
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 87.77.118.212

This content was downloaded on 22/01/2015 at 10:56

Please note that terms and conditions apply.

Quantum field tomography

View the table of contents for this issue, or go to the journal homepage for more

2014 New J. Phys. 16 123010

(http://iopscience.iop.org/1367-2630/16/12/123010)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/16/12
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Quantum field tomography

A Steffens, C A Riofrío, R Hübener and J Eisert
Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, D-14195 Berlin,
Germany
E-mail: adrian.steffens@fu-berlin.de

Received 8 August 2014, revised 20 October 2014
Accepted for publication 31 October 2014
Published 2 December 2014

New Journal of Physics 16 (2014) 123010

doi:10.1088/1367-2630/16/12/123010

Abstract
We introduce the concept of quantum field tomography, the efficient and reliable
reconstruction of unknown quantum fields based on data of correlation func-
tions. At the basis of the analysis is the concept of continuous matrix product
states (cMPS), a complete set of variational states grasping states in one-
dimensional quantum field theory. We innovate a practical method, making use
of and developing tools in estimation theory used in the context of compressed
sensing such as Prony methods and matrix pencils, allowing us to faithfully
reconstruct quantum field states based on low-order correlation functions. In the
absence of a phase reference, we highlight how specific higher order correlation
functions can still be predicted. We exemplify the functioning of the approach
by reconstructing randomized cMPS from their correlation data and study the
robustness of the reconstruction for different noise models. Furthermore, we
apply the method to data generated by simulations based on cMPS and using the
time-dependent variational principle. The presented approach is expected to
open up a new window into experimentally studying continuous quantum sys-
tems, such as those encountered in experiments with ultra-cold atoms on top of
atom chips. By virtue of the analogy with the input–output formalism in
quantum optics, it also allows for studying open quantum systems.
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1. Introduction

Quantum theory predicts probability distributions of outcomes in anticipated quantum
measurements. The actual problem encountered in practice, however, is often not so much
concerned with predicting certain outcomes of specific measurement procedures, but rather with
reconstructing the unknown quantum state at hand that is compatible with precisely such
measurement outcomes. This task of reconstructing states based on data—possible under
certain conditions of completeness or other reasonable assumptions—is called quantum state
tomography. For finite-dimensional quantum systems, this task is feasible and is routinely used
in experiments. However, the number of parameters to be determined scales exponentially with
the system size: full quantum state tomography is highly inefficient. This is even so much less
of a problem than one might at first be tempted to think. It was one of the major insights in the
field in recent years to recognize that economical or efficient quantum state tomography is
distinctly possible for systems with many degrees of freedom. In fact, in most physically
relevant questions, fully unconstrained quantum state tomography may be said to solve the
‘wrong problem’. One is surely often not interested in arbitrary states, but only in those states
that one is expected to encounter in practice, which are naturally more restricted.

In the context of compressed sensing tomography [9, 14] or matrix product states (MPS)
tomography [1, 5, 34], identification of quantum systems with many degrees of freedom is
indeed possible. The key step is to identify the right model in which to represent the states, e.g.,
approximately low-rank states or those with clustering correlation functions. In the context of
MPS tomography, the notion of a model refers to a meaningful variational class of states that
provably captures all states exhibiting low entanglement [8, 41]. In this sense, tomography is
efficiently possible for any system size. In fact, by increasing the bond dimension, an arbitrary
state can be well approximated. Quite similar to the mindset of compressed sensing, a ‘sparsity
of commonly encountered states’ is heavily used for the benefit of tomography.

In quantum field theory, where one has to consider an infinite number of degrees of
freedom, the situation is in principle aggravated. Analogously, a moment of thought reveals that
to think about quantum field tomography in the sense of trying to ‘fill an infinite table with
numbers’ is rather ill-guided. This is not the actual problem one aims at solving in any practical
context—one again needs to identify the appropriate model and the right ‘sparsity structure’.

