
Chapter 4

Delay in joint projects

4.1 Introduction

Delay is an important aspect of many situations in which a public good is

to be provided through private contributions. This was first pointed out as

an empirical observation by Olson (1982, p. 39-40) with respect to delayed

formation of organized interest groups. Other salient examples include de-

layed adoption of standards by societies or certain industries (see Farrell and

Saloner, 1988), and the pivotal role played by delay in the political economy

of policy reform as considered by Drazen (2000).

Typically, authors have explained delay in private provision games by

introducing private information. In Bliss and Nalebuff (1984) a public good

is to be provided completely by one individual. Individuals who have private

information about their costs, play a waiting game to see if someone will

come forward to provide the good. Gradstein (1992) retains the assumption

of private information about contribution costs but considers a production

technology where the public good is produced by the number of contributing

individuals with decreasing returns. Both find inefficient delay if the number
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of individuals is finite. Similarly, in applied contributions such as Alesina

and Drazen (1991), delay is driven by some waiting game which originates

in private information.

However, there seem to be many situations with inefficient delay in which

full information seems to be a valid approximation. Therefore it is worthwhile

studying alternative causes of delay. In this chapter I concentrate on the role

of convex contribution costs and their interaction with other potential aspects

of the situation. Convexity of contribution costs is a reasonable assumption

in many settings. Depending on the nature of the contributing unit and

the form of the contributions, their causes may be, for example, increasing

disutility of labor or decreasing marginal utility of remaining income.

I study the case of a discrete project that has to be completed by means

of private contributions and may be epitomized by the proverbial example

of the building of a bridge by a group of people. Benefits only start flowing

once the bridge is completed. No agent can be excluded from the benefits

of the project and side payments are not allowed. All players have perfect

and complete information. The problem is analyzed in continuous time,

which makes derivations of completion times in equilibrium easier and avoids

equilibria which may only be artifacts of a discrete setting. The model is

solved for the set of symmetric open-loop (OLE) and Markov perfect (MPE)

equilibria.

The convexity of costs usually implies the optimality of project comple-

tion in some positive time. However, in such a setting, individual contribu-

tions may be postponed for two reasons. First, convexity of costs implies

an incentive to spread out contributions in order to decrease marginal costs.

If individual costs and benefits are not perfectly aligned with their social

counterparts, this creates a social inefficiency. Second, the dynamic nature
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of the situation adds a time dimension to the players’ incentives to free ride

on others’ contributions. The paper analyzes how individual heterogeneity,

order of moves and the absence of commitment devices will affect delay in

such a setting.

The findings of the model are as follows. In a perfectly symmetric setting

with commitment, a continuum (with respect to completion time) of sym-

metric completing equilibria exists which contains the social optimum as the

lower bound completion time. This Pareto-dominates all other symmetric

equilibria, so that it is the natural outcome. If commitment is retained but

players are asymmetric or players do not commit to their contribution paths

simultaneously, inefficient delay occurs for distributional reasons. Finally, in

a symmetric setting without commitment, inefficient delay occurs in equilib-

rium. No player can contribute efficiently fast, since this will leave him open

to exploitation by the other players later on. Furthermore, unlike the private

provision of a continuously divisible public good, individual contributions are

strategic complements, which make partial harmonization of strategies seem

beneficial and this is important in many policy-related applications. The re-

sults are in line with the observation that, in many real life examples, delay

seems to be closely related to asymmetric players and missing compensation

mechanisms as well as to the lack of commitment devices.

The chapter relates to two further strands of literature. First, there

is the connection with the the private provision games of a continuously

divisible public good in dynamic settings analyzed by Fershtman and Nitzan

(1991), Wirl (1996) and Itaya and Shimomura (2001). This literature finds

that without commitment the provision level may be increased or decreased,

depending on the set of admissible strategies.

Second, and more importantly, Admati and Perry (1991) and Marx and
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Matthews (2000) have considered voluntary contributions to a joint project,

with the key feature of a pay-off function that is discontinuous at completion

of the project. Marx and Matthews analyze the case where contributors have

linear costs and know both their own and the total sum of contributions, but

cannot observe the individual contributions of other players. With linear

costs, if the project is carried out in equilibrium, inefficiency from delay is

caused only by the time assumed to elapse between the players’ interactions.

