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By employing electron paramagnetic resonance spectroscopy, transmission electron microscopy,

and optical measurements, we systematically correlate the structural and optical properties with the

deep-level defect characteristics of various tailored periodic Si microhole arrays, which are

manufactured in an easily scalable and versatile process on nanoimprinted sol-gel coated glass.

While tapered microhole arrays in a structured base layer are characterized by partly

nanocrystalline features, poor electronic quality with a defect concentration of 1017 cm�3 and a

high optical sub-band gap absorption, planar polycrystalline Si layers perforated with periodic

arrays of tapered microholes are composed of a compact crystalline structure and a defect

concentration in the low 1016 cm�3 regime. The low defect concentration is equivalent to the one in

planar state-of-the-art solid phase crystallized Si films and correlates with a low optical sub-band

gap absorption. By complementing the experimental characterization with 3-dimensional finite

element simulations, we provide the basis for a computer-aided approach for the low-cost

fabrication of novel high-quality structures on large areas featuring tailored opto-electronic

properties. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4829008]

I. INTRODUCTION

The design of highly efficient Si-based photonic and

photovoltaic devices necessitates the development of

advanced light management strategies. Periodically struc-

tured systems have recently emerged as concepts for nano-

photonic light harvesting in amorphous and crystalline Si

solar cells that, in contrast to random structures, provide tun-

able degrees of freedom for an electro-optical device

optimization.1–7 Lithographic patterning, anisotropic etching

procedures and vapor–liquid–solid processes have already

been used for a successful implementation of periodic Si

structures into photovoltaic devices.1,2,6–8 However, these

existing methods either rely on high-quality substrates or do

not comply with the standards of a low-cost production pro-

cess on large areas. This calls for the development of cost-

effective methods to manufacture periodic Si architectures.

By combining the high-rate deposition technique electron-

beam evaporation with nanoimprint lithography, we have al-

ready developed a low-cost and easily scalable fabrication

process in a self-organized crystallization process for peri-

odic arrays of crystalline Si for light harvesting and photonic

crystals operating in the visible and near-infrared wavelength

region.9,10 Nanoimprint lithography is a viable option for

structuring large-area substrates with manifold design possi-

bilities for photovoltaic and photonic applications, while the

solid phase crystallization (SPC) of deposited amorphous sil-

icon enables the fabrication of crystalline thin film Si solar

cells on glass with record module efficiencies of up to

10.5%.3,11–15 However, in order to realize cost-effective,

scalable and yet high-quality structures by employing this

inexpensive fabrication technique, knowledge-based

approaches are required that complement the predictive

power of computer-aided design strategies with cutting-edge

characterization tools.

In this contribution, we determine essential design pa-

rameters for large-area high-quality periodic Si microhole

arrays on nanoimprinted sol-gel coated glass, by systemati-

cally correlating their structural and optical properties to

their deep-level defect characteristics, which are a direct

measure for the electronic quality. By complementing the

experimental optical characterization with 3-dimensional fi-

nite element (FEM) simulations, we provide the basis for a

computer-aided approach for the design of novel structures

featuring tailored opto-electronic properties.

II. PREPARATION OF PERIODICALLY STRUCTURED
SI FILMS

Figure 1(a) illustrates a schematic of the preparation

process of periodic Si architectures on glass. Various master

a)Author to whom correspondence should be addressed. Electronic mail:
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stamps with a 2-dimensional periodic structure provide the

desired pattern for the nanoimprint process and define the

structure geometry. After a (5 � 10) cm2 reusable polysi-

loxan replica stamp had been fabricated from the master

structure, the replica stamp was pressed into a wet sol-gel

film on glass. The sol-gel solution consists of nanoparticles

synthesized with functionalized hybrid polymers and was

applied to the glass by dip-coating. A short UV curing step

of a few seconds prior to the stamp removal ensured that

the imprint of the replicated structure was preserved. An

additional thermal treatment enhanced the temperature sta-

bility of the imprinted structure and enabled its compatibil-

ity with the high temperatures involved in the poly-Si

fabrication process.16 Intrinsic amorphous Si layers with a

thickness of 2.6 lm were deposited on the structured sub-

strates by electron-beam evaporation at a deposition temper-

ature of 300 �C and deposition rate of 300 nm/min, leading

to periodic arrays of Si domes. Due to atomic shadowing

effects during the deposition process, silicon grows in a

void rich columnar morphology on steep edges and flanks

of the imprinted pattern, allowing oxygen incorporation into

the Si after the vacuum break.17 Si deposited on flat areas

of the substrate, however, exhibits a compact structure. This

difference in the material structure enables a self-organized

solid phase crystallization process at 600 �C in N2 ambient,

in which the compact material crystallizes, while the void

and oxygen rich areas remain amorphous.18 Afterwards, an

etch solution was dropped onto the samples to remove

porous amorphous material.9 The resulting polycrystalline

Si architecture on the structured sol-gel layer features arrays

of truncated Si cones on the tips of the two-dimensional pat-

tern and a polycrystalline base layer. The Si cones consist

of a crystalline core, which is enclosed by a porous funnel

with nanocrystalline rods. Finally, these Si cones are

mechanically removed from the base layer in a simple

lift-off process. The final structures consist of tapered

microholes in a polycrystalline Si layer. The shape of the

imprint stamp defines the structure of the Si architectures: A

sol-gel texture consisting of tips with slanted flanks that are

separated by u-shaped valleys (Fig. 1(b)) leads to the forma-

tion of a tapered microholes (MH) in a heavily structured

layer (MH-structured). In contrast, a sol-gel pattern, which

contains arrays of equidistant sol-gel cylinders emerging

from a planar layer (Fig. 1(e)) gives rise to the formation

of a planar Si base layer perforated with tapered holes

(MH-planar). Figures 1(c), 1(d) and 1(f), 1(g) illustrate the

fabricated structure before and after the lift-off process for

both substrate types. To improve the structural quality of

the material and saturate remaining defects, we applied

state-of-the-art rapid thermal annealing at 950 �C for 1 min

and a hydrogen passivation process in a parallel plate

radio-frequency plasma setup at 600 �C for 15 min.19,20 A

conformal hydrogenated intrinsic amorphous Si layer was

applied in a conventional parallel plate 13.56 MHz plasma

enhanced chemical vapor deposition system at 130 �C for

the passivation of interface-related defects.21

FIG. 1. (a) Fabrication process for Si structures and microhole arrays. The sol-gel is illustrated in blue, while Si is red. Porous amorphous regions are high-

lighted in bright red. (b) and (e) display SEM images of sol-gel templates with slanted flanks und u-shaped valleys and sol-gel cylinders protruding from a pla-

nar layer, respectively. (c) and (d) show the Si structure and tapered microhole arrays embedded in a structured base layer (MH-structured) based on a u-

shaped sol-gel layer, respectively. (f) and (g) display the Si structure and the final microhole arrays perforating a planar Si base layer based on a sol-gel tem-

plate with well defined cylindrical features (MH-planar).
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III. ANALYTICAL TECHNIQUES

To elucidate the growth process of Si on the structured

substrates, we performed cross-sectional transmission elec-

tron microscopy (TEM), employing a CM12 Philips TEM

with supertwin lens modification, a LaB6 cathode, and an

acceleration voltage of 120 kV. We prepared 20–50 nm thick

TEM specimens by manually cutting, polishing, and ionmil-

ling. Recently conducted electron paramagnetic resonance

(EPR) studies on planar poly-Si solar cells and numerical de-

vice simulations revealed that deep level paramagnetic

intra-grain and grain boundary defects are major recombina-

tion centers in solid phase crystallized Si and hence the most

important limitation of the electronic quality of poly-Si.22 To

evaluate the electronic quality of the manufactured struc-

tures, we conducted continuous wave EPR experiments at a

microwave frequency of 9.8 GHz on a commercial Bruker

ESP 300 spectrometer equipped with a TE011 super high Q

microwave resonator. The defect density was calculated

based on a calibrated spin-counting procedure.22 The effec-

tive material volume of the prepared structures was calcu-

lated, by constructing a 3-dimensional geometrical model

from the cross-sectional TEM and SEM data.23 The optical

characteristics of the prepared microhole arrays were ana-

lyzed by performing absorption measurements on a Perkin

Elmer Lambda1050 UV-VIS spectrometer with an integrat-

ing sphere, with the sample being mounted inside the sphere

inclined at an angle of 10� to the incoming light beam.

IV. CORRELATION BETWEEN STRUCTURAL,
ELECTRONIC AND OPTICAL PROPERTIES

Figure 2 shows cross-sectional TEM images of a Si

cone grown on a sol-gel template with tips with slanted

flanks (Fig. 1(b)), and a tapered microhole structure (MH-

planar) based on a sol-gel template with exclusively cylindri-

cal features with normal angles (Fig. 1(e)), respectively.

While the Si in cones is comprised of nanocrystalline rods in

proximity to the interface (Fig. 2(a)), the tapered microhole

arrays perforating a planar Si layer (MH-planar) exclusively

consists of compact Si with a well-defined Si/air interface

(Fig. 2(b)). The structural features of the Si architectures are

in conformity with the growth characteristics of the physical

vapor deposition of Si at inclined incidence.17,18 While Si

deposited at normal incidence has a compact structure, the

density of the Si progressively decreases, as the angle of

incidence increases, leading to porous structure consisting of

individual columns.

Figure 3 depicts the total spin concentration Ns as a func-

tion of the period of the prepared arrays. The gray bar high-

lights the reference value Ns¼ (1.2 6 1.0) � 1016 cm�3 for

simultaneously processed planar polycrystalline Si layers on

glass, which is in accordance with the defect concentration in

state-of-the-art solid phase crystallized Si material. Structures

featuring defect-rich porous Si cones exhibit a defect concen-

tration above (9 6 2) � 1016 cm�3, exceeding the defect level

of a planar reference by one order of magnitude. Tapered

microhole arrays in a structured base layer (MH-structured)

were found to have a defect concentration in the 1017 cm�3 re-

gime, as well. However, periodically arranged tapered

FIG. 2. (a) Cross-sectional TEM micrograph of a cone grown on a sol-gel

template with tips with slanted flanks (Fig. 1(b)). (b) TEM micrograph of a

tapered microhole structure (MH-planar) based a sol-gel template with

exclusively cylindrical features with normal angles (Fig. 1(e)). The cone in

part (a) is additionally covered with a 40 nm thick intrinsic amorphous

hydrogenated Si layer.

FIG. 3. Total spin concentration Ns as a function of the Si structure period in

comparison to a planar reference. The gray bar indicates the benchmark of a

planar poly-Si thin film with Ns¼ 1 � 1016 cm�3.

173513-3 Sontheimer et al. J. Appl. Phys. 114, 173513 (2013)
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microholes in a planar base (MH-planar) with a period of

2.3 lm, 4.5 lm, and 8.8 lm yield a defect concentration of

(2.7 6 1.5) � 1016 cm�3, (1.9 6 1.8) � 1016 cm�3, and (1.8

6 0.7) � 1016 cm�3, respectively. These values resemble

defect concentrations of planar Si layers on glass.

Consequently, on the basis of an imprint structure with cylin-

drical tips on a planar sol-gel layer, we can design periodically

structured Si with high electronic quality. The fact that the

measured defect concentration is independent of the period of

the structure, i.e., of the respective surface-to-volume ratio,

confirms that interface-related defects have a negligible con-

tribution to the total defect concentration. The high defect

concentration of the microhole arrays in structured Si

(MH-structured) and architectures with cones is ascribed to

the growth characteristics of physical vapor deposition of sili-

con at intermediate angles of incidence, at which Si crystalli-

zes but still retains the porous structure (Fig. 2(a)).

Figure 4 shows absorption spectra in the long wave-

length and sub-band gap region of microhole arrays in struc-

tured Si (MH-structured) with a 2 lm period with Ns¼ (9

6 1) � 1016 cm�3, microhole arrays (MH-planar) with high

electronic quality with Ns¼ (2.7 6 1.5) � 1016 cm�3 with

2.3 lm-periodic pattern and a planar reference (Ns¼ (1.2

6 1.0) � 1016 cm�3) with an equivalent effective Si volume.

