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Molecular-dynamics simulations are increasingly used to study dynamic properties of biological
systems. With this development, the ability of force fields to successfully predict relaxation time-
scales and the associated conformational exchange processes moves into focus. We assess to what
extent the dynamic properties of model peptides (Ac-A-NHMe, Ac-V-NHMe, AVAVA, A ) differ
when simulated with different force fields (AMBER ff99SB-ILDN, AMBER {03, OPLS-AA/L,
CHARMM?27, and GROMOS43al). The dynamic properties are extracted using Markov state
models. For single-residue models (Ac-A-NHMe, Ac-V-NHMe), the slow conformational exchange
processes are similar in all force fields, but the associated relaxation timescales differ by up to an order
of magnitude. For the peptide systems, not only the relaxation timescales, but also the conformational
exchange processes differ considerably across force fields. This finding calls the significance of
dynamic interpretations of molecular-dynamics simulations into question. © 2015 AIP Publishing
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. INTRODUCTION

Currently, molecular dynamics (MD) simulations are
arguably the only method by which the structure and the
dynamics of large molecules can be studied simultaneously
at atomistic resolution. Over the past decades, this method
has hence become an invaluable tool for the investigation
of biomolecular processes. However, the reliability of MD
simulations has always been limited by two factors: (i) the
length of the simulation which is accessible with the available
computer resources and sampling algorithms (sampling prob-
lem), and (ii) the accuracy of the potential energy function
used to calculate the forces in each MD simulation step (force
field problem).

Advances in the sampling problem have often triggered
improvements in force fields, as many force field deficiencies
only became apparent with more extensive simulations. For
example, when simulation times reached the microsecond
regime,! and with the routine use of advanced sampling
techniques, such as replica-exchange MD (REMD),>? it was
discovered that the secondary structure propensities of biomo-
lecular force fields did not match the experimental data.*
For different force fields, the a-helix conformation of overall
secondary structures in polypeptides had relative probabilities
ranging from 13% to 98%.° This suggested sizable differences
in the exploration of the Ramachandran plane across different
force fields and hence a need to reparametrize the ¢- and -
backbone torsion angles. Moreover, the rotamer distributions
of the y; side-chain torsion angles varied considerably across
force fields.>” The conformational preferences of the side
chain can in fact influence the equilibrium distribution of
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backbone torsion angles.*” The differences in the structural
distribution of individual torsion angles might explain why
force fields differ in their ability to model the S-sheet
formation® or the helix-coil transition.’'°

These findings have led to a series of reparametrizations
in all of the major protein force field families. The ¢- and y-
torsion angles were reparametrized in the OPLS-AA/L'! and
in the AMBER force field,”'?> whereas in CHARMM cmap,
a grid-based energy correction for the ¢-y plane, was intro-
duced.'>'* More recently, updated parameters for the y; torsion
angle were published for the AMBER and the CHARMM
force field families.'®!>!7 By contrast, the GROMOS force
field was reparametrized to reproduce the free enthalpies of
hydration of model compounds,'® leading to an update of
the non-bonded interactions, in particular the partial charges.
The rational behind this approach is that even when local
interactions are modeled accurately, it is the relative free en-
ergy of solvation between polar and non-polar environments
which drives processes such as protein folding (hydrophobic
collaps) or membrane formation. Most of the reparametrized
force fields exhibit a significantly improved agreement with
experimental data which reports on structural properties of
the molecule,'®?° with some force fields even reaching exper-
imental accuracy.'¢

We have now reached a point where the timescales acces-
sible by direct MD simulation permit extensive sampling of
small peptides. Thus, we can move beyond computing equi-
librium populations of conformations by means of enhanced
sampling techniques and compute the transition rates between
these conformations. In the last few years, the dynamics of
various molecular processes have been studied via extensive
simulations. Examples are the study of protein and peptide
folding using ultra-long trajectories®!>? or swarms of short
trajectories with Markov models.??>"2® Other methods which

©2015 AIP Publishing LLC
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were successfully used to explore slow processes and rare
events are the milestoning approach?’ and transition path
sampling.?®

To understand why force fields, which give rise to the
same (correct) folded state, differ in the underlying folding
dynamics, one needs to consider the experimental data used
for force field parametrization. These data are primarily of
thermodynamic nature, i.e., they are ensemble averages of an
observable O defined as

() = /X ()0, (1)

where (. . .) denotes the expectation value, 7(x) the equilibrium
probability density, and O(x) is the value of the observable
at a particular conformation x. The integral is evaluated over
the entire conformational space X. For most observables, the
integral in Eq. (1) is dominated by 7(x). The highly populated
minima in the potential energy surface have a large impact
on the observable averages, while (O) is less sensitive to the
low population in the barrier regions, and hence to the rela-
tive height of the barriers. Also, entropic effects such as the
shape and the extent of a minimum have a minor influence
of the value of the integral. By contrast, the expectation value
of dynamic properties (rates, timescale correlation functions)
additionally depends on the transition density p(x, y,7), which
isextremely sensitive to the barrier heights and entropic effects.
In other words, a parametrization against thermodynamic data
ensures that the relative free energies of the minima are correct,
but errors in the barrier heights or the shape of the minimum
are likely to go unnoticed.

Besides barrier heights, three other aspects are thought
to be decisive for an improved description of the folding dy-
namics: (i) the extent of the conformational space sampled by
the unfolded protein,>*=3! (ii) the intrinsic stability of second-
ary structure elements,” and (iii) the cooperativity between
the formation of the secondary structure elements.2’ However,
a tool is missing which allows to link these rather global
descriptors to the individual force field terms.