Admati and Perry consider the case where two players with convex costs

contribute alternately to a joint project. The MPE derived in section four

can be regarded as a differential game n-player counterpart of their analysis.

While they are concerned with the question of whether socially desirable

projects will be carried out or not, the present analysis focusses on delay

and makes it possible to consider completion times and their comparative

statics explicitly. Furthermore, it allows insights to be made into important

structural properties of the equilibrium, such as strategic complementarity

of individual contributions.

The chapter is organized as follows. Section two sets up the model and

solves for the social planner’s optimum. In section three the symmetric equi-

libria of the situation with symmetric players and commitment is studied.

Section four discusses how the commitment case changes, when asymmetry

and non-simultaneous moves are considered. Section five derives the Markov

perfect equilibria of the situation without commitment. Section six con-

cludes.
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4.2 The model

A group of n players contributes to a joint project. Individual contributions

xi, i = 1, ..., n, are immediately sunk. Once total contributions reach the

project size K the project is completed and from this point T onwards, it

starts yielding an infinite continuous stream of benefits Di for individual

i. The individual convex cost functions are, for tractability, assumed to be

quadratic, Ci(xi) = ci

2
x2

i . For now, I consider the case of identical individuals

so that for all i, ci = c and Di = D. Furthermore, r denotes the discount

rate and parameter values are assumed such that it is not profitable to carry

out the project individually.

The social planner maximizes the representative individual’s intertempo-

ral problem (SWP) given by

max
x(t)

J = −
∫ T

0

c

2
x2e−rtdt +

D

r
e−rT (4.1)

s.t.
.

k = nx(t) (4.2)

x(t) ≥ 0 (4.3)

k(0) = 0 (4.4)

k(T ) = K. (4.5)

Alternatively, a project whose size is proportional to the number of users can

be considered. In this case (4.5) is replaced by k(T ) = nK, and parameters

have to be assumed that, even for n = 1, make it beneficial to carry out the

project. The solution of the SWP is summarized in the following proposition.

Proposition 6 The socially optimal contribution paths to the project are

given as x∗(t) = λ∗
c
ert, where λ∗, which is constant over time, denotes the
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costate variable of the social planner’s problem. The optimal completion time

is given by T ∗ = r−1 ln

(
D+ rK

n

√
c
2
D

D− c
2

[Kr]2

n2

)
.

Proof of proposition 6: See appendix.�
Naturally, with positive discounting, the optimal policy is to increase

contributions exponentially at rate r until completion, in order to keep the

present value of the marginal cost of an additional unit of contribution un-

changed. Only projects for which D > c
2

[Kr]2

n2 have a positive present value

and should be carried out. If the project size is proportional to the number of

participants, K is replaced by nK in T ∗ and the optimal time is independent

of the number of participants. If the size of the project is fixed, lim
n−>∞

T ∗ = 0,

i.e., the project should be carried out immediately. As the number of con-

tributors becomes very large, the costs can be shared among all of them, and

thus the convexity of individual costs no longer has any bite.

4.3 The non-cooperative solution with com-

mitment

I consider now the open-loop equilibria of the differential game, where n

players contemplate their contributions to the joint project individually. In

the open-loop case, the players choose their complete contribution paths

xi(t) at the beginning of the game. Thus, the open-loop assumption implies

that all players are able to commit themselves to their chosen paths over

the entire contribution period. For an extensive discussion of strategy space

and information sets in differential games see Dockner et al. (2000). A

Nash Equilibrium is given by a vector of n optimal time paths, such that

J i(x∗
1(t), ..., x

∗
i (t), ..., x

∗
n(t)) ≥ J i(x∗

1(t), ..., xi(t), ...x
∗
n(t)), ∀i. Each individual
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i solves the problem (IMP)

max
xi(t)

J i = −
∫ T

0

c

2
x2

i e
−rtdt +

D

r
e−rT (4.6)

s.t.
.

k =
n∑

j=1

xj, (4.7)

xi ≥ 0, (4.4) and (4.5), where the other contributions are taken as given in

(4.7). The symmetric equilibria are given as follows:

Proposition 7 There exists a continuum of symmetric open loop equilib-

ria in which all players commit to contribution paths growing at rate r.

