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Abstract

Arbuscular mycorrhizal (AM) fungi are ubiquitous symbionts of higher plants in terrestrial ecosystems, while the occurrence
of the AM symbiosis is influenced by a complex set of abiotic and biotic factors. To reveal the regional distribution pattern
of AM fungi as driven by multiple environmental factors, and to understand the ecological importance of AM fungi in
natural ecosystems, we conducted a field investigation on AM fungal abundance along environmental gradients in the arid
and semi-arid grasslands of northern China. In addition to plant parameters recorded in situ, soil samples were collected,
and soil chemo-physical and biological parameters were measured in the lab. Statistical analyses were performed to reveal
the relative contribution of climatic, edaphic and vegetation factors to AM fungal abundance, especially for extraradical
hyphal length density (HLD) in the soil. The results indicated that HLD were positively correlated with mean annual
temperature (MAT), soil clay content and soil pH, but negatively correlated with both soil organic carbon (SOC) and soil
available N. The multiple regressions and structural equation model showed that MAT was the key positive contributor and
soil fertility was the key negative contributor to HLD. Furthermore, both the intraradical AM colonization (IMC) and relative
abundance of AM fungi, which was quantified by real-time PCR assay, tended to decrease along the increasing SOC content.
With regard to the obvious negative correlation between MAT and SOC in the research area, the positive correlation
between MAT and HLD implied that AM fungi could potentially mitigate soil carbon losses especially in infertile soils under
global warming. However, direct evidence from long-term experiments is still expected to support the AM fungal
contribution to soil carbon pools.
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Introduction

Arbuscular mycorrhizal (AM) fungi are ubiquitous symbionts of

higher plants and important components of most terrestrial

ecosystems [1]. AM fungi can efficiently take up mineral nutrients,

especially phosphate, from soil, and then deliver them to the host

plant; in exchange, 4–20% of plant photosynthates are directly

transferred from plant to AM fungi to support development of the

symbiosis [1]. Therefore, these symbiotic soil fungi are recognized

as critical links between the above- and belowground parts of

ecosystems [2].

The occurrence of the AM symbiosis is influenced not only by

host plant species, but also by the environmental factors, such as

temperature [3], pH [4,5], and soil fertility [6]. The influences of

particular environmental factor on AM fungi have been exten-

sively examined by quantifying root colonization, hyphal length

density or spore density in soil along environmental gradients at

different scales, including aridity [7], salinity [8], nutrient [9], land

degradation [10] and temperature [3] gradients. For instance,

Heinemeyer and Fitter (2004) demonstrated that higher temper-

ature could stimulate colonization of AM fungi on host plants and

development of extraradical mycelium [11]. As commonly

recognized, AM fungi facilitate plant acquisition of limited soil

resources; AM plants would therefore be more abundant in

ecosystems with less available soil nutrients [6]. On the other

hand, soil pH was reported to be a key factor influencing the

abundance and distribution of soil fungi and bacteria [12]. Positive

correlation between soil pH and root colonization by AM fungi

was recorded in both acid and alkaline soils under low available

phosphate conditions [4,13–14]. However, despite of established

relationships between AM fungal occurrence and particular

environmental factors, few studies to date have examined the

effects of multiple environmental factors on AM fungal abundance

in a natural ecosystem.

AM fungi promote the growth of host plants, by means of

providing mineral nutrients and water [15,16] and up-regulating

photosynthesis [17]. In this way, AM fungi are also involved in soil

carbon cycling, as plant photosynthates are the original source for
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soil carbon pools, and better plant growth would subsequently lead

to more carbon input into soil ecosystem. Moreover, extraradical

mycelium (ERM) of AM fungi and their products (including

glomalin-related soil protein, GRSP) could potentially stimulate

soil aggregation [18], while the soil aggregates would provide

protection for organic carbon from rapid degradation by microbes

[18]. Several studies revealed that soil warming could promote

ERM development [19,20]. AM fungi are therefore supposed to

increase carbon inputs to soil carbon pool under climatic warming.

However, Rillig et al. [19] reported that GRSP content and soil

aggregate stability decreased under higher temperature, despite of

increasing ERM abundance, which would potentially lead to a

reduction in soil carbon sequestration. Obviously, more systematic

investigation is required to reveal the relationship between AM

fungal abundance and soil carbon sequestration along environ-

mental gradients.