We suggest to use Markov state models (MSMs)**— to
characterize the dynamics induced by different force fields.
These models approximate the conformational dynamics of a
molecule as ajump process between (small) states in its confor-
mational space. The resulting transition probabilities consti-
tute the elements of the MSM transition matrix. To compare
the dynamics induced by different force fields, we extract
the dominant eigenvectors and associated eigenvalues of the
MSM transition matrix. This has several advantages over a
direct comparison of the matrix elements. First, the dominant
eigenvectors contain information on the position of the minima
and barriers of the potential energy surface, while the associ-
ated eigenvalues report on the timescale of the conformational
exchange across these barriers. These two aspects cannot easily
be disentangled when analyzing the transition probabilities
directly. Second, given a valid MSM, the eigenvectors are
independent of the lag time of the model, whereas the transition
probabilities vary with the lag time. Third, the eigenvalues can
be converted into relaxation timescales (or relaxation rates)
which are directly linked to the timescales measured in corre-
lation or pump-probe experiments.***! Finally by analyzing

J. Chem. Phys. 142, 084101 (2015)

the dominant eigenvectors, the comparison is restricted to the
slow dynamical processes of the molecule, i.e., those processes
which can be measured in experiment.

The paper is organized as follows. After a brief review of
the theory of Markov state models, we compare the dynamics
induced by various force fields on the level of a single residue
using alanine and valine examples. We use capped amino acids
(Ac-A-NHMe, Ac-V-NHMe) as minimal segments to model
the dynamics of an amino acid residue in a protein or peptide
chain.?3*2% Then, we assess whether the observed differences
in the dynamics of single residues explain the differences in
the dynamics of short peptides consisting of alanine and valine
(AVAVA, A ). A discussion of the implications of these results
on the development of new force fields can be found at the end
of this contribution.

We have chosen representatives of each of the four
major force field families, focusing on those force field
versions which have previously been used for the construction
of Markov state models: ff99SB-ILDN,!> OPLS-AA/L,'
CHARMM?27 with cmap,'®> and GROMOS43al.4”*8 Addi-
tionally, we have included the AMBER force field ff03*
because it shows a pronounced, albeit unphysical, helix-coil
transition for the peptide deca-alanine. Note that ff99SB-
ILDN differs from ff99SB only by a reparametrization of
residues isoleucine (I), leucine (L), aspartic acid (D), and
asparagin (N). The systems used in this studies do not contain
any of these residues, and hence the results of ff99SB-
ILDN should be equivalent to results which would have been
obtained with ff99SB. Parameters which could influence the
dynamics—other than the force fields—were identical in all of
the simulations (integrator, integration time step, thermostats,
constraints, etc.).

Il. THEORY

In the following, we summarize the salient points of the
theory of MSMs, which has been described in detail else-
where.333%37 In MSMs, the conformational space of a mole-
cule is discretized into N states. The dynamics in this state
space is determined by a transition matrix 7(t), whose ele-
ments represent conditional probabilities of finding the mole-
cule in a conformation which belongs to state j, given that it
was in state 7 in the previous time step

(1) = P(xpr = jlx, = 1). ()

The time step 7 of these transition probabilities is called the
lag time and is typically chosen to be much larger than the
time step of a MD simulation. Equation (2) defines a Markov
process, i.e., the probability of finding the system in state j
at time ¢ + 7 only depends on the current microstate (x, = i),
and not on the previous history of the process. The transition
probabilities #;;(7) can be estimated from MD trajectories by
counting the observed transitions from state i to state j in a
trajectory.’’

For systems with ergodic and reversible dynamics, the
transition matrix is decomposable into a complete set of real-
valued (left) eigenvectors /; and associated eigenvalues A;(7)
which are defined by
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LT(r) = M0, 3)

where /] denotes the transpose of /;. For all transition
matrices, the eigenvalue with the highest absolute value is
A1 = 1. All other eigenvalues are guaranteed to be smaller in
absolute value: |A;(7)| < 1 fori > 1. This eigendecomposition
is extremely useful because the salient characteristics of the
conformational dynamics can be understood by interpreting
the dominant (high-lying) eigenvectors of the transition matrix
and the associated eigenvalues.?’

To illustrate this, let us consider an ensemble of systems
as it relaxes from some out-of-equilibrium distribution p(0)
towards the equilibrium distribution 7. The evolution of the
ensemble probability distribution can be written as superpo-
sition of the eigenvectors /; of the transition matrix governing
the dynamics of the individual systems in the ensemble

N
p(t)= " e (D)L @)
i=1

The expansions coefficients ¢; are determined by the initial
distribution p(0). The eigenvectors can be interpreted as dy-
namic modes which are associated to time-dependent ampli-
tudes

t
ai(t) = e\ (1) = cexp (_t_) ) (3)
This implies that the amplitude of the first eigenvector /; is
constant, and that the amplitudes of all other eigenvectors

decay exponentially,

.1 i=1
M= {exp(—/qn‘r) i>1. ©

While the eigenvalue A;(7) depends on the chosen lag time 7,
the rate of decay «; does not. It is given as
Kiz—wzl Vi > 1. 7
T t;
Frequently, instead of the relaxation rate, the relaxation time
or implied timescale ¢; is reported, which is simply the inverse
of «;.