The completion time of these equilibria ranges from T ∗ to
−
T , where

−
T =

r−1 ln

(
D+ rK

n

√
(n− 1

2)cD

D−(n− 1
2
)c[ rK

n ]
2

)
. Additionally, there is a non-completing equilib-

rium, in which no player ever contributes.

Proof of proposition 7: Consider the 2-player case. If player 1 chooses

to build half the project in the efficient time and to contribute zero after-

wards, player 2 is left with the problem of completing a half-size project with

half the social benefits (his own only). Thus, the individual problem is just

a scaled down version of the social problem. The individual costs and bene-

fits are perfectly aligned with the social ones. Player 2’s best response is to

complete the project in the efficient time. If player one builds her half in any

T̃ ∈ [T ∗, T̄ ], it is always optimal for player two to contribute her half up to

that time as well, since speeding up not only has higher marginal costs for the

own given share of one half, but also necessitates taking over some of player

1’s share. However, if player one chooses to stretch her share’s contribution

beyond T̄ , then it pays for player two to take over some of player one’s share.

Consequently, no T > T̄ can be an equilibrium. In the appendix it is shown
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that the cut-off point is indeed given by T̄ . The logic extends straightfor-

wardly to the n-player case. The non-completing equilibrium follows directly

from the assumption that carrying out the entire project individually is not

profitable. If all players expect the others not to contribute, their best re-

sponses are also not to contribute and the project will not be undertaken.�
The efficient equilibrium Pareto-dominates the non-completing and the

other symmetric completing equilibria, so that, with pre-play communica-

tion, reaching the first best seems a plausible outcome. Thus, with perfectly

symmetric players and commitment no inefficiencies from delay are likely to

occur. Apparently, there are two decisive features that trigger the result.

First, since players can commit not to contribute after T ∗, the other players

have no hope of free-riding on the others’ contributions afterwards. Second,

due to symmetry, private and social costs and benefits are perfectly aligned

for one player if all other players choose to contribute according to the first

best path.

Note that, if the project has a strictly positive net value, further continua

of asymmetric equilibria also exist. For a given non-equal distribution of

project size shares, the completion times of these equilibria are on an interval

[T ′, T ′′], where T ∗ < T ′ and T ′′ < T̄ . The less equal the distribution of project

shares, the smaller [T ′, T ′′], since higher share individuals have an incentive

to delay their contributions, while for lower share individuals taking over

other agents’ burdens is more attractive.

4.4 Sequential moves and asymmetry

Let me now consider the robustness of the optimality results under com-

mitment. I will discuss two modifications to the above setting, where, for
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simplicity, I focus on the two-player setting, though the considerations extend

directly to the n-player case.

First, suppose that the game is changed to a Stackelberg setting in the

sense that player 1 gets to choose her contribution path first before player

2 chooses hers. As in the static private provision game of a discrete public

good, the Stackelberg leader is in a position to extract some rent from the

follower. In a static setting all rent is extracted from the follower.1 Here,

however, the leader will leave some rent for the follower. The reason is that

the follower has another instrument to react to the leader’s attempt to shift a

bigger share of the project’s size to the follower. This instrument is to delay

contributions in order to smooth marginal costs. This will hurt the leader,

since completion is delayed. Thus the leader faces a trade-off between shifting

a larger share of the project’s size to the follower and the induced completion

delay. While, for the given model, the situation can no longer be solved out

in closed form, it can be shown that the leader’s profits are increasing in the

follower’s share if her own share is one half. Thus, the leader will always shift

some burden, and this will delay completion. Obviously, this argument only

holds, if the project creates positive profits that can be shifted.