In the present study, the arid and semi-arid grasslands of

northern China were selected as target research area. We chose

this area mainly for two reasons: (1) the area exhibits high

variations in multiple environmental factors, including tempera-

ture and precipitation; (2) the soils in this area are generally

nutrient-poor, therefore the native plants are expected to be highly

dependent on mycorrhizal symbioses, and AM fungi thus could

play key roles in ecosystem processes. We recorded plant

parameters in situ and collected soil samples along climatic

gradients, and then AM fungal parameters and key soil chemo-

physical properties, including SOC and soil particle-size, were

analyzed in the lab. Statistical analyses were performed to quantify

the relative contribution of climatic, edaphic and vegetation

factors to AM fungal abundance, and also to reveal the

relationships between AM fungal parameters and SOC across

environmental gradients. The study therefore aimed at revealing

the regional distribution pattern of AM fungi as driven by multiple

environmental factors, and also at uncovering the ecological

importance of AM fungi in natural ecosystems

Materials and Methods

2.1. Description of the study area and soil sampling
The study area represents sylvosteppe, typical steppe and desert

steppe from east to west in northern China (Fig. 1). It is situated in

the semi-arid and arid zone and covers a total area of

440 000 km2. Data of mean annual temperature (MAT) and the

mean annual precipitation (MAP) (40 years from 1969 to 2009)

were obtained from China Meteorogical Data Sharing Service

System (http://cdc.cma.gov.cn/). The climatic data of sampling

sites were generated from 64 climatic stations across the study

region using the Kriging interpolation. MAT in the study area

ranged from 2.8uC to 9.6uC, and MAP ranged from 281 mm to

534 mm. Approximately 80% of the precipitation occurs from

May to September, while the growing season extends from late

April to October. Vegetation of the region predominantly consists

of grasses such as Leymus chinensis, Setaria viridis, Tribulus terrestris,

Cenchrus incertus, Lespedeza davurica, Artemisia capillaries, Carex humilis,

Carex onoei and Chloris virgata.

Fifty sampling sites were arranged based on the random

stratified design from thirty-one sampling grids, which were

generated by the overlap map of temperature and precipitation

data in the study area using ArcGIS. Each sampling site was

picked based on where the vegetation was minimally disturbed by

human activities, such as grazing. Five 1*1 m2 (quadrats) within an

area of 100 m2 were designated at each site for recording plant

parameters including plant species and coverage. Fifteen soil cores

(3 cm in diameter and 15 cm in depth) were sampled from

random locations within the 100 m2 sampling plot and thoroughly

mixed into one composite soil sample after vegetation cover and

litter removal. The field study did not involve any privately-owned

land or protected area of land (such as national park), and the

sampling did not involve any endangered or protected species.

Therefore, no specific permits were required for the described field

studies.

The field investigation and soil sampling were performed in

August, as most plant species reach the peak biomass during this

period of a year. Soil samples were stored in polyethylene bags in a

refrigerated box at 4uC. After transportation to the laboratory, the

soil samples were passed through 2 mm mesh to remove plant

debris, thoroughly homogenized and separated into two subsam-

ples. One subsample was frozen at 280uC for molecular analysis,

another was air-dried for analysis of soil chemo-physical proper-

ties, extraradical AM hyphae and glomalin-related soil protein

fractions. At the same time, fresh roots were manually collected

from the soil samples for measuring AM fungal colonization.

2.2. Soil physical and chemical properties
Soil pH was measured in a 1:2.5 (v/v) soil:water suspension with

a digital pH meter (PHS-3C, Shanghai Lida Instrument Compa-

ny, China). SOC was determined by the Walkley-Black dichro-

mate oxidation procedure [21]. Soil available phosphorus was

measured according to the method described by Olsen et al. [22].

Soil available nitrogen was measured by an alkaline hydrolysis

method [23]. Soil particle-size was analyzed by a laser diffraction

technique using a Longbench Mastersizer 2000 (Malvern Instru-

ments, Malvern, England). Before sample analysis, soil organic

matter was destroyed with H2O2 (30%, w/w) at 72uC and sodium

hexametaphosphate, following by sonication for 30 s to disperse

aggregates. Three parallel measurements were performed for each

soil sample to minimize the experimental errors.

The data of soil particle-size were fractionated into clay (0–

2 mm), silt (2–50 mm) and sand (50–2000 mm) according the

classification system of U.S. Department of Agriculture (USDA).

Soil particle size distribution (PSD) was also characterized by the

volume fractal dimension value (D value), which is calculated by

using the following formula [24]:

V (rvRi)

VT

~
Ri

Rmax

� �3{D

Where r represents the particle size, Ri represents the particle size

of grade i in the particle size grading, V(r,Ri) represents the

volume of soil particles with a diameter less than Ri, VT represents

the total volume of the soil particles, Rmax represents the largest

particle diameter of the soil. The soil particle sizes from 0 to

2000 mm were divided into 64 classes using the software package

of the laser particle analyzer.