Equations (4) and (5) imply that, after an initial relaxation
time, the dynamics of the ensemble probability distribution is
dominated by dynamic modes (eigenvectors) which are asso-
ciated to eigenvalues with absolute values close to one. These
so-called dominant eigenvectors have small decay rates and
large implied timescales. They represent the slow processes of
the conformational dynamics of the molecule. Due to the fast
decay of the non-dominant modes, a reduced representation
of the conformational dynamics of a molecule in terms of
its dominant eigenvectors often yields an accurate and suffi-
ciently detailed picture. This is particularly true, if there is a
gap between the dominant eigenvalues and the non-dominant
eigenvalues.

The first eigenvector /; is called the stationary process
and this eigenvector is equal to the equilibrium probability
distribution: /| = 7. As a consequence, /| does not have nega-
tive entries. It is the only mode which does not decay in the
limit + — oo. This reflects the physical expectation that any
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initial probability distribution will relax towards the equilib-
rium distribution if the ensemble is not perturbed during the
relaxation process. All other eigenvectors have positive and
negative entries, and entries close or equal to zero. Effectively,
a given eigenvector /; assigns a value to each state in the confor-
mational space. The vector can be interpreted as a dynamic
process which mediates the conformational exchange between
set of states with negative values and sets of states with positive
values. States to which the eigenvector assigns a value of zero
are not affected by this particular process (Fig. 2). The kinetic
exchange between the two sets of states does not necessarily
occur via a single, specific transition state. Rather, all possible
paths which connect one set with the other contribute to the
conformational exchange represented by /;. Because of this,
the relaxation rates cannot be interpreted as transition rates
across a potential energy barrier. An analysis of the dominant
eigenvectors yields information on long-lived conformational
states and on free-energy barriers between them (but not neces-
sarily on the transition states). Additionally, by comparing the
eigenvectors of the MSMs of two molecules, one can assess
the differences in the dynamics of these molecules.

Equation (7) holds for any Markov process. However,
representing the conformational dynamics of a molecule as
a jump-process between conformational states, never yields a
dynamics which is completely Markovian. As a consequence,
the relaxation rates &;(7) and relaxation times #;(7), which are
estimated from MD data, vary with the lag time. The deviation
from Markovian dynamics decreases with increasing lag times
which is reflected in the lag time dependence of the relaxation
times. In practice, one estimates the implied timescales ;-
of the slowest processes for different lag times and chooses
a value of 7 for which the t-dependence of 7; has become
negligible (Figs. 2(b), 3(b), 4(b), and 5(b) in the supplementary
material®’). For completeness, we note that the approximation
quality of a MSM also sensitively depends on the chosen
discretization of the conformational space.51 However, for the
small systems investigated in this paper, discretization is not a
bottleneck.

lll. METHODS
A. Simulations setup

We performed all-atom MD simulations in explicit water
of acetyl-alanine-methylamide (Ac-A-NHMe), acetyl-valine-
methylamide (Ac-V-NHMe), a penta-peptide with sequence
AVAVA, and a deca-peptide composed of ten Alanine resi-
dues (Ajp). All simulations were carried out with GROMACS
4.5.5 simulation package,’” in an NVT ensemble at 300 K.
The atom positions of the solute were saved to file every
1 ps. Each system was simulated in five different force fields:
AMBER ff99SB-ILDN, AMBER ff03,* OPLS-AA/L,'!
CHARMM?27,% and GROMOS43al.4”*® The water model
was chosen according to the one used for the force fields
validation, i.e., TIP3P> for AMBER ff99SB-ILDN,'*!> AM-
BER ff03,* OPLS-AA/L!'""* and CHARMM?27,'3 and SPC™
for GROMOS43al.*”* For each of these setups, the aggre-
gated simulation time was 4 us, adding to a total simula-
tion time of 80 us. The convergence of the sampling of the
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conformational space has been tested (data shown in the
supplementary material,® Figs. 2(a), 3(a), 4(a), and 5(a)).
Further simulation details can be found in Sec. I of the supple-
mentary material.>

B. Markov state model construction

The Markov state models were constructed on the confor-
mational space spanned by the ¢- and y-backbone torsion
angles, which have been proven to be useful reaction coor-
dinates to capture short-peptides dynamics.* For the capped
amino acids, the ¢--plane was discretized by a regular grid
of 36 X 36 = 1296 microstates, where each state had a size of
10° x 10°. For larger peptides, such a high resolution is compu-
tationally not tractable. Therefore, the ¢-y-planes of residues
2-5 of AVAVA have been discretized into four bins (Fig. 1 in
the supplementary material>’), where each bin corresponds to
a peak of the equilibrium distribution in the ¢-i-plane. The
N-terminal residue exhibits a different sampling of the ¢-y/-
plane, leading to a grid with six bins for this residue (left graphs
in Figs. 1(a) and 1(b)). Each possible configuration of bins
along the peptide chain represents a microstate, resulting in 6 -
4.4.4.4 = 1536 microstates for the MSMs of this peptide.
We verified that this discretization is able to separate the local
maxima of the ¢-y-equilibrium distribution in the used force
fields (Fig. 1 in the supplementary material®’). The MSMs
of deca-alanine were constructed on the ¢- and -backbone
torsion angles of residues 2—8. The ¢-¢/-plane was discretized
into three bins (right graphs in Figs. 1(a) and 1(b)), where the
Le bins correspond to the combined bins two and three of the
four-state discretization used for AVAVA. This discretization
yields 3% = 6561 microstates.