In this work, we introduce the concept of quantum field tomography, tomography of
continuous systems in quantum field theory, and provide a practical and feasible method for
achieving this. We do so by drawing and further developing ideas from the study of continuous
matrix product states (cMPS) [16, 35, 47], methods of how to assess higher order correlation
functions in that context [24], as well as a machinery from statistical estimation theory, such as
a Prony analysis [38] and matrix pencil methods (MPM) [21, 22], which are here brought to a
new context. In fact, these methods of estimation have not been considered before in the context
of quantum state reconstruction and are expected to be interesting in their own right. The basis
of the analysis are low-order multi-point correlation functions directly accessible in many
common current experiments.

This approach opens up a new window into grasping the physics of continuous quantum
systems in equilibrium and non-equilibrium. Instead of having to make a physical model (e.g.,
define a Hamiltonian) and checking for the plausibility of it, one can—based on data of
correlation functions—reconstruct the quantum field itself. Such an approach seems particularly
appealing when studying one-dimensional continuous bosonic models such as ultra-cold atoms
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on top of atom chips [13, 27, 28]. What is more, if only partial data is available, say, in the
absence of a phase reference frame, higher-order correlation functions of the same type can be
predicted as well. The starting point of the analysis is what is called ‘Wickʼs theorem for MPSs’
[24], which is here brought to a new level and transformed into a practical method of
reconstructing unknown cMPS from correlation function data.

This work is structured as follows. In section 2, we will give a short overview of the
concept of cMPS [16, 35, 47] as well as what can be called a ‘Wick theorem’ for this class of
states [24], aiming as a preparation for the following technical sections. In section 3, we will
describe in great technical detail how to reconstruct a field state from its low order correlation
functions and give a complete MPS description of it. The limitations of this method are
investigated in section 4. In section 5, we will demonstrate the method using simulated data
from random cMPS and apply the method to the ground state of the Lieb–Liniger model, a
prototypical integrable model in quantum field theory [3, 30]. The data used here have been
generated using a cMPS-based simulation based on the time-dependent variational principle
[6, 15, 17]. The impact of noise in real world-scenarios on the method is investigated here. In
section 6, we summarize and conclude this work.

2. Background

In this work, we are concerned with one-dimensional quantum fields with fast decaying spatial
correlations. Analogous to the case of many-body quantum systems, successfully described by
the MPS formalism, there is a variational class of states specially suited to study such systems:
the cMPS [35, 47].

2.1. cMPS

In this section, we briefly review the basics of the cMPS formalism. For a review and
comprehensive discussion of the computation of correlation functions, see, e.g., [16].

2.1.1. Basic definitions. A translationally invariant cMPS with periodic boundary conditions
and one species of bosonic particles is defined as

∫ψ Ω= Ψ⊗ + ⊗⎡
⎣⎢

⎤
⎦⎥

( )Tr e , (1)Q R
x Q R x

, aux
d ˆ ˆ ( )

L

0

†

where the collection of field operators Ψ xˆ ( ), ∈x L[0, ], obey the bosonic commutation
relations of the free field

Ψ Ψ δ= −⎡
⎣⎢

⎤
⎦⎥x y x yˆ ( ), ˆ ( ) ( ), (2)

†

Ω is the vacuum state vector, ∈ ×Q R, d d are matrices acting on an auxiliary d-dimensional
space , the ‘virtual space’, and constitute the variational parameters of the class. L is the
length of the closed physical system,  denotes the path ordering operator and Traux traces out
the auxiliary space.

The parametrization in (1) by Q and R is not unique, i.e., there is and additional gauge
freedom. Namely, when simultaneously conjugating Q and R with an invertible matrix G [16],
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= −Q G QG˜ , (3)1

= −R G RG˜ , (4)1

then the two resulting state vectors still represent the same state, i.e., all expectation values are
invariant under this transformation.