2.3. Glomalin-related soil proteins
Two GRSP pools were extracted from soil samples following the

modified methods as described by Wright and Upadhyaya [25]. In

brief, 0.5 g of soil samples were autoclaved at 121uC for 30 min in

4 ml of 20 mM citrate buffer (adjusted to pH = 7.0) and the

collected supernatant was defined as easily extractable GRSP (EE-

GRSP). Moreover, 0.5 g of soil samples was extracted at 121uC for

1 h in 4 ml of 50 mM citrate buffer (adjusted to pH = 8.0). The

extraction process was repeated three times until the supernatant

was almost clear or showing a light yellow color, and the collected

supernatant was defined as total GRSP (T-GRSP). The protein

AM Fungal Abundance along Environmental Gradients
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concentration was determined by the Bradford assay using bovine

serum albumin as standards.

2.4. Quantification of AM fungal intra- and extraradical
colonization

Subsamples of fresh roots were cleared with 10% KOH and

stained with Trypan blue following a modified procedure

described by Phillips and Hayman [26], omitting phenol from

solutions and HCl from the rinse. Thirty randomly selected 1 cm

root segments were examined for intraradical AM colonization at

2006 magnification according to Trouvelot et al. [27]. Quanti-

fication of extraradical colonization followed the modified

membrane filter protocol of Jakobsen et al. [28]. In brief, duplicate

4 g soil sample were blended with 250 ml water and hyphae in

5 ml aliquots were collected on 25 mm membrane filters (1.2 mm

pore size) and stained with Trypan blue. Hyphal length was

recorded in 25 random fields of view per filter. The length of

stained hyphae on the filters was determined by the grid line

intercept method at 6200 magnification [29]. Hyphal length of

each soil sample was measured with six replicates.

2.5. Extraction of soil DNA, primer specificity testing and
quantitative PCR analyses

Microbial DNA was extracted from 0.5 g soil, using a Fast DNA

SPIN kit for soil samples (Bio 101, La Jolla, Calif.) according to

manufacturer’s instructions. Real-time PCR assays were conduct-

ed on an iQ5 real-time detection system (Bio-Rad Laboratories

Hercules, CA). Each 25 ml amplification reaction contained the

following reagents: 12.5 ml 26SYBR Premix Ex Taq (Takara),

1 ml of each primer (5 mmol/ml), 1 ml template DNA (20 ng/ml),

and 10.5 ml H2O. The primer pair ITS1F(59-TCCGTAGGT-

GAACCTGCGG-39) and 5.8 s (59-

CGCTGCGTTCTTCATCG-39) was adopted in PCR for all

fungal groups, and the PCR procedures were as follows: 30 s at

95uC, followed by 40 cycles at 95uC for 5 s, 30 s at 53uC for

annealing, and 72uC for 45 s [30]. The primer pair AMV4.5NF

(59-AAGCTCGTAGTTGAATTTCG-39) and AMDGR (59-

CCCAACTATCCCTATTAATCAT-39) was used for PCR

amplification of AM fungal group. This primer pair was chosen

because of a suitable target sequence (300 bp) and broad

amplification spectrum of AM fungi. It was shown by a

pyrosequencing approach to amplify the four AM fungal orders

of Archaeosporales, Diversisporales, Glomales and Paraglomerales from the

soil samples [31,32]. The PCR procedures for AM fungi were as

follows: 30 s at 95uC, followed by 40 cycles at 95uC for 5 s, 30 s at

58uC for annealing, and 72uC for 45 s.

To identify specificity of the primer pairs AMV4.5NF/

AMDGR for our soil samples, three randomly selected PCR

products were selected to construct a mini-library for sequencing.

Around 20 randomly selected positive plasmids from each sample

were sequenced and then compared with sequences in the NCBI

nucleotide database. .70% sequences were identified as the AM

fungal taxa in each sample, which confirmed the high specificity of

the primer pairs. Amplified products were purified using DNA

purification system columns (Promega) and ligated into pGEM-T

Easy vector according to the manufacturer’s instructions. Positive

recombinant bacterial clones were identified by Colony PCR using

the vector-specific T7/SP6 primers. Standard curves were

generated using a 10-fold serial dilution of the standard plasmid

containing the target region amplified by the fungal group and

AM fungal primers respectively. A melting curve was performed to

confirm the size of specific PCR products. Real-time PCR data

collection and the analysis were conducted by iQ5 optical system

software v1.0 (Bio-Rad Laboratories, Hercules, CA). The real-time

PCR assays were performed in triplicates

Figure 1. Sampling sites in the arid and semi-arid grasslands of northern China. Data obtained from the National Fundamental Geographic
Information System (NFGIS, http://ngcc.sbsm.gov.cn/), maps edited using ArcGIS9.3 (ESRI, Redlands, CA, USA).
doi:10.1371/journal.pone.0057593.g001
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2.6. Statistical analysis
Mean values of the measurements were used for statistical