The MSMs were constructed by counting the transitions
between microstates. For detailed description of the estima-
tion procedure, see supplementary material.° The eigenvalues
and eigenvectors of the MSM transition matrices were calcu-
lated and used for comparing dynamic properties of the force
fields. Convergence checks for the MSMs, including implied
timescale plots, are shown in Figs. 2-5 in the supplementary
material "

C. Autocorrelation function

Fits to autocorrelation functions of interesting molecular
observables are often used in order to determine relaxation
rates or timescales. It can be shown that all relaxation time-
scales of the molecule, which can be approximated using a
MSM, will appear in the autocorrelation function, although
some may have negligible amplitudes and can thus not be
retrieved by a multiexponential fit.*>*! In order to demonstrate
this problem, we compute autocorrelation functions (ACF)
of C-a RMSD with respect to an idealized a-helix for both
peptides and estimate relaxation timescales from multiexpo-
nential fits. In the literature, an idealized a-helix is defined as
backbone dihedral angles of (¢,) = (—=62°,—41°). In the case
of Ajp, we obtained a reference structure that is as close to
the ideal helix as possible, by selecting a reference where all
the eight non-terminal residues’ dihedral pairs were in a 20°
radius from the ideal structure. For AVAVA, using the above
helix definition, no reference structure in any trajectory can
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A  Potential of mean force of a single residue

Otbher residues

N-terminal residue

b  Discretization of the Ramachandran plane

Other residues

N-terminal residue

C Conformations in this discretization
AVAVA
Al .

I/
\\,‘l\\

¢

N-terminal and C-
terminal residue
omitted from the
discretization

Ag E
Ay
o

Al

FIG. 1. Discretization for an amino acid in a peptide. Panel (a) shows the
logarithm counts of the backbone torsion angles distribution of an amino
acid at the N-terminus (left) or within the peptide sequence (right). In (b) the
discretization for both distributions is given. The states are defined to capture
the main secondary structure features of the Ramachandran-plane. A different
color is associated to each state: « is color-coded purple, S is green, and La is
blue. For the N-terminus amino acid (right), a color-scheme is given, however,
the secondary structure interpretation is lost. Panel (c) shows a discrete state
for a peptide (AVAVA left and A right) as colored string, where each square
represent the state of a residue in the sequence. For each state, an example of
conformations is provided as a bundle.

be found; therefore, the peptide never forms an ideal helix.
Instead a reference was selected from the a-helical state of the
MSM discretization for the three non-terminal residues. With
respect to each reference structure, RMSD trajectories were
computed, using the g_rms tool of GROMACS.>? From all
RMSD trajectories, we calculate the ACF for each forcefield,
respectively. For each forcefield and peptide, we fit a double
exponential to the ACF, except in the case of CHARMM?27
in the analysis of the Ajo data, where a single exponential
fit describes the behavior of the ACF better. Figure 6 shows
the logarithm of the ACF and the fit, with the time constants
obtained from the fits listed in Table II.

IV. RESULTS AND DISCUSSION
A. Capped amino acids

Ac-A-NHMe, often referred to as alanine dipeptide, is an
alanine molecule whose N-terminus is capped by an acetyl
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group, and its C-terminus is capped by a methyl amide group.
Its dynamics can be described in terms of the ¢- and ¢ back-
bone torsion angles. The equilibrium distribution in the {¢
— y }-space (Ramachandran plot, Fig. 1(a)) can be derived by
considering the steric interactions of the carbonyl groups and
the side chain.’® Characteristic for all amino acids, with the
exception of capped Proline and Glycine, are five population
maxima (Fig. 1(a)): four in the ¢ < O region (8 = S, ppll, and
a = ag, ap) and one at positive values of ¢ (La).

We constructed MSMs for capped alanine and valine on
a regular grid in the ¢-y-space and extracted the equilibrium
distribution as the first left eigenvector of the transition matrix
of each MSM (first column of Figs. 2(a) and 2(b)). Qualita-
tively, all force fields capture the characteristic features of the
Ramachandran plot. However, Figs. 2(a) and 2(b) also high-
light the known differences!®!%15:19:2057.38 ip the positions,
relative height and shape of the population maxima between
different force fields.

In particular, the relative population of the La-region of
the Ramachandran plot varies considerably across the five
force fields.

A low population in this region might be linked to an
overpopulation of the a-helical conformation in larger

a Ac-A-NHMe

process | process |l process llI

CHARMM27 OPLS-AA/L ff03 ff99SB-ILDN

GROMOS43al

process |:

0 10% 105 10% 103 102 5- 102

J. Chem. Phys. 142, 084101 (2015)

peptides.*> We find differences in the shape of the equilibrium
distribution between ff03, ff99SB-ILDN, OPLS-AA/L on the
one hand and CHARMM?27 and GROMOS43al on the other.
While in the first group the @- and S-maxima are modelled as
doubly peaked maxima, CHARMM27 presents three maxima
in the a-region, and GROMOS43al has four maxima in the -
region. Likewise, the barrier at around ¢ = 0° is pronounced in
ff03, ff99SB-ILDN, and OPLS-AA/L, whereas there are low-
lying transition states in CHARMMZ27 and GROMOS43al.
Difference plots of the equilibrium distributions are shown in
the supplementary material®” in Fig. 6 for Ac-A-NHMe and in
Fig. 9 for Ac-V-NHMe.