Similarly, if players are asymmetric, either with respect to their cost pa-

rameter ci or to their benefits Di, even with commitment the project will not

be completed in the socially optimal time unless side payments are possible.

The reason is that, in such a situation, the individual problem is no longer

a scaled down version of the social problem. People whose marginal cost is

lower will not contribute enough. Similarly, players with lower benefits will

1Note, that, if benefits or costs and thus the willingness to contribute, depend on

income levels, such exploitation may be mitigated through a strategic transfer from the

follower to the leader, see Buchholz et al. (1997).
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not contribute fast enough.

Again, it is interesting to consider the static counterpart. If players are

sufficiently asymmetric in the productivity of their contributions, the discrete

public good may not be provided, even though it would be socially desirable.

This may also happen in the dynamic situation, but, typically, there is a

number of projects for which the inefficiencies arise from delayed completion.

Thus, both the possibility of committing first to a contribution path and

asymmetry among the players will typically cause the optimality result under

commitment to break down. The players’ interests are no longer perfectly

aligned or, in the Stackelberg setting, are even partly opposed. Thus, dis-

tributional reasons prevent the parties from achieving the first best solution.

In the Stackelberg case, the outright aim is to exploit the other party, in the

asymmetry case, it is the inability of the less productive, or the party who

profits more to compensate the other through redistribution. In fact, such

asymmetries are present in many real life examples, and in many situations

they constitute an important reason for excessive delay.

4.5 The Markov perfect equilibrium

Let me now turn to the situation where no commitment at the beginning

of the game is possible. For this, I consider the Markov perfect equilib-

ria (MPE) of the game as set up in section 3. The strategies of the play-

ers, φ(k, t), are now allowed to depend on time and the evolution of the

state variable k, the progress of the project. Thus, they are rules condi-

tioned on these variables. This implies that, at any instance, players re-

optimize their contributions based on the sum of all contributions made up

to that time, so that these strategies are time consistent. An MPE is given
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by a vector of n optimal rules, such that J i(φ∗
1(k, t), ..., φ∗

i (k, t), ..., φ∗
n(k, t))

≥ J i(φ∗
1(k, t), ..., φi(k, t), ...φ∗

n(k, t)), ∀i. In fact, since the problem is inde-

pendent of time, the strategies will only depend on the project’s progress,

φ(k). Again, there is a non-completing equilibrium in which no player ever

contributes and a completing equilibrium, which is given in

Proposition 8 (i) The following strategies constitute a symmetric MPE:

φ(k) = 1
c

[β + γk], where β =
2
√

cD(n−1/2)−crK

2n−1
and γ = cr

(2n−1)
.

(ii) The completion time of this MPE is given by TMP = c
γn

ln
(
1 + γK

β

)
and TMP > T ∗.

Proof of proposition 8: See appendix.�
The result shows that, unless it is possible to commit, a strategic incentive

to delay contributions exists. The intuition is straightforward. Although any

one of the players would like to contribute faster, doing so involves a time-

consistency problem. Contributing more heavily early on and then reducing

or even stopping contributions later is not credible. Later on it is in the

player’s own interest to contribute to completing the project. Since the

other players know this, they would be in a position to exploit the player

who contributed heavily early on by reducing their later contributions. Thus,

in order to prevent the others from free riding each player chooses to delay

her contributions inefficiently. If delay is sufficiently severe, projects cease

to be individually profitable in equilibrium and the completing equilibrium

disappears. Thus, some socially desirable projects will not be carried out.

This parallels the findings of Admati and Perry (1991), who use a discrete set-

up, in which players alternate their contributions to the project sequentially.

Considering the comparative static properties of the completing MPE

with respect to the number of players reveals that, for the fixed size project,
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the cost-sharing effect dominates the free-riding effect. However, considering

the proportional size project, which implies controlling for the cost-sharing

effect, demonstrates that the time-consistency problem is aggravated and

delay increased. Eventually, for all n bigger than some critical value, the

completing equilibrium breaks down.