2.1.2. Related physical processes. A useful interpretation of the correlations in cMPS can be
given in terms of a d-dimensional (auxiliary) quantum system ≅ d interacting with a one-
dimensional field  [35]. The Hamiltonian of the joint system is given by

 Ψ Ψ= ⊗ + ⊗ + ⊗H x K R x R xˆ ( ) ˆ ˆ ( ) ˆ ( ), (5)
† †

where ˆ is the identity on the field, ∈ ×K d d the Hamiltonian of the free evolution of the finite

dimensional system, and Ψ⊗R xˆ ( )
†

the coupling between the system and the field with
∈ ×R d d . Note that H evolves in position, rather than time—in this picture, both are by

construction equivalent. Starting with the state vector φ Ω〉 〉| |i , where φ 〉 ∈ | i and the vacuum
Ω〉 ∈ | , and evolving over ∋L x[0, ] , we formally arrive at

 ∫φ Ω φ Ω= Ψ− ⊗ − ⊗ + ⊗  ( )U Lˆ (0, ) : e , (6)i
x K R R R x

i
i d ˆ 1

2
ˆ i ˆ ( )

L

0

† †

using the Baker–Campbell–Hausdorff formula and the fact that Ψ φ Ω⊗ 〉 〉 =R xˆ ( )| | 0i
† . By

setting

= − −Q K R Ri
1
2

, (7)†

projecting onto φ〈 ⊗ | ˆ
i to decouple  from  , and summing over a complete orthonormal

basis of all φ 〉| i , we again obtain equation (1). This shows the interpretation of the cMPS
formalism in the sequential preparation picture of MPS [36].

In this picture, we interpret K to be the Hamiltonian of a virtual particle in the auxiliary
space that mediates field interactions. Even more [35], the dynamical behaviour of the auxiliary
system  can be modelled by computing the derivative of

ρ ρ Ω Ω= ⊗  
⎡
⎣⎢

⎤
⎦⎥( )x U x L U x L( ) Tr ˆ ( , ) (0) ˆ ( , ) , (8)

†

where Tr means tracing out the physical system  . This yields the ordinary differential
equation

ρ ρ ρ ρ= − + −
+ ⎡⎣ ⎤⎦x

x K x R x R R R x
d
d

( ) i[ , ( )] ( )
1
2

, ( ) , (9)† †

which is a master equation in Lindblad form, governing the Markovian evolution of ρ, where
R plays the role of dissipative quantum jump (Lindblad) operators. Although arbitrary Q and R
lead to a valid cMPS, not all pairs give rise to an effective Hamiltonian K via equation (7). For
this, it is required that

+ + =Q Q R R 0. (10)† †

However, arbitrary Q and R can in general be transformed into a specific gauge where they fulfil
this equation.
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2.2. Correlation functions in cMPS

The mathematical relations between the n-point functions are the starting point for our
tomography algorithms, hence we give a brief summary at this point. A quantum field state can
be completely characterized by all the possible normal expectation values constructed from

Ψ̂ (. ) and Ψ̂ (. )
†

and their commutation relations. In this work, we will focus on density-like

correlation functions, i.e., for each position ∈x L[0, ]k , =k n1 ,..., , both operators Ψ xˆ ( )k
†

and
Ψ xˆ ( )k exist within the expectation values. Because of translational invariance, we can set

=x 01 without loss of generality. The expectation value

ψ Ψ Ψ Ψ Ψ ψ〈 〉x x x x| ˆ ( )... ˆ ( ) ˆ ( )... ˆ ( ) |Q R n n Q R,
†

1
† †

1 , can be computed as

τ τ = ⊗ ⊗ ⊗τ τ τ
−

⎡⎣ ⎤⎦( ) ( ) ( )C R R R R R R( ,..., ) : Tr e ... e e , (11)n
n

T T T( )
1 1

n 2 1

(see, e.g., [16]), with the transfer matrix

 = ⊗ + ⊗ + ⊗T Q Q R R: , (12)d d

and the positive distances τ = −+x xj j j1 for = −j n1 ,..., 1 and τ = −L xn n; the overline
denotes complex conjugation. Correlation functions of cMPS are given by expressions
involving only the auxiliary space. Static properties of a quantum field with one spatial
dimension are hence related to non-equilibrium properties of a zero-dimensional system. In this
sense, they have been referred to as being ‘holographic quantum states’ [35].