Despite these differences in the minima and barriers in
the ¢-y space, the slow dynamic processes in this process
are similar in all five force fields and both residues. We ex-
tracted the second and third left eigenvectors of each of the
MSMs (Eq. (4)) and grouped them into two types of dynamic
processes (second and third column in Figs. 2(a) and 2(b)).
Overall, process II switches between regions with ¢ < 0°, and
regions with ¢ > 0°. This process mediates the conformational
exchange between the La-region and the combined - and
B-region. Process III on the other hand switches between the
a- and the B-region by assigning values of opposite signs to

b Ac-V-NHMe

process |

process I

process llI

process Il and llI:

-5- 102 -102 -10% -10#-10° -10¢ 0 10 10 10* 103 102 5- 102

FIG. 2. Slowest process eigenvectors of alanine (a) and valine (b) dipeptides for all force fields sorted according to processes. In column one (process I), the
equilibrium distribution for each force field is shown. Process II indicates a dynamic process along the ¢ coordinate; probability distribution is here transported
across the energy barrier at ¢ =0, between the 8 —a-regions and the La minimum. Process III indicates transitions along the ¢ coordinate (8 < ).
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these areas. This process thus mediates the conformational
equilibrium between the a- and S-regions.

While processes II and III are distinct in most of the
Ac-A-NHMe simulations, we find some mixing of the pro-
cesses in Ac-V-NHMe. For example, the eigenvectors clas-
sified as process II assign negative values to some parts of
the a- or B-regions in OPLS-AA/L, CHARMM?27, and GRO-
MOS43al (Fig. 2). However, since the processes are domi-
nated by the switching between regions with positive ¢ values
and regions with negative ¢ values, the classification of these
eigenvectors as process I is justified.

Likewise, all eigenvectors which predominantly mediate
the dynamic exchange along the y-coordinate are classified
as process III. (For difference plots of the two processes, see
the supplementary material’® Figs. 7, 8, 10, and 11 for Ac-
A-NHMe and Ac-V-NHMe, respectively.) Panels (c) and (d)
of Figs. 2 and 3 in the supplementary material®® also show
convergence tests for the eigenvectors.

The fact, that the eigenvectors can be classified as either
process II or III, implies that, on the level of a single residue,
the dynamics in all five force fields is dominated by a similar
topology of the potential energy surface in the ¢-y space
(position of the barriers and positions and relative depths of
the minima).

However, the corresponding relaxation rates differ by up
to an order of magnitude across different force fields. Fig. 3
displays the relaxations rates associated to process II (blue line)
and III (gray line) as speed-o-meters plots. Most notably, the
order of processes II and III is not preserved across the force
fields. In most simulations, process II is the slowest process,
while process IIl is associated to a higher relaxation rate. How-
ever, for Ac-A-NHMe in {03, Ac-V-NHMe in CHARMM27,
and both capped amino acids in GROMOS43al, process III
is slower than process II (speed-o-meters with a red circle
in Fig. 3). The dashed lines in Fig. 3 represent the statistical
uncertainty of the relaxation rates, estimated as the standard
deviation in a bootstrap sample analysis. (See supplementary
material®® for details on the bootstrap analysis.)

The rates can be interpreted as an order-parameter for
the speed at which the force field samples the conformational
space: the higher the rate, the faster the sampling. Fig. 3 reveals
a large difference of the sampling speed between the force
fields. For example, the rate of process II in Ac-A-NHMe
is estimated to be less than 1 ns~! in ff99SB-ILDN, while
GROMOS43al assigns arate of 85 ns~! to the same process—a
difference of two orders of magnitude. Moreover, the relative
magnitude of the rates differs across force fields. For some
simulation setups, the rates of process II and III are in the same
range (e.g., Ac-A-NHMe with ff03 and CHARMM?27, Ac-V-
NHMe with ff99SB-ILDN and OPLS-AA/L), while in other
force fields they differ considerably (e.g., Ac-A-NHMe with
ff99SB-ILDN and OPLS-AA/L).

Based on the simulations of capped amino acids, it is
not possible to identify a particular “fast” or “slow” force
field. GROMOS43al yields exceptionally high rates for
Ac-A-NHMe, but the rates for Ac-V-NHMe are comparable to
those of other force fields. The relaxation rates and relaxation
timescales (including standard deviations) for all simulations
of Ac-A-NHMe and Ac-V-NHMe are summarized in Table I.
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FIG. 3. Implied timescales rates for the slowest processes of alanine and
valine dipeptides. The rates associated to the dynamic processes are plotted in
a polar form to emphasize the different speed of the force fields. The transition
B/a < a, ie., process 1l is shown in green; the transition 8 < a in blue.
Speed-o-meters surrounded by a red circle identify force fields for which the
order of the processes is switched. Statistical uncertainty, estimated as the
standard deviation in a bootstrap sample analysis, is identified with a dashed
line; in some cases, it is order of magnitudes smaller than the associated
timescale, thus difficult to visualize; in Ac-V-NHMe with OPLS-AA, the error
lines of the two timescales overlap. Table I provides timescales and rates of
bootstrap mean and standard deviation values for both capped amino acids in
each force fields.

B. Peptides

To test how the difference in backbone torsion dynamics
affects the overall dynamics of peptide systems, we performed
a MSM analysis of short peptides, whose sequence included
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TABLE 1. Relaxation rates k; and the relaxation timescales ¢; of the second (i =2) and third (i =3) dynamic
process of the simulated capped amino acids. Reported are mean and standard deviation from the bootstrap