There are two further interesting aspects of the completing MPE. First,

comparing TMP with the upper bound of the continuum of symmetric open-

loop equilibria, T̄ , shows that TMP < T̄ . Thus, there is a range of equilibria

with commitment that have longer completion times and consequently leave

everybody worse off. The reason for this can be found in the coordination

problem and the impossibility of re-optimizing under commitment.

Second, since γ > 0, individual contributions are strategic complements.

This contrasts with the findings of Fershtman and Nitzan (1991) for the con-

tinuously divisible public good, where they are substitutes. The strategic

complementarity has important consequences for alliance formations in such

settings. Consider a subgroup of agents forming a coalition by harmonizing

their strategies. While agents outside the coalition will always profit from

such harmonization, with strategic complementarity, the subgroup forming

the coalition will typically also increase its welfare (Gaudet and Salant, 1991).

Here, the conjecture is that the harmonization of the own strategy with a

partner weakens the time-consistency problem. Free-riding within the coali-

tion is prevented through harmonization, free-riding outside the coalition is

reduced due to strategic complementarity. Both effects lead to faster com-

pletion. Thus, partial harmonization leaves everybody better off.
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4.6 Conclusion

I have studied a situation in which a public project is provided through pri-

vate contributions with convex costs. A continuum of symmetric completing

equilibria exists with symmetric players and commitment. Since the first

best solution is among them, this is the natural outcome with potential pre-

play communication. If asymmetric players are allowed for, or if players do

not simultaneously commit to their contribution paths, delay will occur in

equilibrium. Alternatively, the project may not even be carried out at all.

These inefficient equilibria with delay have their origins in distributional con-

cerns, i.e. the first mover’s incentive to exploit the followers and the missing

compensation mechanisms in the case of asymmetric costs and benefits. The

results parallel the static provision game of a discrete public good to some ex-

tent. However the dichotomy provision versus non-provision is complemented

by the delay dimension’s inefficiency. The possibility of stretching out contri-

butions to reduce costs eases some of the strong distributional implications

of some of the static equilibria.

A time consistency problem arises if agents cannot commit to a con-

tribution path. This causes all agents to delay their contributions so that

inefficiently late completion of the project results. If an agent contributes

efficiently fast early on, she is open to exploitation through the others later

on. These others can reduce their late contributions, knowing that the com-

pletion of the project is also in the interest of the early heavy contributor,

who will end up contributing relatively heavily later on as well. Delay rel-

ative to efficient completion increases in the number of agents if the size of

the project is proportional, since the dynamic free riding incentive becomes

stronger. Surprisingly, there is a range of symmetric commitment equilib-

ria whose completion times are longer than without commitment. Finally,
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individual contributions are strategic complements in the completing MPE.

This justifies the conjecture that a subgroup of agents who form a coalition

by harmonizing their contribution decisions reduces inefficient delay and will

leave everybody better off.

The results are valid in many microeconomic settings, such as the joint

development of some non-patentable innovation by a group of firms, the writ-

ing of a joint paper by a group of scientists, or the attempt of a group of

lobbyists to change a legislator’s opinion. They also have straightforward

policy implications for macroeconomic issues. Consider the examples of pol-

icy reform or stabilizations. The successful completion of such projects often

necessitates contributions, such as wage restraints or reduced fiscal spending

from various parties over a prolonged period of time. For these measures to

be successful, it is often important that combined contributions of the actors

involved reach a threshold value, say to qualify for support from the IMF or

to regain the confidence of financial markets. The groups involved often face

convex contribution costs originating from financial market imperfections or

tax smoothing arguments. Then the present model directly allows observed

delay or even failure to be traced to cost and benefit asymmetries with miss-

ing compensation mechanisms, non-simultaneous moves and the absence of

commitment devices. Furthermore, the results indicate that, if some parties

involved, such as a group of sectorial unions in the case of a wage restraint, or

regional governments in the case of reducing fiscal spending, can harmonize

their strategies, earlier and successful completion is more likely to result.
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4.7 Appendix

Proof of proposition 6: The Hamiltonian of the SWP is given as

H = −e−rt c

2
[x(t)]2 + λ∗(t)x(t). (4.8)

Consequently, the necessary conditions are then given by

∂H

∂x
= −e−rtcx(t) + λ∗(t) = 0 (4.9)

.