For a normalized cMPS, the eigenvalues of T are all complex with negative or zero real
parts, due to the analogy to quantum channels [48]. This leads to finite expectation values in the
thermodynamic limit → ∞L . Furthermore, assuming that T is diagonalizable, which is in
particular the case if its spectrum is non-degenerate, the n-point function (11) can be further
simplified to a sum of exponentially damped oscillatory terms

∑τ τ ρ= λ τ λ τ
→∞

−
=−

−
− −Clim ( ,..., ) e ... e , (13)

L

n
n

k k

d

k k k
( )

1 1

,..., 1
, ,...,

n

n
k k n n

1 1

2

1 2 1
1 1 1 1

where

ρ =
− − − −M M M... . (14)k k k k k k k, ,..., 1, , ,1n n n n1 2 1 1 1 2 1

The matrix ∈ ×M d d2 2
is defined as = ⊗− ( )M X R R X1 , where X is a change-of-basis matrix

such that −X TX1 is diagonal and compatible with the ordering of the eigenvalues λ{ }k . In the
following, we will work exclusively in the thermodynamic limit and, for simplicity, use C n( )

also to denote n-point correlation functions in this limit.
A first step to reconstruct a cMPS would be to identify ρ

−
{ }k k k, ,..., n1 2 1

and λ{ }k . That this is

in principle possible can be seen by considering the Laplace transform of C n( )

∫ τ τ= ∈τ
∞

− −
− C s ss( ) d e ( ), ,..., , (15)n n n

n
s( )

0

1 · ( )
1 1
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which has the simple form

∑
ρ

λ λ
=

− ⋯ −= −−

−

−


( ) ( )s s

s( ) . (16)n

k k

d
k k k

k k n

( )

,..., 1

, ,...,

1 1n

n

n1 1

2

1 2 1

1 1

Each of the −d n2( 1) combinations of T eigenvalues appears as a pole of  n( ) in  −n 1 together with
the corresponding residue in the numerator. If all the eigenvalues are different, i.e., the spectrum
of T non-degenerate, and all residues non-zero, then all residues are distinguishable as well.
Since the Laplace transform itself proved to be infeasible for practical reconstruction
algorithms, we will present alternative ways in the following. Independently of this, we want to
keep calling the eigenvalues λ{ }k the poles and ρ

−
{ }k k k, ,..., n1 2 1

the residues of the n-point
function. In the following, we require the spectrum of T to be non-degenerate.

The structure of the correlation functions with the residues as products of entries of one
matrix, equation (14), allows for expressing higher order correlation functions by lower order
correlation functions, very much reminding of the Wickʼs theorem in quantum field theory [24].
In this sense, we will recover M from the residues. We will describe this in detail below.

2.3. Additional symmetries

In the remainder of this work, we will make use of some symmetries that the cMPS fulfil. Here,
we briefly state them. By construction, for each non-real entry of ⊗R R and T there exists
another entry containing its complex conjugate. More precisely, one can show that

Λ Λ⊗ = ⊗R R R R (17)d d

and Λ Λ =T Td d , with

∑Λ = ⊗
=

E E: (18)d

j k

d

j k k j

, 1

, ,

and =E e ej k j k
T

, , the dyadic product of the canonical column vectors ej, [12, section 2.5].

Hence, if λ is an eigenvalue of T with eigenvector v then Λ Λ λ=T v vd d , and since Λ =( )d d
2 2,

we obtain Λ λ Λ=T v v( ) ( )d d , such that the spectrum of T is closed under complex conjugation.
This fact also follows from the channel property of cMPS as discussed in [48].