analysis.
System: Ac-Ala-NHMe
Process 1T Process 111
Force field k2 (ns~1) t (ns) k3 (ns~!) t (ns)
ff99SB-ILDN 0.788 = 0.104 1.269 + 0.166 13.791 + 0.095 0.073 + 5% 107
ff03 12.008 + 1.567 0.083 £ 0.011 8.720 £ 0.050 0.115+6x10™*
OPLS-AA/L 1.093 + 0.146 0.915 +£0.122 24.863 + 3.094 0.040 + 0.006
CHARMM27 1.841 + 0.080 0.543 + 0.024 4.568 + 0.034 0.219 + 0.002
GROMOS43al 83.850 + 1.093 0.012 +2x107* 21.350 £ 0.164 0.047 £ 3x 107
System: Ac-Val-NHMe
Process I1 Process 111
Force field k2 (ns71) t (ns) k3 (ns7h) t (ns)
ff99SB-ILDN 0.468 + 0.061 2.139 £ 0.287 2.794 + 0.047 0.358 + 0.006
ff03 0.543 £ 0.236 1.840 + 0.609 8.181 £0.111 0.122 £ 0.002
OPLS-AA/L 6.770 = 1.750 0.148 + 0.053 12.945 + 6.404 0.077 £ 0.031
CHARMM27 6.370 + 0.301 0.157 + 0.007 0.449 + 0.010 2.229 + 0.051
GROMOS43al 14.883 + 0.873 0.067 + 0.004 10.065 + 0.219 0.099 + 0.002

alanine and valine residues: a penta-peptide with sequence
AVAVA and deca-alanine. Poly-alanine peptides have been
used before for force field studies.>!”

The MSMs were constructed on the conformational space
spanned by the ¢- and y-backbone torsion angles, where the
¢-y-plane of a residue was discretized into three (A ;) or four
(AVAVA) states (Fig. 1(b)). These states can be mapped to the
three regions in the Ramachandran plane: @, 8, and La. Each
peptide conformation can then be represented by a string in
which the ith element represents the conformation of the ith
residue. Fig. 1(c) explains how these strings are converted into
the color-coded representations shown in Figs. 4 and 5. The
terminal residues exhibit different dynamics than residues in
the middle of a peptide chain and are often largely decoupled
from the dynamics of the overall peptide chain. Therefore, we
used a six-state discretization for the N-terminal residue of
AVAVA (Fig. 1(b)) and excluded residue 1 and 10 of A from
the MSM.

In Fig. 4, the slowest processes of AVAVA for the five
force fields are shown as dynamic exchange processes between
sets of conformations. The conformations of the residues are
color coded according to Fig. 1(c) (i.e., @ = purple, 8 = green,
and La = blue for all residues except the N-terminal residue).
The three depicted conformations at the start and end points of
each process correspond to the three microstates to which the
associated eigenvector assigns the most negative and the most
positive values, respectively. In contrast to the simulations of
the capped amino acids, in which all five force fields yield
similar dynamic processes, the dynamic processes of AVAVA
differ considerably across force fields. Note that this variation
in AVAVA cannot be explained by a simple swapping or mixing
of the second and third eigenvectors of the transition matrix, as
shown in Figs. 4(b) and 12 of the supplementary material.>

The slowest dynamic process of A in the five force fields
is shown in Fig. 5. For this system, we find an even wider

variety of dynamic processes than in AVAVA. Most notably in
the force field which are known to over-stabilize the a-helical
conformation (ff03 and CHARMM?27), the disruption of the a-
helix, i.e., the helix-coil-transition is the slowest process. The
slowest process captured by OPLS-AA/L is also the disruption
of predominantly a-helical structure. In GROMOS43al, the
second slowest dynamic process can be classified as a helix-
coil transition (Fig. 13 in the supplementary material>®). How-
ever, neither in ff99SB-ILDN nor in GROMOS43al, the slow-
est dynamic process involves extended regions of a-helical
residue conformations.

The rates associated to the two slowest dynamic processes
in AVAVA and A are shown in Table II. As for the capped
amino acids, the rates vary over a large range. Since the under-
lying processes differ, there is no one-to-one correspondence
between the rates. However, the rates can be interpreted as
order parameters for the speed at which a force field explores
conformational space, which is accessible with this particular
force field. Note that the rates are not only influenced by the
barrier heights in the system, but also by the size of the acces-
sible conformational space, and by the shape and relative depth
of the minima and thus report on the global characteristics of
a force field. Interestingly, although no consistent tendency of
faster versus slower exploration of the conformational space
could be detected on the level of individual residues, such a
gap opens up for the two larger systems. The rates for ff03 and
GROMOSA43al are consistently higher by a factor of three to
ten than the rates of the other three force fields. The accessible
conformational space of ff03 for AVAVA and Ajj seems to
be particularly small (Figs. 4(a) and 5(a) in the supplemen-
tary material®’), which could explain the fast sampling. By
contrast, the GROMOS43al simulations visited considerably
more microstates than all the other force fields (Figs. 4(a)
and 5(a) in the supplementary material®’) corresponding to
a very large accessible conformational space. This finding,
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FIG. 4. Slowest dynamic process for AVAVA. For all force fields, the second
eigenvector is represented via conformations between which the transition
occurs. Such conformations are expressed via groups of strings color-coded
as in Fig. 1, representing the three microstates to which the eigenvectors as-
signs the most negative and most positive values. Bundles of conformational
representatives for each set of strings are provided.

in combination with the high rates, hints at particularly low
barriers in this force field.