analysis. Simple and multiple linear regression models were

employed to evaluate the effects of environmental variables on the

HLD of AM fungi. All data for stepwise regression analysis were

log(X+1) transformed to meet assumptions of normality, except for

soil pH, which was in logarithmic form. Four procedures of stepwise

regression were tested against climatic variables, plant variables, soil

variables and all variables in combination, respectively. Because of

the high collinearity between clay and sand in the soil particle-size

data (clay, silt and sand), just clay and silt were picked for the

stepwise regression analysis. Pearson correlation analysis was also

applied to elucidate the relationships between AM fungal param-

eters and SOC and MAT, these statistical analyses were performed

using the SPSS16.0 software package for windows (version 13.0,

SPSS Inc, US). An a priori structural equation model (SEM) was

applied to test for direct and indirect effects of climate, plant

coverage, soil particle size distribution and soil fertility on the HLD

according to hypothesized causal relationships (see Fig. 2), using the

Amos 17.0 software package (Smallwaters Corporation, Chicago,

IL, USA). To simplify the model interpretation, we performed some

data reduction by using synthetic variables. Soil fertility index (SFI)

and soil particle size distribution (PSD) were used to represent the

soil chemo-physical properties. SFI was a synthetic variable derived

from the first axis of the principal component analysis (PCA) of soil

organic carbon, available phosphorus and available nitrogen; the

99.6% of the variation explained by the first axis in the total suite of

soil nutrient (SOC, AN, AP) indicated that this index was a suitable

representation of soil fertility. The principal component analysis was

performed using CANOCO 4.5 for Windows [33]. P-values and x2

values were used to test the structural equation model fit, high P-

values (P.0.05) and small x2 values indicate that the data fit the

model well. The goodness-of-fit index (GFI) [34] and the root mean

square error of approximation (RMSEA) were also reported

considering that the x2 value is usually influenced by sample size.

A GFI value higher than 0.9 and a RMSEA value lower than 0.07

suggest that the model shows a significant fit [34].

Results

3.1. Variation of environmental factors and AM fungal
parameters

The minimum, maximum, mean and coefficient of variation

(CV) of environmental factors (climatic, plant and soil variables)

and AM fungal parameters across all soil samples are displayed in

Table 1. Most of the climatic, plant and soil variables exhibited

high spatial variation in the study area, and the CV values ranked

as follows across all examined environmental variables: SOC

(86%).Available N (81%).Available P (52%).Plant richness

(50%).Clay (46%).Silt (41%).Sand (40%).Plant coverage

(34%).Plant Simpson index (31%).MAT (23%).MAP

(12%).pH (9%).

3.2. Effect of environmental characteristics on the
extraradical AM hyphae

Both simple and multiple linear regression models were used to

assess the relationship between HLD and observed environmental

variables. Simple regression showed that HLD increased with

increasing MAT, clay content and soil pH, while decreased with

increasing SOC and soil available N (Table 2). Stepwise multiple

regression model based on all observed environmental variables

also identified significant influences of MAT, clay, and soil

available N, and among which MAT was the most significant

explanatory variable (Table 3).

The structural equation model was used to assess the extent of

direct and indirect effects of environmental factors on HLD

(Fig. 2). The model exhibited a reasonable fit based on our

hypothesis (x2 = 3.43, df = 4, P = 0.49, GFI = 0.98,

RMSEA,0.001) and it could explain 50% of the variance in

the biomass of AM fungal mycelium. The causal model showed

that HLD increased with increasing MAT and PSD, while it

decreased with increasing soil fertility. The path coefficients (l) for

direct and indirect effects on HLD are displayed in Table 4.

3.3. Relationships between AM fungal parameters, SOC
and MAT

In order to better understand the relationship between AM

fungi and soil carbon, a set of AM fungal parameters were

examined for their relationship with SOC using Pearson

correlations. The results showed that HLD negatively correlated

with SOC. Although no significant correlation was found between

intraradical AM colonization and SOC, most of the high values of

AM colonization appeared in lower SOC soils (Fig. 3A, B).The

ratio of the AM fungi to total soil fungi gene copy number was

calculated to show the relative abundance of AM fungi using a

quantitative PCR assay. The ratios of gene copy number

decreased with increasing SOC content (Fig. 3E). However, EE-

GRSP and T-GRSP increased with increasing SOC contents

(Fig. 3C, D). Although HLD and MAT showed a positive

correlation, no significant correlations were found between the

intraradical AM colonization, relative abundance of AM fungi and

MAT (Fig. 4A, B, E). Both EE-GRSP/SOC and T-GRSP/SOC

positively correlated with MAT (Fig. 4C, D). The obvious negative

correlation between SOC and MAT was also observed in the

study area (Fig. 4F).