λ∗ = −∂H

∂k
= 0 => λ∗(t) = const (4.10)

[H]t=T +
∂
[

D
r
e−rT

]
∂T

= 0 (4.11)

The optimal individual contribution path follows directly from (4.9). Solving

the system of (4.9), (4.10) and (4.11) by making use of the initial and terminal

conditions (4.4) and (4.5) delivers the resulting completion time given in

proposition 1.�
Proof that T̄ is the cut-off point in proposition 7 : For the proof it

is helpful first to establish a lemma which establishes the fact that under com-

mitment individual actions can be perfectly summarized by the individual’s

planned project share and the planned termination time.

Lemma 1 For a given total project share a player plans to contribute, her

strategy is perfectly characterized by the terminal time chosen. The contri-

butions will start in t=0 and grow exponentially at rate r until the chosen

termination time is reached, i.e. xt = λ
c
ert ∀ t ∈ [0, T ] and xt = 0 ∀ t > T .

The value of λ depends on project share δ and the planned T in the following

way: δK =
∫ T

0
λ
c
ertdt.

Proof: The exponential contribution path follows directly from cost min-

imization. The present value of an additional marginal contribution should
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be kept constant. The relationship between δK, T and λ satisfies that the

project share is actually reached in the planned time.�
These general properties of the players’ contribution paths can now be

used to prove proposition 2. For simplicity, I normalize the project size to

one and demonstrate, for the two player case, that T̄ is indeed the cut-off

value above which it pays to take over some of the other players’ share, but

below which it does not. Suppose that player two chooses a project share of

one half and some T2 > T̄ . In this case it is never a best response for player 1

to choose the same completion time but some completion time smaller than

T2. To see this, consider the change in the net present value of costs and

benefits that result from reducing completion time. The NPV of player 1’s

costs is

NC1(T1) =

∫ T1

0

c

2

(
λ′

c
ert

)2

e−rtdt, (4.12)

where the value of λ′ has to be derived from the increased overall burden by

taking over part of player two’s contribution. If player 1 expects player 2 to

choose T2 > T̄ , then, by lemma 1, he also expects an exponential contribution

path for player 2 fulfilling 1
2

=
∫ T2

0
λ2

c
ertdt. This gives λ2 = rc

2[erT2−1]
, so that

player two’s cumulated contribution evolves according to
.

k2(t) = r

2[erT2−1]
ert,

which can be solved as k2(t) =
[ert−1]

2[erT2−1]
. Therefore player 1 concludes for

himself that, if he chooses to complete at some T1 < T2, the completion

constraint will read

1

2
+

(
1

2
−
[
erT1 − 1

]
2 [erT2 − 1]

)
=

∫ T1

0

λ′

c
ertdt (4.13)

1

2
+

(
1

2
−
[
erT1 − 1

]
2 [erT2 − 1]

)
=

λ′

rc

[
erT1 − 1

]

rc

(
1 − [erT1−1]

2[erT2−1]

)
[erT1 − 1]

= λ′
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rc

(
1

[erT1 − 1]
− 1

2 [erT2 − 1]

)
= λ′

Substituting into the cost function and solving the integral gives

NC1(T1) =
cr

2

[
1

(erT1 − 1)
− 1

[erT2 − 1]
+

[
erT1 − 1

]
4 [erT2 − 1]2

]
. (4.14)

Then, the change in costs is given as

∂NC1(T1)

∂T1

=
cr

2
rerT1

(
1

4 [erT2 − 1]2
− 1

(erT1 − 1)2

)
(4.15)

The change in the NPV of the returns is given by ∂
∂T1

[D
r
e−rT1 ] = −De−rT1 .

Evaluating these expressions at T1 = T2 a condition is derived for when it is

better to choose some smaller T1 :

De−rT2 >
cr

2
rerT2

(
− 1

4 [erT2 − 1]2
+

1

(erT2 − 1)2

)
(4.16)

This holds as an equality precisely at T2 = T̄ , so that it pays to take over

some share, if T2 > T̄ , and to choose the same time, T1 = T2, if T ∗ ≤ T2 <
−
T .