Experimentally, short alanine-rich peptides are known to
form helices in solutions>*~%! and therefore such systems pro-
vide an ideal basis for studying helix coil-transitions, as was
recently done for a short penta-alanine,*>%* as well as other
systems.** From our MSMs, we do not expect a pronounced
helix-coil transition for the studied pentapetide. Nonetheless,
we did carry out an analysis of the autocorrelation times of
Ca-RMSD trajectories of non-terminal residues with respect
to a reference helix. For details regarding the definition of the
reference structure, refer to Sec. III C. In Fig. 6(a), we show the
logarithm of the ACF for all force fields as well as the logarithm
of the double exponential fits to the ACFs. A single exponential
model did not result in good estimates for the decay of the
ACF and was therefore not used. From the fit, a set of decay
times was estimated and indicated in Table II. Comparing these
times to the computed relaxation times of the MSMs for each
forcefield, no similarity is found. This suggests that an ACF of
the RMSD trajectories, or other order parameter related to the
helix-coil transition, does not give a good kinetic description
of this system, as a predominate a-structure does not give rise
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FIG. 5. Slowest dynamic process for Ajo. For all force fields, the second
eigenvector is represented via conformations between which the transition
occurs. Such conformations are expressed via groups of strings color-coded
as in Fig. 1 representing the three microstates to which the eigenvectors
assign the most negative and most positive values. Bundles of conformational
representatives for each set of strings are provided.

to slow kinetics in the system. The MSM, however, allows to
identify states with a high contribution to the slow dynamics
without any prior knowledge of the system, e.g., irrespective
of the system exhibiting a helix-coil transition or not.

On the contrary, the helix-coil transition for the deca pep-
tide Ao is thought of as a valid picture for the dynamics for
the system,>>7 as especially the eight non-terminal residues
can be found in an ideal-helix conformation multiple times
throughout simulation trajectories. This helix-coil transition
is thought of as a two step kinetic process, where a single
exponential decay is an appropriate kinetic model. But also in
the case of A it seems that a double exponential fit is a much
better fit model than a single exponential. This is visualized in
Fig. 6(b), where the ACF analysis again shows that a double
exponential behavior describes the data best with the exception
of CHARMM?27, where a single exponential fit represents the
data better. From Fig. 5, it is clear that the slowest process in
ff03 and CHARMM?27 involve a helix-coil like transition. For
ff03, the fitted double exponential results in a timescale that
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TABLEII. Relaxation rates k;, the relaxation timescales #; of the second (i =2) and third (i = 3) dynamic process,
and the fitting parameters 71 and 7; for the ACF of the simulated polymer peptide systems. For relaxation rates
and timescales, we report mean and standard deviation from the bootstrap analysis.

System: AVAVA

Kinetic processes ACF
Force field Ky (ns™!) t> (ns) k3 (ns7h) 13 (ns) 71 (ns) 75 (ns)
ff99SB-ILDN 0.031 + 0.005 33428 £5.072  0.094 £0.024  10.661 +2.272 2.18 0.29
ff03 0.228 £ 0.017 4414 +£0.322  0.286 +0.029 3.532 £0.352  5.49¢+8 4.51
OPLS-AA/L 0.018 £0.008 55481 +14.567 0.067 £0.173  14.809 + 5.368 0.75 20.7
CHARMM27 0.065 + 0.006 15.303 £ 1.362  0.112 +£0.008 8.929 + 0.659 6.71 0.66
GROMOS43al 0.786 + 0.072 1.273 £ 0.124 1.468 + 0.055 0.681 + 0.026 8.2e+2 0.65

System: Ao

Kinetic processes ACF
Force field k2 (ns7h) t5 (ns) k3 (ns71) 13 (ns) 71 (ns) 75 (ns)
ff99SB-ILDN 0.021 £0.003  48.617 £6.410  0.028 £0.003  36.080 + 4.466 0.88 7.61
ff03 0.116 + 0.006 8.591 £0.425  0.176 £ 0.017 5.696 + 0.539 8.60 0.78
OPLS-AA/L 0.045 £0.011 22.450 + 3.941 0.068 £0.011  14.778 +£2.003 1.20 7.87
CHARMM27 0.013+£0.005  75.664 £2.090 0.022 +0.004 44.567 +9.004 20.20 ..
GROMOS43al  0.118 +£0.033 8.509 +£2.050  0.196 + 0.022 5.091 + 0.629 3.09 0.43

is very comparable to the slowest timescale of the respective
MSM, i.e., ~8.6 ns; for CHARMM?27, this is not the case,
suggesting that other configurations are responsible for a slow
escape rate. In all other forcefields, the slowest timescales do
not seem to be dominated by an escape from an a-helical state,
suggesting that computing the ACF of the C-a RMSD trajec-
tories does not provide a good insight into the slow kinetics
of the system. The MSM in this case has the advantage that
no prior information about what configurations contribute to
the slow dynamics is hard coded into the analysis. In theory,
the helix-coil transition may be a dominant factor in peptide
dynamics, but this is not representative for all the force fields
studied here.

C. Discussion

The local dynamics of capped amino acids is in qualitative
agreement in all of the five tested force fields. Besides the
equilibrium distribution (process I), two dominant dynamic
processes were identified: (i) process II, which mediates the
dynamic exchange between conformations with negative ¢-
torsion angle values and conformations with positive ¢-torsion
angle values, and (ii) process III, which mediates the dynamic
exchange between the a-helical conformation and the 3-sheet
conformation. By contrast, the relaxation rates associated to
the dynamic processes vary drastically between force fields.
Moreover, the ordering of the two processes is not preserved.
For most force fields, process II is the slowest process of the
system, while in some cases process III is slower than process
IL. Our results also reproduced the known differences in the
sampling of the ¢-i/-plane across the force fields.

The similarity of the dynamic processes at the level of
single residues does not extend to the dynamic processes of
small peptides. For AVAVA, all five force fields identify the
formation/break-down of an elongated conformation (with

three or more sequential residues in the S-sheet conformation)
as the slowest process (left column Fig. 4). However, they
disagree on the end point of this process (right column Fig. 4).
For deca-alanine, the formation/disruption of the a-helix or a
helix-like conformation was identified as the slowest process
for three out of five force fields, while the other two yielded
to processes which switch between structures with a large
content of S-sheet conformations in the residues. The two
force fields which showed the clearest helix-coil transitions—
ff03 and CHARMM27—are also force fields which are known
to overstabilize the a-helical structure.