Discussion

Different studies suggested different environmental factors,

including live fine root length [35], soil pH [14], nitrogen content

[36], or precipitation [37], as main drivers of AM fungal

abundance. Similar to a previous investigation [14], in our study

significant relationships were also observed between HLD and soil

pH, clay content, SOC, available N and MAT, highlighting that

likely a complex set of multiple environmental factors affect ERM

biomass. Many studies, typically under controlled conditions,

demonstrated that higher temperature could stimulate the

development of AM fungal mycelium. For example, Gavito et

al. (2005) reported that the growth of ERM directly responded to

temperature and was independent on the plant roots in a

mycorrhizal Ri T-DNA transformed root system [38]. Artificial

climate warming study in the field also supported the positive

effect of temperature on AM fungal development [19]. In our

study, MAT as the key factor positively influenced HLD,

suggesting that AM fungi could sensitively respond to climate

changes at a regional scale.

The D value, which characterizes soil particle size distribu-

tion with higher D value representing lower content of sand

[24], significantly affected HLD in this study. It suggested that

the soil physical parameter could also stand as a key factor

influencing the ERM development. A previous study showed

that sandy soil is favorable to AM fungi due to better soil

aeration [39], which implies that a negative relationship may

exist between D value and HLD. However, a contrary

relationship was found in this study. A possible explanation

could be that most of the soils sampled from the research area

are highly sandy (soil sand content average 50.3%) and could

provide well-aerated condition throughout, so that relatively

AM Fungal Abundance along Environmental Gradients
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higher sand content did not necessarily lead to better aeration

but lower water holding capacity (WHC). As is generally

appreciated, water basically drives primary productivity in the

arid and semi-arid ecosystems [40]; as a result lower WHC of

the soil (higher D value) would be disadvantageous for plant

growth and AM fungal development.

Figure 2. The structural equation model (SEM) showing the hypothesized causal relationships between environmental factors and
HLD. Width of arrows indicates the strength of the standardized path coefficient, solid lines indicate positive path coefficients and dashed lines
indicate negative path coefficients, R2 values represent the proportion of variance explained for each endogenous variable. ***P,0.001; **P,0.01; *
P,0.05.
doi:10.1371/journal.pone.0057593.g002

Table 1. Minimum, maximum, means and coefficient of variation (CV) of climatic, edaphic, vegetation and AM fungal parameters
in the arid and semi-arid grasslands of northern China (n = 50).

Variable Minimum Maximum Mean CV

Climatic MAT (uC) 2.8 9.6 7.1 0.23

MAP (mm) 281 534 401 0.12

Edaphic pH 6.1 10 8.1 0.09

SOC (mg g21 dry soil) 0.86 46 13 0.86

Available P (mg kg21 dry soil) 0.87 11 3.1 0.52

Available N (mg kg21 dry soil) 8.4 259 70 0.81

Clay (%) 0.02 8.2 3.7 0.46

Silt (%) 5.4 74 46 0.41

Sand (%) 18 96 50 0.40

Vegetation Plant richness 2.2 25 10 0.50

Plant coverage (%) 0.12 1.0 0.61 0.34

Plant Simpson index 0.85 3.6 2.2 0.31

AM fungi Extraradical AM hyphae (m g21 dry soil) 0.75 9.8 3.7 0.58

Intraradical AM colonization (%) 2.1 68 31 0.52

Ratio of AMF/Fungi copy number 0.02 0.15 0.06 0.50

EE-GRSP(g kg21 dry soil) 0.25 1.3 0.75 0.36

T-GRSP(g kg21 dry soil) 0.30 6.0 2.6 0.58

EE-GRSP/SOC (%) 0.02 0.37 0.1 0.80

T-GRSP/SOC (%) 0.12 0.41 0.24 0.29

doi:10.1371/journal.pone.0057593.t001
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Soil nutritional status could stand as another key factor

mediating the mutualistic function of mycorrhizal symbioses [6].

In low N or P soils, plant could allocate more carbon to AM fungi

and maintain a close symbiotic relationship [41]. On the contrary,

in conditions where plants could easily access N and P nutrients in

fertile soil, the plant would rely less on the mycorrhizal pathway,

and reduce carbon allocation to the symbiosis, as a result, a decline

in biomass of AM fungi would be expected [42]. A previous field

study carried out in the mesic to semiarid grasslands demonstrated

that N fertilization decreased IMC and HLD [36], the meta-

analysis also showed that N and P fertilization resulted in

decreased mycorrhizal biomass [43]. Similar results obtained in

the present study that soil fertility negatively affected HLD

provided further evidences to support such a hypothesis. However,

some earlier studies showed that N fertilization stimulated AM

colonization under P deficiency with the opposite effect under

sufficient P supply [36,44]. It was suggested that the N/P ratio in

soil could also mediate the development of mycorrhizal symbioses.

In this study, we did not consider the N/P ratio as the soils in this

region generally presented N and P co-limited situations and

available N and available P were highly correlated (r = 0.643).

As compared to many other studies, we adopted a combination

of five AM related parameters to comprehensively assess the

relationships between AM fungi and SOC. Considering that

saprotrophic fungi act as decomposers in fungal communities [45]

while AM fungi are symbiotic and can stimulate soil carbon

sequestration [18], higher relative abundance of AM fungi would

potentially lead to increasing soil carbon storage via the AM fungi

pathway. In this study, quantification of relative abundance of AM

fungi by the ratio of gene copy number of AM fungi to total fungi

was developed based on real-time PCR assay. A higher relative

abundance of AM fungi in the lower SOC soils was observed

(Fig. 3E), suggesting AM fungi could play more important role in

stimulating soil carbon pools in the infertile than in the fertile soil.

However, content of GRSP, which may partially consist of protein

secreted by AM fungi [25], decreased with increasing SOC. This

Table 2. Outputs from linear regressions between HLD and environmental parameters.

Dependent variables Variables F (num df, den df) Intercept (P) Regression (P) R2

HLD MAT 16.26(1, 48) 20.98(0.417) 0.67(,0.001) 0.25

MAP 0.42(1, 48) 2.01(0.453) 0.004 (0.519) 0.01

pH 5.17(1, 48) 23.69(0.266) 0.92(0.027) 0.10

SOC 11.61(1, 48) 4.82(,0.001) 20.83(0.001) 0.19

Available P 3.33(1, 48) 4.77(,0.001) 20.34(0.074) 0.06

Available N 10.11(1, 48) 4.83(,0.001) 20.02(0.003) 0.17

Clay 6.18(1, 48) 2.19(0.002) 0.42(0.016) 0.11

Silt 1.60(1, 48) 2.77(0.001) 0.02(0.212) 0.03

Sand 1.89(1, 48) 4.77(,0.001) 20.02(0.176) 0.04

Plant richness 3.19(1, 48) 4.81(,0.001) 20.11(0.080) 0.06

Plant coverage 1.14(1, 48) 4.66(,0.001) 21.51(0.291) 0.02

Plant Simpson index 0.92(1, 48) 4.67(,0.001) 20.43(0.343) 0.02

Note: Significant regressions (P,0.05) are highlighted in bold.
doi:10.1371/journal.pone.0057593.t002

Table 3. Outputs from multiple regression analysis of
climatic, edaphic and vegetation factors contributing to HLD
in the arid and semi-arid grassland of northern China.

Variable Coefficient Cumulative R2 P

Climatic factors

MAT 1.08 0.26 ,0.001

Intercept 20.35 0.14

Edaphic factors

Clay 0.64 0.11 ,0.001

SOC 20.34 0.38 ,0.001

Intercept 0.57 ,0.001

Vegetation factors

NA

All independent factors

MAT 0.65 0.26 0.026

Clay 0.42 0.34 0.001

Available N 20.20 0.40 0.022

Intercept 0.13 0.699

Note: Three independent stepwise models were constructed by restricting to
plant variables (plant richness, plant coverage, plant Simpson index), climate
variables (MAP, MAT) and soil variables (pH, SOC, available P, available N, clay,
silt). The fourth stepwise model introduced all variables (n = 50).
doi:10.1371/journal.pone.0057593.t003

Table 4. Impact of environmental factors on HLD assessed by
structural equation model (SEM) including direct, indirect and
total effect coefficients based on hypothesized causal
relationships.

Path coefficient (l)

direct path indirect path total effects

MAT 0.25 0.28 0.53

MAP 0.22 20.23 20.01

PSD 0.37 20.12 0.25

Plant coverage 20.14 0 20.14

Soil fertility index 20.47 20.04 20.51

doi:10.1371/journal.pone.0057593.t004
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was obviously inconsistent with the relationships between other

AM parameters and SOC. The possible reason could be that

GRSP, unlike the rapidly cycled AM hyphae [46], has relatively

slow turnover [47].