For the reconstruction algorithms we will discuss below, it is instrumental to fix an
unambiguous ordering of the eigenvalues of the transfer matrix T, which makes its diagonal
matrix D and furthermore the matrixM unambiguous, too. If we order the eigenvalues in D such
that the κ ∈ d{1 ,..., }2 real eigenvalues constitute a block and the remaining κ−d2 are
arranged in complex conjugate pairs (e.g., ordering by descending real part), then D obeys the
symmetry relation Ξ Ξ =κ κD Dd d, , with the permutation matrix

Ξ σ= ⊕ ⊕κ κ
κ

=

−⎛
⎝⎜

⎞
⎠⎟: , (19)d

j

d

x,
1

( ) 22

where σx is the x-Pauli matrix. In addition, since X consists of the eigenvectors v of T as column
vectors, Λ vd is the eigenvector of λ , when v corresponds to λ. Moreover, since Ξ κd,

interchanges the columns back, we have that Λ Ξ =κX Xd d, . Using this fact and the definition

= ⊗−M X R RX1 , we obtain the symmetry relation Ξ Ξ =κ κM Md d, , for the matrix M. This
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relation connects each entry of M with its complex conjugate and, via equation (14), each
residue with its complex conjugate. As with the poles, the set of residues is closed under
complex conjugation for density-like correlation functions. These symmetries can also be used
for a systematic least squares approach to reconstruct the poles and residues, see section 3.2.

3. State reconstruction

Having established the structure of the correlation functions in cMPS, i.e., the structure of the
data of our reconstruction problem, it remains to develop an appropriate protocol to extract the
information encoded in the data. Given an n-point density-like correlation function of order 3 or
higher corresponding to a cMPS Ψ 〉| Q R, , we will show that, in most cases, it is in principle
possible to reconstruct the parameter matrices Q and R up to an arbitrary gauge and phase, and
to reproduce all n-point functions.

We are dealing with a so-called inverse problem, a large class of problems that make ‘use
of the actual results of some measurements of the observable parameters to infer the actual
values of the model parameters’ [44]. Many inverse problems are ill-conditioned—a small
change in the measurements can lead to a huge change in the model parameters. In this chapter
we will examine the required steps for cMPS reconstruction, see figure 1, and the respective
main factors that influence their performance regarding perturbed input data. Each step will be
discussed in a separate section. We will see that in particular the first and the last step can be
notably ill-conditioned.

3.1. Reconstruction steps

The reconstruction of a generic, translationally invariant cMPS in the thermodynamic limit
comprises the following steps, which are represented in figure 1:

Figure 1. The particular reconstruction steps starting with the input data, an n-point
correlation function of a cMPS Ψ 〉| Q R, , and ending with the variational parameter
matrices Q and R, that fully characterize the state. Alternatively, the state can likewise
be described by K and R. With this knowledge, one can compute other ′n -point
correlation functions and compare with the input data to obtain evidence for a successful
reconstruction.
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(1) The first step in processing the input data is to extract the poles λ{ }k and the residues
ρ

−
{ }k k k, ,..., n1 2 1

from a density-like n-point correlation function, ⩾n 3,

∑τ τ ρ= λ τ λ τ
−

=−

−
− −C ( ,..., ) e ... e , (20)n

n

k k

d

k k k
( )

1 1

,..., 1
, ,...,

n

n
k k n n

1 1

2

1 2 1
1 1 1 1

which is measured and contains additional noise and experimental imperfections.

(2) In the second step, the matrix M is determined from the residues

ρ =
− − − −M M M... , (21)k k k k k k k, ,..., 1, , ,1n n n n1 2 1 1 1 2 1

and the matrix D is determined from the poles. This can be achieved using certain invariances
in the correlation functions that led to the formulation of Wickʼs theorem for MPSs.

(3) In the final step, the cMPS parametrization matrices Q and R can be extracted from the
matrices M and D by imposing a specific gauge. Additionally, and after another gauge
transformation, the Hamiltonian K of the auxiliary system can be computed from the
matrices Q and R.

In order to only generate and predict higher order density-like n-point functions, it is in
general sufficient to use the matrices D and M from the second step without any further
reconstruction steps. This is in general much more robust against noise than the full
reconstruction. Furthermore, we can leave out some of the poles (together with the
corresponding entries in M) that barely contribute to the n-point functions. We will follow
this approach in accompanying work when analysing experimental data [43].

3.2. Reconstructing the poles and residues

When analysing spectra of sampled linear combinations of sinusoidal functions, methods based
on integral transforms like the discrete Fourier transform seem like a natural choice. In our case,
however, we deal with exponentially damped sinusoids with potentially similar frequencies,
which results in heavy broadening and overlapping of the corresponding spectral peaks. In this
case, the damping factors would have to be determined from the corresponding peaks’ width,
and, in view of experimental data, we cannot assume too many sampled data points. Hence, the
spectral resolution would be rather low. Only for certain cases the peaks in the frequency
spectrum are sufficiently separated to directly determine the poles in a feasible way using
integral transforms.

Another class of methods for data fitting that may come to mind is based on nonlinear
(e.g., least squares) minimization approaches. Clearly, the number of parameters critically
determines the computational effort and the successful applicability of the algorithm. The
results, however, can be improved by restricting ourselves to a likely parameter region as a
result of a preceding Fourier transform. Taking into account the Λd and Ξ κd, symmetries and
assuming normalized n-point functions, the number of real parameters can be reduced to

−nd 22 . Only for unambiguous global minima (which is usually not the case for high
damping factors in combination with noise) and for very small bond dimension, we obtained
satisfactory results in acceptable time. Least squares approaches for correlation functions
with larger n are at best feasible when using Q and R as parameters, otherwise the number of
parameters would become too large. In spite of these drawbacks, a least squares algorithm
could be used as an additional refinement step with initial values from other procedures, like
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the ones discussed below; nevertheless the number of parameters is still limiting. On
the other hand, if we can only assume a small number of parameters and expect a
considerable amount of noise, the least squares method can be a robust alternative. For
example, for bond dimension d = 2, such nonlinear least squares approach can be feasibly and
successfully used.

Alternative minimization methods, e.g., simulated annealing, did not lead to
considerable improvements. However, the scaling of the computational effort with the
number of parameters can be significantly mitigated using iterative quadratic maximum
likelihood methods, but the application to correlation functions with >n 2 is not
straightforward [19, section 1.2.3].

Realizing the challenges of solving a nonlinear estimation problem, it seems logical to
exploit the structure of our particular model of the data to see if there are ways to more
efficiently solve the estimation problem. It turns out that for data structures that consist of
sums of damped oscillatory terms, it is possible to separate the estimation of poles and
residues of the function in two different linear estimation processes. In the following
sections, we describe two major approaches one can take to achieve such estimation.

3.2.1. Prony analysis. This technique is used in digital signal processing and its roots go
back to a method that was originally established by Prony in 1795 in the context of fluids
[38]. The main idea is to first recover the poles independently by determining the roots of a
polynomial computed from the signal (the correlation function) and then to insert the poles
into a system of linear equations for the coefficients, which is in principle solvable with the
usual linear algebra procedures. Pronyʼs method is a special case of linear prediction [19]
and has many further applications, e.g., as the starting point for nearest-neighbour detection
of atoms in optical lattices [26, 29]. The original method, however, is very sensitive to noise,
so that for working on experimental data we need to use several modifications, which we will
describe below. For further summaries and an introduction of the method, see for instance
[18, 31, 37].

Pronyʼs method is usually applied to -valued functions, corresponding to 2-point
functions, and for our purposes has to be extended to work with higher order n-point functions,
which can be done in a straightforward way. Therefore, in our description, we will start with the
one-dimensional case with signal function

∑τ ρ= λ τ

=

C ( ) : e . (22)
k

d

k
(2)

1

k

2

The function is sampled at a finite number of points and is available only for +N 1 points τ{ }j ,

which is τ =C C( ) :j j
(2) , =j N0 ,..., . We, thus, obtain a system of linear equations

ρ ρ+ ⋯ + =λ τ λ τ Ce e , (23)d1 0d1 0
2

2 0

ρ ρ+ ⋯ + =λ τ λ τ Ce e , (24)d1 1d1 1
2

2 1

ρ ρ
⋮

+ ⋯ + =λ τ λ τ Ce e . (25)d N1
N d N1

2
2

9

New J. Phys. 16 (2014) 123010 A Steffens et al



Once we have identified all poles λ{ }k , we can easily solve this system and are finished with the
reconstruction. As we will see, one requirement for Pronyʼs method is to sample the signal at
equidistant points τ Δτ= j ·j , ∈j N{0 ,..., }, and with μ=λ Δτe : k

k we arrive at

μ μ μ

μ μ μ

ρ
ρ

ρ

⋯
⋯

⋮ ⋮ ⋮
⋯

⋮ =
⋮

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

C

C

C

1 1 1

, (26)
d

N N
d
N

d N

1 2

1 2

1

2

0

1
2

2 2

where the poles are encoded in the (in general, non-square) Vandermonde matrix

μ= −
= +
=

 ( ): . (27)k
j

j N

k d

1
1 ,..., 1

1 ,..., 2

We must take care not to choose the sampling interval Δτ too large, since, considering the
Nyquist–Shannon sampling theorem [42], the sampling rate should in general be at least twice
the highest frequency ωsup of the signal spectrum π Δτ ω<2 ( ) 2 sup .

Vandermonde matrices will often be ill-conditioned—e.g., according to Gautschi [10], a
lower bound for the norm of the inverse matrix of  (for =N d2 and  invertible) is

∏
μ

μ μ
>

−
−

∞ ⩽ ⩽ =
≠

 ( )
max

max 1,
, (28)

l n m
m l

d
m

l m

1

1 1

2

which will get very large if two poles get close to each other. This fact hints at the intrinsic
limitations of this reconstruction method.

To determine the poles, we can regard the set μ μ{ ,..., }p1 as the roots of a polynomial d2

with real coefficients and degree d2 in the variable z,

∑

μ

=

= =
=




z a z

z

( ) ,

( ) 0 (29)

d

l

d

l
l

d k

0

2

2

2

for each =k N0 ,..., . Note that there are d2 values of μk but +d 12 of al. Such a polynomial
naturally exists—it is just the product of the linear factors μ−z( )k ,

∏ μ= −
=

 z z( ) ( ). (30)d

k

d

k
1

2

2

Our goal is to relate the set of coefficients a{ }l to the set of function values C{ }j . Once we have
all al, we can compute the roots of the corresponding polynomial (29) and obtain the poles
λ μ Δτ= ln ( )k k , =k d1 ,..., 2. To this end, we multiply the first line of equation (26) by a0, the
second by a1 and so on, and perform the sum,

∑ ∑ ∑ ∑ ∑ρ μ ρ μ= =
= = = = =

a C a a . (31)
l

d

l l

l

d

l

k

d

k k
l

k

d

k
l

d

l k
l

0 0 0 0 0

2 2 2 2 2

Now, by choice of the al, each μk is a root of  z( )d2 for all =k d1 ,..., 2 so that each sum over l
in equation (31) vanishes. Accordingly, we see that
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∑ =
=

a C 0. (32)
l

d

l l

0

2

Since μ∏ − = + ⋯= ( )z z1 ·k
d

k
d

1

2 2
, the coefficient ad2 belonging to the highest power is

equal to one. Hence, equation (32) becomes the recurrence relation

∑ = −
=

−

a C C . (33)
l

d

l l n

0

12

In order to compute the d2 coefficients −a a{ ,..., }d0 12 , we need at least d2 equations. More linear
independent equations are easy to obtain because the argument in equation (31) is still valid if
we shift Cl to +Cl m for any ∈m with + ⩽d m N2 :

∑ ∑ ∑

∑ ∑

ρ μ

ρ μ μ

=

= =

=
+

= =

+

= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

a C a

a 0. (34)

l

d

l l m

l

d

l

k

d

k k
l m

k

d

k k
m

l

d

l k
l

0 0 0

0 0

2 2 2

2 2

For d2 equations the largest index that appears is −d2 2 1 and our equation system looks like

⋮
⋱ ⋮

⋮ ⋱
⋮ = −

⋮

−

−

− − −
−

+

−

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

C C C C

C C C

C C

C

C C C

a
a

a

C

C

C

...