Because the kinetic processes of the peptide systems differ
drastically across force fields, a one-to-one comparison of
the associated rates is not possible. The rates can, however,
be interpreted as a measure for the overall “sampling speed”
of a particular force field. While no consistent difference in
the overall “sampling speed” of the force fields could be
identified for the capped amino acids, two force fields (ff03 and
GROMOS43al) sampled the conformational space of the
small peptide systems considerably faster than the other
three force fields in this study (ff99SB-ILDN, OPLS-AA/L,
CHARMM27). The fast rates of the GROMOS43al force field
are consistent with the short relaxation timescales of capped
alanine. It is however not obvious, why the rates of ff03 are
higher than those of other force fields.

These results demonstrate that, even for short aliphatic
peptides, the conformational dynamics cannot be reduced to
a simple combination of the local dynamics of the residues.
Rather the dynamic processes are shaped by a complex interac-
tion of local dynamics and long-range interactions, including
the interactions with the solvent. It is therefore not obvious
which force field parameters need to be tuned to improve
the dynamic performance of classical force fields. So far,
reparametrizations have been focused on the bonded inter-
actions, which are typically modeled by harmonic potentials
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FIG. 6. Logarithm of the autocorrelation function of Ca-RMSD with respect
to helical structure for AVAVA (a) and Ajg (b). The logarithm of a double-
exponential fit is shown as a dashed line. Exception is CHARMM27 for Ajg
where a single-exponential fit was used.

or comparably simple functions of the molecular coordinates.
It is an open debate whether the accuracy of current force
fields is limited by their simple functional form (rather than
the parameters),“’68 or whether the functional form still leaves
room for improvement, e.g., by introducing amino acid depen-
dent torsion angle potential.'® Apart from improving the bonded
interactions, a complete reparametrization of the non-bonded
force field terms against state-of-the-art quantum-mechanical
calculations has been suggested.'® Last but not least, the
neglect of polarizability might be a bottleneck for the ability to
model dynamics. Polarization affects the stability of hydrogen
bonds which in turn determine to a large part the stability of
secondary structure elements. This is in line with a recent study
in which the different performances of non-polarizable force
fields in reproducing the mean rupture forces for the separation
of mechanically interlocked dimers could be attributed to
differences in modeling of the hydrogen bonds and to the
resulting differences in the strength of hydrogen networks.®
Ultimately, to improve the dynamic properties of force
fields, one will have to include kinetic experimental data into
the optimization scheme. Such an optimization scheme would
have to address known critical points, such as availability and
choice of the experimental reference data, avoidance overfit-
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ting and cancellation of errors, and consistency with previous
optimizations. But on top of this, several new challenges need
to be addressed: (i) match between simulation data and kinetic
experimental observables; (ii) efficient variation and validation
of the force field parameters; and (iii) verification of the folding
pathways predicted by the simulation.

We cannot offer a solution to these challenges at this point.
However, there are several recent methodological develop-
ments which might prove to be helpful in the development
of a working optimization scheme which incorporates kinetic
experimental data. Issue (i) could be addressed quantitatively
by dynamical fingerprints***! or by simulating spectra and/or
relaxation rates using a pre-parametrized Markov state model.
The match between experimental kinetic data and MD simu-
lations has been demonstrated for fluorescence quenching,*’
neutron scattering,’%’! 2D-IR spectra,’? as well as NMR relax-
ation times.”?

To optimize the parameters of a force field towards this
type of experimental data, a separate Markov state model
needs to be constructed for each parameter combination. The
computational cost of parametrizing each of these Markov
state models from an independent simulation is prohibitive.
Instead reweighting schemes, with which simulation data at
one thermodynamics state point can be utilized (reweighted)
to parametrize a MSM at another thermodynamic state point,
could offer a solution to issue (ii). So far, reweighting has been
used to make optimal use of parallel-tempering data.”*”> An
extension of the method to the variation of force field param-
eters is possible, thus allowing one to estimate experimental
relaxation rates for a range of force field parametrizations
from a single simulation. The search for optimized parameters
would be further simplified if the gradient of the kinetic observ-
able with respect to the force field parameters could be calcu-
lated. For thermodynamic data, a local minimization scheme
based on explicitly calculated gradients has been published
recently.”®

The difficulty in verifying the folding pathways (issue iii)
lies in extracting the folding pathway from the experimental
data. Here, hidden Markov models (HMM) which are parame-
trized directly from single-molecule experiments,”’ " such as
single-molecule fluorescence or optical tweezer experiments,
might prove useful. In a HMM analysis, the states of the MSM
are defined as a function of the experimental observable (FRET
efficiency, force, etc.). Provided that a structural interpretation
can be found for these states, the MSM directly yields the
dominant folding pathway plus all alternative folding path-
ways with their relative statistical weights. With this informa-
tion, one can calculate the likelihood of a particular folding
pathway observed in a MD simulation, thus, allowing to confer
the large variation in the folding pathways across different
force fields®? with experimental evidence.

In conclusion, if MD simulations are to be used success-
fully in the investigation of the conformational dynamics of
biomolecules, the dynamic properties of the force fields need
to be taken explicitly into account in the force field develop-
ment. MSMs provide as useful framework for a quantitative
and detailed comparison of different force field parametriza-
tions and to match kinetic experimental observables to MD
simulations.
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