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a b s t r a c t

Maximum covariance analysis (MCA) and isometric feature mapping (Isomap) are applied
to investigate the spatio-temporal atmosphere–ocean interactions otherwise hidden in
observational data for the period of 1979–2010. Despite an established long-term surface
warming trend for the whole northern hemisphere, sea surface temperatures (SST) in the
East Pacific have remained relatively constant for the period of 2001–2010. Our analysis
reveals that SST anomaly probability density function of the leading two Isomap compo-
nents is bimodal. We conclude that Isomap shows the existence of two distinct regimes in
surface ocean temperature, resembling the break and active phases of rainfall over equa-
torial land areas. These regimes occurred within two separated time windows during the
past three decades. Strengthening of trade winds over Pacific was coincident with the cold
phase of east equatorial Pacific. This pattern was reversed during the warm phase of east
equatorial Pacific. The El Niño event of 1997/1998 happened within the transition mode
between these two regimes and may be a trigger for the SST changes in the Pacific. Further-
more, we suggest that Isomap, compared with MCA, provides more information about the
behavior and predictability of the inter-seasonal atmosphere–ocean interactions.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

. Introduction

The climate system appears chaotic but is influenced by complex and high-dimensional processes. Reoccurring climatic
henomena can have a large influence on societies, economies and human health, with extreme events potentially leading
o crises of some kind. The Asian monsoon region is one of the world’s most populated area, and the higher inter-seasonal
uctuations in the Asian monsoon can lead to major disasters such as floods, droughts, crop damage, etc. Hannachi and
urner (2013). Such complex phenomena are resulting from the interplay of different lower boundary forcings such as the
ceans (Webster et al., 1998).

El Niño events are the most persistent patterns of ocean variability (Cai et al., 2014; Krishna Kumar et al., 2006) with a
irect impact on rainfall’s levels, duration and distribution. Cai et al. (2014) found the evidence of increasing probability of

xtreme El Niño events linked to climate change. The El Niño event of 1997/1998 was the strongest on record and climate
odels did not predict the strength of this rapid event (McPhaden, 1999). The intensity of this El Niño event may have been

ffected by the interplay of chaotic climate components (e.g., atmosphere, hydrosphere, biosphere, etc.). Many studies have
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investigated the feedback processes between atmosphere and Pacific ocean (Timmermann et al., 1999; Yeh et al., 2009;
Collins et al., 2010; Kug et al., 2010).

According to recent Intergovernmental Panel on Climate Change (IPCC, 2013) report, the tropical rainfall enhanced over
land areas during the last decade and the drying trend since mid-1970s to 1990s is reversed https://www.ipcc.ch/. The
expected warming trend for the period of 1998–2012 was 0.2 ◦C per decade (IPCC, 2013). However, the observed global
averaged warming rate was 0.04 ◦C per decade for this period and the climate models were unable to reproduce this hiatus.
Among the possible factors (e.g., atmospheric aerosols, oceans and sun) which modulate the global temperature change,
equatorial Pacific accounts for the most of the hiatus (Meehl et al., 2013). According to England et al. (2014), strengthening
of Pacific trade winds has a dominant impact on cooling of Central equatorial Pacific during this period and the global
warming trend is likely to resume once again.

It is always a challenging work to identify the most important modes of multidimensional climate data. Dimensionality
reduction techniques are recently used to detect the most important components of the data set that represent the most
variability: empirical orthogonal function (EOF) analysis (Jolliffe et al., 2002), Multidimensional scaling (MDS) (Cox and Cox,
2008), Isomap (Tenenbaum et al., 2000), independent component analysis (ICA) (Comon, 1994), locally linear embedding
(LLE) (Saul and Roweis, 2000), Laplacian eigenmaps (LEM) (Belkin and Niyogi, 2003). Bretheron et al. (1992) suggested several
techniques for isolating the leading modes of variability between two data sets.

Previous studies indicate that there is a direct correlation between sea surface temperature anomaly (SSTA) and rainfall
changes (Hastenrath and Greishar, 1993; Giannini et al., 2003; Seager et al., 2005; Hoerling et al., 2006; Krishna Kumar
et al., 2006; Schubert et al., 2009). MCA can detect coupled linear atmosphere–ocean teleconnection patterns (Rayner et al.,
2003; Dai, 2013). According to Tenenbaum et al. (2000), EOF analysis may be able to find a low-dimensional embedding by
preserving its variances. However, many observations contain high-dimensional modes that are invisible to a linear classi-
cal dimensionality reduction method like EOF analysis. Hannachi and Turner (2013) applied Isomap to sea-level pressure
anomalies to investigate the Asian summer monsoon regime behavior. They suggested that the probability density function
of Asian summer monsoon is bimodal. Ross et al. (2008) concluded that Isomap presents no additional modes of climate
with respect to classical principal component analysis for ENSO dynamics. Turner and Hannachi (2010) suggested further
investigations using the nonlinear dimensionality reduction techniques to explain the monsoon variability.

This study investigates the global atmosphere–ocean variations during the recent climate to understand the possible
feedback processes. The spatiotemporal patterns of coupled atmosphere–ocean variations are of major importance especially
with respect to their relation to monsoon variability under the recent global warming. Using scale-of-the-art analysis tools
will improve the understanding of such complex interactions between different components of the climate system (e.g.,
oceans and atmosphere).

Here, MCA and Isomap are compared to investigate the most important coupled patterns between rainfall and SSTA in the
observed climate. Additionally, we discuss the possible dynamics behind such relationships. To reach the highest confidence
due to the increased number of observations (date-rich period), we focused on the recent period 1979–2010.

The study approach is based on the analysis of the effect of non-linearity on two different data reduction methods which
are described in the next section. Section 3 contributes to the results, focusing on regime behavior in the atmosphere–ocean
changes during the observation period. Discussion and conclusions are presented in Section 4.

2. Data and methods

2.1. Observations

We used monthly precipitation from GPCP Version 2.2 Combined Precipitation Data Set (Adler et al., 2003), NOAA
Extended Reconstructed SST V3b (Smith and Reynolds, 2003) and 850 hPa wind from NCEP reanalysis (Kalnay et al., 1996).
After removing the seasonal cycle from the data, the monthly anomalies are calculated. In addition, seven different monthly
climate indices are used from Earth System Research Laboratory http://www.esrl.noaa.gov/psd/data/climateindices/list/ to
define the temporal modes of MCA: Niño3.4, Trans-Niño Index (TNI) (Trenberth and Stepaniak, 2001), North Atlantic Oscilla-
tions (NAO) (Hurrell, 1995), Atlantic Meridional Mode (AMM) (Chiang and Vimont, 2004), North Tropical Atlantic Index(NTA)
(Penland and Matrosova, 1998), Arctic Oscillations (AO) (Higgins et al., 2002), Pacific Decadal Oscillation (PDO) (Zhang et al.,
1997). Combined Northern Hemisphere land-surface air and sea-surface water temperature anomalies (NHT) and land-
surface air temperature anomalies only (NHTL) from GISS Surface Temperature Analysis (GISTEMP) are also included in our
investigation. The two latter are based on the study of Hansen et al. (2010) (http://data.giss.nasa.gov/gistemp/).

2.2. MCA
MCA applies a single value decomposition (SVD) method to identify the coupled variability of the two dataset (here
precipitation and SSTA). Bretheron et al. (1992) used this method to compare different climate components (e.g., ocean
and atmosphere). The advantage of MCA, compared with coupled EOF analysis, is that this method captures those modes

https://www.ipcc.ch/
http://www.esrl.noaa.gov/psd/data/climateindices/list/
http://data.giss.nasa.gov/gistemp/
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Fig. 1. Squared covariance fraction (SCF) of the first 10 modes of MCA.

f variations which are highly coupled. Thus, the interpretation of the results are easier. First we constructed the cross-
ovariance matrix of SST and precipitation (P) for the period of 1979–2010:

C = SSTtP (1)

By standardizing P and SST we calculated the cross-correlation matrix C. Then we calculated the SVD of C:

C = ALBt (2)

here columns of A and B are singular values for SSTA and P respectively. Temporal expansion of these modes are described
s columns of TA and TB:

TA = SST A (3)

TB = PB (4)

nd SST = TAAt and P = TBBt will give the original SST and P data. L is a diagonal matrix containing the singular values. squared
ovariance fraction (SCF) is shown by:

SCFi =
L2

(i,i)
∑k

i=1L2
(i,i)

(5)

.3. Isomap

The linear methods of dimensionality reduction may fail to capture the correct distance between data-points, if the natural
tructure of the data is nonlinear. The Isomap algorithm is capable of detecting the nonlinear modes that are hidden in the
atural observations (Tenenbaum et al., 2000). The classical dimensionality reduction methods which are used frequently in
limate research (e.g., EOF analysis), are based on reconstruction (maintaining the maximum variances) of data set. Isomap
pplies a classification principal (maximizing the Euclidean distances between samples) (Yang, 2003). The main goal is to
nd those samples that belong to a lower dimensional manifold that is embedded in an artificially high dimensional data.
ere we review the method briefly. The Isomap approach contains three steps: First the Euclidean distances dx(i, j) between
ll pairs (i, j) of dataset (Xi,j) are calculated. Here we did this by considering the K nearest neighbors of a reference point.
uclidean distance is an approximation of geodesic distance for the neighboring points. After computing the neighborhood
raph, the shortest paths (geodesic distances) following the constructed graph are calculated (ıi,j). The final matrix contains
he shortest path distances (D = ıi,j). Finally, the classical Multi-Dimensional Scaling (MDS) is applied to the matrix D to
xtract the principle coordinates and the embedding space.

. Results

.1. MCA

The SCF associated with the leading three MCA components are 0.73, 0.10 and 0.07, respectively. Fig. 1 presents a clear
lbow at the second MCA mode. However, the differences in the SCF of second and third component are only slightly
istinguishable. Therefore, they are inseparable and we considered both modes in our analysis. Figs. 2–4 show MCA patterns
f precipitation and SSTA for the period of 1979–2010. We compared the temporal expansions of these modes with several

limate indices in order to interpret the temporal evolution of these teleconnection patterns. Table 1 shows the Pearson
orrelations of these modes with several standard climate indices (ref. Section 2). Correlations only with p−values smaller
han 0.01 are shown. The MCA1 of SST has the highest correlations (corrcoef . = −0.82) with Niño3.4 index (Fig. 5 and Table 1).
he spatial pattern of this mode for SST shows an observed PDO-like pattern. The associated MCA1 pattern of rainfall presents
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Fig. 2. Spatial patterns of MCA1 for (a) precipitation and (b) SST. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Fig. 3. Spatial patterns of MCA2 for (a) precipitation and (b) SST. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

enhanced rainfall over Indonesian Pacific and North Brazil with a decrease over Central Pacific Ocean. The time-series of

precipitation for this mode exhibits the highest correlation with Niño3.4 time-series (corrcoef . = −0.77). The extreme El Niño
of 1997/1998, known as “the climate event of the 20th century” (McPhaden, 1999), is well captured by this mode. MCA2
for SST presents a dipole pattern with the warm Central and cool East Pacific (Fig. 3). Time series of this mode correlates
highly with northern hemisphere temperature and TNI (corrcoef . = −0.59 and 0.47, respectively). This concludes that El Niño

Table 1
Correlation of MCA modes with climate indices. Bold numbers are the highest correlation in each row. Not significant (NS) indicates correlations with
p-value > 0.01.

MCA Niño3.4 TNI NAO AMM NTA AO PDO NHT NHTL

SST1 − 0.82 NS NS 0.19 NS NS −0.54 NS 0.15
SST2 NS 0.47 0.17 −0.35 −0.56 NS 0.21 −0.57 − 0.59
SST3 0.15 0.38 −0.16 0.39 0.57 NS −0.34 0.75 0.73
Precip1 − 0.77 NS NS NS NS NS −0.39 NS NS
Precip2 NS 0.62 NS −0.18 −0.31 NS NS −0.21 −0.22
Precip3 0.2 0.55 NS 0.15 0.26 NS NS 0.45 0.44
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ig. 4. Spatial patterns of MCA3 for (a) precipitation and (b) SST. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

vents with the warmer Central Pacific have a greater impact on droughts over India than the East equatorial Pacific. Rainfall
attern of second MCA components also shows a clear precipitation departure over most of the classical monsoon region
Wang et al., 2005) indicating a break phase in the monsoon activity.

Temporal expansion of this mode is highly correlated (corrcoef . =0.62) with TNI (Fig. 5 and Table 1). As seen in MCA1,
CA2 for rainfall also exhibits a drop in years 1997/1998 coincident with the greatest El Niño event of the 20th century. Fig. 4

llustrates a cool pattern in the equatorial Central Pacific presented by MCA3 of SST which is highly linked (corrcoef . =0.75)
o northern hemisphere averaged warming (Fig. 5 and Table 1). The best agreement of MCA3 for precipitation is with TNI
corrcoef . =0.55) that exhibits wet anomalies over the Western Ghats and northern India (Fig. 5 and Table 1). Thus, the
ecreasing TNI during the period 2000–2010 (Fig. 5), leads to dry anomalies over the Western Ghats and northern India.

Despite the similar warm pattern in the Central Pacific associated with MCA2 and MCA3, during the extreme El Niño of
997/1998, the former shows, warm (cool) anomalies over the East (Central) Equatorial Pacific and the latter exhibits no
mportant anomalous pattern. According to MCA3 of SST, an increase in averaged temperature over the northern hemisphere
ill lead to cooler(warmer) East (central) equatorial Pacific. Within the warming hiatus period of 2001–2010, MCA3 of SST

hows cool East equatorial Pacific (Figs. 4 and 5). The coupled rainfall pattern of this mode is linked to negative rainfall
eparture over monsoon India during this period.

ig. 5. Time expansions of MCA modes and climate indices with highest correlations (bold numbers from Table 1). Time series have unit-variance and
ero-mean. Note that the MCA1 of SST and rainfall as well as MCA2 of SST are multiplied by −1. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
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Fig. 6. Residual variance of Isomap vs. dimensionality.

3.2. Isomap

Fig. 6 illustrates the residual variances of Isomap. There is an obvious drop in residual variances at dimension d = 2. This
indicates that the diversity of the SSTA data has dimension of 2. As in the study of Hannachi and Turner (2013), we focused
on the first two Isomap components with 58% and 30% of residual variances. To determine the existence of regime behavior
in Isomap components, neighboring graph of the SSTA within the two dimensional embeddings is presented. Fig. 7 clearly
suggests two different regime behaviors: prior to 1997 and posterior to 1999. There is a third small cluster of embeddings
presented in green circles. This shows the period of extreme El Niño event of 1997/1998. Following the studies of Fallah and
Cubasch (2015), Hannachi and Turner (2013, 2013) and Turner and Hannachi (2010), we used Gaussian mixture distribution
to estimate the SSTA Probability Density Function (PDF) in Isomap space. The “mixture model” shows the existence of two
bivariate Gaussian components. Accordingly, the PDF F(x) can be written as:

F(x) = ωP1(x) + (1 − ω)P2(x) (6)

where ω = 0.42 is the mixing proportion of the first and (1 − ω) = 0.58 of the second component. Pi is defined by its mean
and covariance. The Expectation Maximization (EM) algorithm is repeated 10,000 times. The transition period of 1997–1998
is excluded when calculating the Gaussian mixture model. Fig. 8 compares the Gaussian kernel PDFs of Isomap and MCA
leading two components. Optimal value is used for normal density calculations. Different numbers of K (nearest neighbors)

in Isomap exhibit bidimensionality of PDF (not shown). K-Isomap with K = 12 is used in this study. Fig. 8 indicates that Isomap
shows an obvious bimodality in the leading two modes. In contrast, MCA PDFs are unimodal. PDFs of MCA1 and MCA3 of
SSTA also do not depict a clear bimodality (not shown). Fig. 9a illustrates the two-component Gaussian mixture model PDFs

Fig. 7. Two dimensional embeddings of Isomap for SSTA. The gray circles indicate the period of 1979–1996 and the red ones 1999–2010 respectively. The
period of 1997–1998 is shown in green circles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 8. Gaussian kernel PDFs of leading two (a) Isomap and (b) MCA components.
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ig. 9. (a) Two-component mixture model PDFs of two leading Isomap and (b) timing of each component. + indicate the centers of mixture components.
ed colors show regime 1 and gray colors regime 2. Green circles indicate 30 nearest months to each center. (For interpretation of the references to color

n this figure legend, the reader is referred to the web version of this article.)

f two leading Isomap components. There are two obvious regimes occurring in different time-slices: regime 1 for the period
f 1999–2010 and regime 2 for the period of 1979–1996 (Fig. 9b).

Time expansion of Isomap modes of SST and the climate indices with the highest correlations are shown in Fig. 10.
able 2 shows the Pearson correlations between Isomap modes and several climate indices. Isomap1 of SST shows the
ighest correlation with the Northern temperature anomalies over land surface (corrcoef . = −0.75). The second mode of

somap has significant correlation with PDO time-series (corrcoef . =0.51) and the third mode shows significant correlations
ith North Tropical Atlantic Index (corrcoef . =0.42).
We constructed the composites of 30 nearest SSTA and rainfall conditions to these two modes to recognize the
tmospheric-ocean conditions associated with the PDFs of Isomap. Fig. 11 illustrates the results of SSTA composites for
he two regimes. These patterns were preserved when increasing the number of nearest states. The constructed patterns

able 2
orrelation of Isomap modes with climate indices. Bold numbers are the highest correlation in each row. Not significant (NS) indicates correlations with
-value > 0.01.

Isomap Niño3.4 TNI NAO AMM NTA AO PDO NHT NHTL

SST1 0.24 NS 0.18 −0.45 −0.53 NS 0.51 −0.74 − 0.75
SST2 0.44 0.39 NS −0.19 NS NS 0.51 −0.17 −0.18
SST3 NS −0.21 −0.22 0.35 0.42 −0.21 0.22 0.15 0.17
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Fig. 10. Time expansions of Isomap modes and climate indices with highest correlations (bold numbers from Table 2). Time series have unit-variance and

zero-mean. Note that the X1 of SST is multiplied by −1. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

show two particular modes in the ocean conditions. Fig. 11a corresponds to the left-hand PDF center showing generally
warmer oceans with a cooler tongue in the Central and East equatorial Pacific (negative PDO), while the right-hand center
(Fig. 11b) presents cooler ocean with a warm SST departure in the East Central Pacific Ocean (positive PDO). The associated
rainfall anomalies of these two regimes show an increase in equatorial rainfall over land for regime 1 and a clear break phase
of rainfall over most of the monsoon areas in regime 2 (Fig. 12). Fig. 13 depicts the 850 hPa large scale circulations associated
with SSTA regimes. There is an anticyclonic circulation in the East North Pacific associated with regime 1. This regime also
resembles the pronounced strengthening of trade winds over the Pacific. The strengthening of trade winds will push warm
water to the West Pacific and increase the upwelling of deep ocean water over eastern equatorial areas.

These results are consistent with the study of England et al. (2014) and Trenberth and Fasullo (2013). Accordingly, the
response over monsoon Asia is consistent with the strengthened Somali jet. This pattern will be reversed for regime 2. There

is an anomalous weakening of trade winds over West equatorial Pacific in this regime. These distinct results clearly reveal
that the climate was shifted to a new regime (negative PDO-like SSTA) after the extreme El Niño event of 1997/1998.

Fig. 11. The composites of SSTA (◦C) for 30 nearest months to the PDF peaks of Isomap shown in Fig. 9a: (a) regime 1 and(b) regime 2. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. The composites of rainfall anomaly (mm/day) for 30 nearest months to the PDF peaks shown in Fig. 9a: (a) regime 1 and (b) regime 2. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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ig. 13. The composites of 850 hPa wind anomalies for (a) regime 1 and (b) regime 2 from Isomap. Shadings show anomalies of wind magnitude in unit
/s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

. Discussion and conclusion

In this study we investigated the atmosphere–ocean interactions by using MCA and Isomap analysis of the global rainfall
nd the SSTA for the period of 1979–2010. In contrast with MCA, Isomap captures more detailed information about the
tmosphere–ocean interactions. The bimodality of coupled patterns between the rainfall and SST are clear in the Isomap
nalysis. The MCA analysis, failed to capture the existence of two different regimes within the recent climate. The results
upport the study of Hannachi and Turner (2013), who described the advantages of Isomap compared to EOF analysis for
nter-seasonal monsoon predictability. The coupled patterns of leading modes of MCA agree well with the study of Krishna
umar et al. (2006), who concluded that the Central equatorial warmer (“westward-shifted”) Pacific Ocean initiates more
xtreme droughts over India. As an example, no drought occurred in India during the strongest El Niño event of 1997. Time
xpansions of MCA modes did not show any high correlation with AO or NAO. This indicates that the major variability of
oupled patterns may belong to the Pacific Oceans. Our analysis using Isomap also indicates that the particular ENSO event
f 1997/1998 did not belong to a typical climate regime. This extreme event occurs within the transition period of the recent
limate shift. The first regime presented by Isomap, resembles the cold phase over eastern part of Pacific Ocean (negative
DO) and the second one the warm phase (positive PDO). The former becomes more dominant since 1999, while the latter

s more frequent before 1997.

Our results suggest that the strengthened trade winds over the Pacific are coincident with the switch to a cold East
quatorial Pacific since 1999. We conclude that regime behavior in SSTA over Pacific is invisible in MCA and interpretations
ased on such a linear method require further investigations. We explored the linkage between ocean’s forcings such as ENSO
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and the preferred weather conditions that may improve the inter-seasonal atmosphere–ocean interactions. However, there
is still a lack of appropriate observational data and interpretation of results from reanalysis may be misleading. Variations of
ocean temperature (e.g., PDO) have alternating cycles of 15–30 years. Climate change investigations may require timescales
of more than 50–100 years that is beyond the time-expansion of available observational data. The analysis still suffers from
a huge lack of the observational data, especially in deep ocean, assuming that most of the recent heat imbalance is going
into the ocean.
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