The experimentally observed absorption beyond 1130 nm is

caused by defect absorption, which is additionally amplified

by the light path enhancement (LPE) provided by the struc-

tures. This detected optical sub-band gap absorption is in

agreement with the trend of the defect concentration meas-

ured by EPR. Whereas a high Ns¼ (9 6 1) � 1016 cm�3 cor-

responds to a high absorption at 1150 nm of 5%, the low

Ns¼ (2.7 6 1.5) � 1016 cm�3 of the MH-planar structure

corresponds to a sub-band gap absorption which is similar to

the absorption of the planar reference. The low sub-band gap

absorption of the microhole arrays in a planar Si film is cor-

related with low dielectric losses in the near infrared region.

Such low absorption properties are not only a crucial

prerequisite for high-quality photovoltaic devices, but are

also required for application in silicon based photonic crystal

and photonic circuit fabrication, as high quality factor modes

can only be achieved using low-loss materials.10,24

V. 3-DIMENSIONAL FEM SIMULATIONS

To establish a bottom-up approach for an electro-optical

design optimization, we complemented the experimental

analysis of the tapered microhole arrays in a planar base

layer (MH-planar) with 3-dimensional FEM simulations

based on optical parameters of crystalline Si and a 3-

dimensional geometrical model, which was constructed from

cross-sectional SEM and TEM images.23 As in our previous

publications,23,25 we employ the finite element software

JCMsuite26 for solving the time-harmonic Maxwell’s equa-

tions on space discretized geometrical models, with the ad-

aptation that we incoherently couple a glass layer to the

finite element model of the silicon structures. This coupling

allows us to estimate light trapping effects within the sub-

strate layer and has proven beneficial for the prediction of

experimental results. For the illumination conditions and the

scatterer studied here, this modification was not very impor-

tant for obtaining a satisfying comparability to the experi-

mentally measured absorptance. A maximum absorption of

only 7% at 900 nm wavelength stems from multiple passes

inside the finite substrate layer. Figure 5 illustrates the exper-

imental and simulated optical absorption spectra of micro-

hole arrays. The simulated results obtained for a plane wave

light source at normal incidence from the coated side of the

substrate are in perfect accordance with the experimental

absorption up to 1050 nm. The less pronounced interference

patterns in the measured absorption spectrum in comparison

to the simulated spectrum might be ascribed to slight irregu-

larities of the structure and to averaging effects due to the

band width of the monochromator used in the experimental

setup. On the basis of the experimentally derived design pa-

rameters for high-quality microhole arrays, 3-dimensional

FEM simulations allow us to predict a structure with opti-

mized optical properties. The simulated optical design can

FIG. 4. Optical absorption spectra of defect-rich Si microhole arrays in a

structured base layer with a 2 lm period (blue) and high-quality tapered

microhole arrays in a planar base layer as a function of the wavelength of

the incident light in comparison to a planar reference (gray).

FIG. 5. Measured and simulated optical absorption of high-quality tapered

microhole arrays with a 2.3 lm period.
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finally be used to manufacture tapered microhole arrays with

optimal opto-electronic properties.

VI. CONCLUSION

We correlated the structural and optical properties with the

deep-level defect characteristics of tailored Si microhole arrays

on nanoimprinted glass. On the basis of this experimental anal-

ysis complemented with FEM simulations, we were able to

reveal the structure opto-electronic function relationship in

novel scalable Si microhole arrays. Tailored polycrystalline Si

layers perforated with periodic arrays of tapered microholes

(MH-planar) consist of exclusively compact crystalline Si and

exhibit a defect concentration which is equivalent to a state-of-

the-art planar reference sample in the low 1016 cm-3 regime.

These electronic parameters are in accordance with the optical

sub-band gap absorption. The optical absorption of the micro-

hole arrays with a 2.3 lm pitch at wavelengths from the visible

range up to 1000 nm shows an excellent agreement with

3-dimensional Finite Element Method simulations. However,

the impact of our study goes even beyond this important result.

The presented analyses and implemented simulation tools pro-

vide the basis for a predictive computer-aided approach for the

design of novel structures featuring tunable opto-electronic

properties. The presented approach is not limited to the design

of light harvesting structures in next-generation solar cells, but

may be used to tailor large-area 2D photonic crystal wave-

guides with low-loss propagation in the telecommunication

wavelength regime.
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