Nevertheless, it should be noted that previous studies have

reported a positive correlation between abundance of AM fungi

and SOC in long-term field experiments [48,49]. Indeed, a

positive relationship is likely to exist between HLD and SOC

content across a narrow SOC gradient based on the fact that the

AMF can act as a direct contributor to the soil carbon pool.

Compared with previous field experiments [48,49], the inconsis-

tent results in the present study were most likely due to a different

spatial scale: the regional scale of the research area provided large

variation in the SOC and other environmental factors. To a

certain extent, results from the long-term field experiment and our

field investigation were incomparable due to different study

conditions. Despite all, our data clearly demonstrated that AM

fungal abundance increased with the decreasing SOC content at

regional scale in the arid and semi-arid grasslands in northern

China.

In a previous study, SOC content was found to be negatively

correlated with MAT in the low temperature range (MAT#10uC)

by analyzing more than 2000 soil samples obtained from the

second soil census in China in the 1980s [50]. The significantly

negative correlation between SOC and MAT was also observed in

our study. Such results suggested that global warming could

possibly lead to a release of soil carbon to the atmosphere by

stimulating soil microbial activities and accelerating SOC decom-

Figure 3. Relationships between AM fungal parameters and SOC. (A) intraradical AM colonization and SOC; (B) extraradical AM hyphae and
SOC; (C) EE-GRSP and SOC; (D) T-GRSP and SOC; (E) AMF/fungi gene copy number and SOC.
doi:10.1371/journal.pone.0057593.g003
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position [51,52] However, as AM fungi acquire carbon from the

host plant [1] and subsequently redistribute carbon in the

mycorrhizosphere, unlike saprotrophic fungi functioning as

organic decomposers, could potentially stabilize soil carbon pools

under climate warming. Interestingly, a recent study reported that

AM fungi increased organic carbon decomposition under elevated

CO2 by stimulating saprotrophs [53], however, such results did

not mean AM fungi could cause soil carbon losses, as the authors

examined only freshly added plant residuals in a short-term

experiment [54]. Furthermore, the balance of carbon sequestra-

tion and decomposition mediated by the interaction of AM with

saprotrophic fungi also depends on organic matter quality [54].

Considering that the activity of saprotrophic fungi and bacteria

could be quite low in soils with limited carbon resource [55], the

relatively higher AM fungal abundance in lower SOC soils implied

that they could increase SOC content directly via hyphal turnover

and release of GRSP [18]. More importantly, AM fungi could

significantly increase the host plant productivity in infertile soil

than in the fertile soil [6], this would also largely increase the

carbon deposition from plant to soil. With regard to the obvious

negative correlation between MAT and SOC in the research area,

the increased HLD with the increasing MAT suggested that the

AM fungi could be more important to mitigate the losses of soil

carbon in the infertile soil under higher temperature.

In conclusion, in the present study we investigated AM fungal

abundance at a regional scale in the arid and semi-arid grasslands

of northern China. Both climatic and edaphic factors were found

to influence AM fungal abundance, while MAT was shown to be

the main positive driving factor, and soil fertility the main negative

factor for EMH development. The relationships between AM

Figure 4. Relationships between AM fungal parameters, SOC and MAT. (A) intraradical AM colonization and MAT; (B) extraradical AM
hyphae and MAT; (C) EE-GRSP/SOC and MAT; (D) T-GRSP/SOC and MAT; (E) AMF/fungi gene copy number and MAT; (F) SOC and MAT.
doi:10.1371/journal.pone.0057593.g004

AM Fungal Abundance along Environmental Gradients

PLOS ONE | www.plosone.org 8 February 2013 | Volume 8 | Issue 2 | e57593



fungal parameters (IMC, HLD, and AM relative fungal abun-

dance), MAT and SOC suggested that AM fungi could potentially

play a key role in soil carbon sequestration especially in infertile

soils under global warming. It is of critical importance to perform

long-term monitoring of AM fungal abundance and SOC to reveal

the AM fungal contribution to soil carbon pool under simulated

warming conditions.
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12. Rousk J, Bååth E, Brookes P, Lauber C, Lozupone C, et al. (2010) Soil bacterial

and fungal communities across a pH gradient in an arable soil. ISME J 4: 1340–
1351.

13. Soedarjo M, Habte M (1995) Mycorrhizal and nonmycorrhizal host growth in
response to changes in pH and P concentration in a manganiferous oxisol.

Mycorrhiza 5: 337–345.

14. Cai XB, Qian C, Peng YL, Feng G, Gai JP (2005) Effects of environmental

factors on AM fungi around steppe plant roots in Tibet Plateau. Chin J Appl
Ecol 16: 859–864 (in Chinese).

15. Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate

phosphate supply to plants irrespective of growth responses. Plant Physiol 133:

16–20.
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33. Ter Braak CJF, Šmilauer P (2002) Canoco reference manual and CanoDraw for

Windows user’s guide: software for canonical community ordination. Version

4.5. Ithaca, New York: Microcomputer Power.

34. Hooper D, Coughlan J, Mullen MR (2008) Structural equation modelling:

guidelines for determining model fit. Electron J Bus Res Methods 6: 53–60.

35. Treseder KK, Cross A (2006) Global distributions of arbuscular mycorrhizal

fungi. Ecosystems 9: 305–316.

36. Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003)

Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid

grasslands. Ecology 84: 1895–1908.

37. Bohrer G, Kagan-Zur V, Roth-Bejerano N, Ward D (2001) Effects of

environmental variables on vesicular-arbuscular mycorrhizal abundance in wild

populations of Vangueria infausta. J Veg Sci 12: 279–288.

38. Gavito ME, Olsson PA, Rouhier H, Medina-Penafiel A, Jakobsen I, et al. (2005)

Temperature constraints on the growth and functioning of root organ cultures

with arbuscular mycorrhizal fungi. New Phytol 168: 179–188.

39. Gaur A, Adholeya A (2000) Effects of the particle size of soilless substrates upon

AM fungus inoculum production. Mycorrhiza 10: 43–48.

40. Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, et al. (2008) Primary production

and rain use efficiency across a precipitation gradient on the Mongolia plateau.

Ecology 89: 2140–2153.

41. Read DJ (1991) Mycorrhizas in ecosystems-Nature’s response to the ‘Law of the

minimum.’ In: Hawksworth DL. Frontiers in mycology. Wallingford (United

Kingdom): CAB International. pp.101–130

42. Treseder KK, Allen MF (2002) Direct N and P limitation of arbuscular

mycorrhizal fungi: a model and field test. New Phytol 155: 507–515

43. Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen,

phosphorus, and atmospheric CO2 in field studies. New Phytol 164: 347–355.

44. Liu A, Hamel C, Hamilton RI, Smith DL (2000) Mycorrhizae formation and

nutrient uptake of new corn (Zea mays L.) hybrids with extreme canopy and leaf

architecture as influenced by soil N and P levels. Plant Soil 221: 157–166.

45. Jennings DH (1995) The physiology of fungal nutrition. Cambridge, UK:

Cambridge University Press.

46. Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of

hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science

300: 1138–1140.

47. Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation.

Can J Soil Sci 84: 355–363.

48. Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil

aggregation and carbon sequestration are tightly correlated with the abundance

of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol

Lett 12: 452–461.

49. Gryndler M, Larsen J, Hrselova H, Rezacova V, Gryndlerova H, et al. (2006)

Organic and mineral fertilization, respectively, increase and decrease the

development of external mycelium of arbuscular mycorrhizal fungi in a long–

term field experiment. Mycorrhiza 16: 159–166.

50. Zhou T, Shi PJ, Wang SQ (2003) Impact of climate change and human activities

on soil carbon storage in China. Acta Geog Sin 58: 727–734 (in Chinese).

51. Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, et al. (2002) Soil warming

and carbon-cycle feedbacks to the climate system. Science 298: 2173–2175.

52. Wan YF, Lin ED, Xiong W, Li YE, Guo LP (2011) Modeling the impact of

climate change on soil organic carbon stock in upland soils in the 21st century in

China. Agr Ecosyst Environ 141: 23–31.

AM Fungal Abundance along Environmental Gradients

PLOS ONE | www.plosone.org 9 February 2013 | Volume 8 | Issue 2 | e57593



53. Cheng L, Fitzgerald LB, Tu C, Kent OB, Zhou LS (2012) Arbuscular

mycorrhizal fungi increase organic carbon decomposition under elevated CO2.
Science 337: 1084–1087.

54. Verbruggen E, Veresoglou SD, Anderson IC, Caruso T, Hammer EC, Kohler J,

Rillig MC (2013) Arbuscular mycorrhizal fungi – short-term liability but long-
term benefits for soil carbon storage? New Phytol 197: 366–368.

55. Ekschmitt K, Kandeler E, Poll C, Brune A, Buscot F, et al. (2008) Soil carbon

preservation through habitat constraints and biological limitations on decom-

poser activity. J Plant Nutr Soil Sci 71: 27–35.

AM Fungal Abundance along Environmental Gradients

PLOS ONE | www.plosone.org 10 February 2013 | Volume 8 | Issue 2 | e57593