The same reasoning can be applied in the general n-player case to derive T̄

as given in proposition 2.�
Proof of proposition 8: (i) First note that IMP can be rewritten as

max
xi

J =
D

r
−
∫ T

0

e−rt
[ c

2
x2

i + D
]
dt (4.17)

s.t. the given constraints. To solve for the MPE, neglecting the constant

term, consider the Hamilton-Jacobi-Bellman equation of player i

−Vt(t, k) + rV (t, k) = max
φi

[
− c

2
φ2

i − D + Vk

(
φi +

∑
j �=i

φj

)]
. (4.18)

Observe that the problem at hand is completely time independent, in the

sense that only the number of players and the missing contributions to com-

pletion matter for the current value of the project to the individual. Thus,
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Vt(t, k) = 0. Furthermore, the first order condition of the maximization

problem on the right hand side is given as φi = Vk

c
. Re-substituting gives

rV (t, k) = − c

2

(
Vk

c

)2

− D + Vk

(
Vk

c
+
∑
j �=i

φj

)
, (4.19)

and assuming symmetry

rV (t, k) = (n − 1

2
)
V 2

k

c
− D. (4.20)

This non-linear differential equation can be solved as follows. The quadratic

nature of the problem leads to the conjecture that the value function itself

may be quadratic, V (k) = α + βk + 1
2
γk2. Substituting this into the above

gives

rα + rβk +
1

2
rγk2 =

n − 1
2

c

(
β2 + 2βγk + γ2k2

)− D (4.21)

This can only hold, if the following three equations hold

1

2
rγ − n − 1

2

c
γ2 = 0 (4.22)

rβ − n − 1
2

c
2βγ = 0 (4.23)

rα − n − 1
2

c
β2 + D = 0 (4.24)

From (4.22) it must be that either γ = 0 or γ = cr
2(n−(1/2))

. If γ = 0, β = 0 and

consequently α = −D/r. This corresponds to the non-completing perfect

Markov equilibrium, in which no one ever contributes. If γ = cr
2(n−(1/2))

,

(4.23) always holds for any β. Now we can use the boundary condition α +

βK+ 1
2
γK2 = 0, such that α = −βK− 1

2
cr

2(n−(1/2))
K2. Substituting into (4.24)

and solving the resulting quadratic equation gives β =
2
√

cD(n−(1/2))−crK

2(n−(1/2))

as the positive solution. Consequently, the project’s parameter must fulfill

2
√

cD (n − (1/2)) ≥ crK for the completing equilibrium to exist.
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Now consider the corresponding evolution of k :

.

k =
n

c
[γk(t) + β] . (4.25)

This can be solved as

k(t) = −β

γ
+ Ze

γn
c

t (4.26)

where Z is a constant that can be determined by the initial condition k(0) =

0, such that Z = β
γ
. Resubstituting delivers the progress of the project as a

function of time k(t) = −β
γ

+ β
γ
e

γn
c

t. Setting k(t) = K this can be solved for

completion time T :

TMP =
c

γn
ln

(
1 +

Kγ

β

)
.

(ii) Without loss of generality normalize the benefits, D = 1. Then the claim

TMP > T ∗.becomes

2n − 1

rn
ln

[
2
√

c(n − (1/2))

2
√

c(n − (1/2)) − crK

]
>

1

r
ln

[
1 + rK

n

√
c/2

1 − c
2

r2K2

n2

]
(4.27)

<=>

[
2
√

c(n − (1/2))

2
√

c(n − (1/2)) − crK

] 2n−1
n

>

[
1 + rK

n

√
c/2

1 − c
2

r2K2

n2

]

<=>


 1

1 − crK

2
√

c(n−(1/2))




2n−1
n

>

[
1

1 − rK
n

√
c
2

]
.

This will always be true, if

crK

2
√

c(n − (1/2))
>

rK

n

√
c

2

<=> n >
√

2(n − (1/2)),

which holds for all n ≥ 2.�




