)
H; ~ —hgo(e' @ 2 gh + e @ —2migTpTy 12, (24)

In the first equation, we neglected all rotating terms while in the second we neglected the term
proportional to e¥ab’ +e"*a’b because it is resonant only in the trivial case of =0 and
produces only a renormalization of g,. Now we apply the following Bogoliubov transformation

ce = (a+b)/V2. (25)

These new bosonic operators describe the well known hybridization of the system into normal
modes as described in [5, 25]. In this canonical frame H; is diagonal and we get:

H) ~ —hgy(clc, —clc )2, (26)

H;~ —hgqe @ (c,c,+c_c_)/2+h.c. (27)

We are finally ready to perform a second rotating wave approximation, which is valid in the
weak modulation limit gy > gq. In interaction picture with respect to H, we obtain

Hy ~ —hgq e @2 (e c, +e ' c_c_)/2+h.c. (28)

From the structure of equation (28) we observe that there are two resonances 2 = 2w, = ¢
associated with the two distinct squeezing interactions

Hy = —hgo(cqes+clcl)/2. (29)

Because of equation (25), squeezing of one of the hybrid modes implies that one of the
Einstein—Podolsky—Rosen (EPR) variances is reduced below the uncertainty of the vacuum
fluctuations. This suggests the presence of entanglement. Actually, bosonic modes with EPR
correlations are the most relevant and paradigmatic example of entangled states and they are the
basis of many quantum information protocols [26].

6. Opto- and electro-mechanical entanglement in realistic settings

We have seen that an effective coupling of the form g(t) = gy + gq e '?*n=8)" is optimal for
the generation of entanglement within the considered class of drivings. However, the parameter
g(t) depends on the average amplitude (a(¢)) and assuming such a simple structure may seem
somewhat artificial. In this section, we show how the desired time-dependent coupling can
indirectly result from the classical limit cycles of the system (see the insets of figures 3 and 4)
and we also take into account the effect of a temperature of the order of 7"~ 100 mK. The
natural ‘educated guess’ for the structure of the driving field will be

E(t) = Eg+ Eq e Con=801 (30)
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Figure 3. Optical cavity. The degree of entanglement, measured in terms of the
logarithmic negativity, as a function of time. The full line refers to a modulated
driving (2 = 1.4w,,), whereas the dotted line corresponds to a non-modulated
driving (2 = 0). The chosen parameters in units of wy, are: k = 0.2, Y = 107°,
A=1,n,=2x10%n,=0,80=4x10"°% E; =7 x 10* and Eq =2.5 x 10*.
The inset shows the trajectory of the effective coupling g(r) = ~/2g(a(t)) in the
complex plane due to the time evolution of the optical amplitude. The phase-
space orbit (black line) is numerically simulated from equation (4), while the
limit cycle (green line) is an analytical approximation (see the appendix for more
details).
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Figure 4. Microwave cavity. Entanglement log-negativity as a function of time.
The full line refers to a modulated driving (2 = 1.3w,,,) whereas the dotted line
corresponds to a non-modulated driving (€2 = 0). The chosen parameters in units
of wp are: k =0.02, y =3 x 107%, A =1, n, =200, n, =0.03, go =2 x 1075,
Ey=9 x 10° and Eg = 1.3 x 10%. The inset depicts the trajectory of the effective
coupling g(r) = ~/2g(a(r)) in the complex plane due to the time evolution of
the microwave amplitude. The phase-space orbit (black line) is numerically
simulated from equation (4), while the limit cycle (green line) is an analytical
approximation (see the appendix for more details).
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For the choice of the other parameters, we focus on two sets of parameters corresponding to
two completely different systems: an optical cavity with a moving mirror and a superconducting
wave guide coupled to a mechanical resonator. The parameters are chosen according to realistic
experimental settings; see, e.g. [5] (opto-mechanical system) and [9] (electro-mechanical
system). Figures 3 and 4 show that, in both experimental scenarios, entanglement can
significantly be increased by an appropriate modulation of the driving field.

7. Summary

In this paper, we have shown how time-modulation can significantly enhance the maximum
degree of entanglement. Triggered by the time-modulated driving, the mode of the
electromechanical field as well as the mechanical mode start ‘rotating around each other’
in a complex fashion, giving rise to increased degrees of entanglement. The dependence on
frequencies of the additional modulation is intricate, with resonances greatly improving the
amount of entanglement that can be reached. The ideas presented here could be particularly
beneficial for preparing systems in entangled states in the first place, in scenarios where the
parameters are such that the states prepared are close to the boundary to entangled states, but
where this boundary is otherwise not yet quite reachable with the present technology. At the
same time, such ideas are expected to be useful in metrological applications whenever high
degrees of entanglement are needed.
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Appendix

In this appendix, we derive analytical formulas for the asymptotic solutions of the classical
system of dynamical equation (4). A crucial assumption for the following procedure is that it is
possible to expand the solutions in powers of the coupling constant g

(0)1)=)_0,ng, (A1)
j=0

where O =a, p, q. This is justified only if the system is far away from multi-stabilities and
the radiation pressure coupling can be treated in a perturbative way. A very important feature
of the set of equation (4) is that they contain only two nonlinear terms and those terms are
proportional to the coupling parameter g. This implies that, if we use the ansatz (A.1), each
function O; will be a solution of linear differential equation with time dependent parameters
depending on the previous solution O;_;(t). Since E(¢) = E(t + t), from a recursive application
of Floquet’s theorem, follows that stable solutions will converge to periodic limit cycles having
the same periodicity of driving: (O(t)) = (O (¢ +1)). One can exploit this property and perform
a double expansion in powers of g and in terms of Fourier components

(0)1)=)_ > 0,;e""g/, (A2)

Jj=0 n=—00
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where n are integers and 2 = 2m/t. A similar Fourier series can be written for the periodic
driving field,

E(t) = Z Ene™ ™. (A.3)

n=—oo

The coefficients O, ; can be found by direct substitution in equation (4). They are completely
determined by the following set of recursive relations:

E_,
n0="Pno=0, @o=—""""", A4
n0 = Pno T Fi(A+nQ) a4
corresponding to the 0-order perturbation with respect to g, and
n2
DPnj = —"—4qn.j> (A.S)
Wm
j—1 oo at  a -
n,j = Wm . . s A.6
n.j ;m;w w2 —nQ% +1y,n2 (A.6)
j—1 00 a q
. m,kYn—m,j—k—1
ap =1 —_—, A7
N ;m;)o K +i(A +nQ) (AD

giving all the j-order coefficients in a recursive way. For all the examples analyzed in this paper,
we truncated the analytical solutions up to j < 3 and |n| < 2. This level of approximation is
already high enough to reproduce the exact numerical solutions well.
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