... ...

. (35)

d

d

d d d
d

d

d

d

0 1 2 1

1 2 3

2 3

2 3

1 2 3 2 2

0

1

1

1

2 1

2

2

2 2 2

2

2

2

2

Therefore, for d2 poles we need at least d2 2 sampling points −C C{ ,..., }d0 2 12 . The square matrix
on the left-hand side of equation (35) can be written as + = −C( )j k j k d, 0 ,..., 12 and has the form of a

Hankel matrix. If it is non-singular, the solution vector −a a( ,..., )d
T

0 12 is unique and can,
together with =a 1d2 , directly be replaced in (29), which in turn will yield the d2 poles in a
unique way. Hence, when reconstructing a function with d2 poles and residues, we need
precisely d2 2 sampling points to exactly solve the Hankel and the Vandermonde system,
provided that both matrices are not singular. This means that for small bond dimensions and
without noise the necessary resolution of the signal for a complete reconstruction is very low.

There are many established criteria for the invertibility [25, section 18] and inversion
algorithms [4, 45] of Hankel or Toeplitz matrices (equation (35) can also be rearranged as a
Toeplitz system). They are known to be potentially ill-conditioned, which reflects the inverse
nature of the problem, e.g., the spectral condition number of a real positive-definite N × N
Hankel matrix is bounded from below by −3 · 2N 6 [46]. In practice, recovering the poles is more
stable when oversampling the signal and using a higher pole estimate, i.e., working with a larger
(not necessarily square) Hankel matrix and a larger solution vector in equation (35), and solving
the equation system in a least squares sense. This boils down to applying the Moore–Penrose
pseudoinverse to the right-hand side of equation (35) to obtain the coefficients of the
polynomial, inserting the computed poles into equation (26) and discarding the + −N p1
surplus poles with the smallest associated residues.
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Note that instead of solving equation (35), we can also determine the kernel of
+ = −C( )j k j k d, 0 ,..., 12 , whose dimension is larger or equal to one due to equation (32). Only in the

latter case, which corresponds to the matrix in equation (35) being non-singular, we get a
unique (up to multiplication by a constant) solution vector a a( ,..., )d

T
0 2 . The constant does not

pose a problem because any multiple of a a( ,..., )d
T

0 2 yields the same roots of the associated

polynomial: α∑ == a z 0l
d

l
l

0

2

is equivalent to ∑ == a z 0l
d

l
l

0

2

. This method has proven to be
more robust towards noise in some cases [33] and can be generalized in an elegant way to
higher order correlation functions [39].

Unfortunately, in many cases, Pronyʼs method is highly susceptible to noise in the signal.
However, it presents a beautiful framework that shows that, in principle, it is possible to
reconstruct the poles and residues of a signal. Without noise, both poles and residues can be
determined exactly. In the next section, we describe a better algorithm for solving this type of
inverse problems, which is more stable for larger bond dimension and finer sample rates.

3.2.2. MPM. The original MPM was developed by Hua and Sarkar [21, 22] and can be directly
applied to our problem. As with the Prony algorithm, the poles are determined first and
independently from the residues. Although the MPM is related to Prony [40], it is considerably
less sensitive to noise [19, section 1.2] and can deal with higher sampling rates in a more stable
fashion. Once the poles are identified, the residues are found via a linear equation system in the
same way as in Pronyʼs method. Here, we will just describe how to determine the poles. For
simplicity, we will begin with the case of reconstructing a 2-point function and generalize to
higher order correlation functions in the following section.

A matrix pencilM of degree ∈n is a polynomial over  with matrix valued coefficients
∈ ×Mj

d d, γ γ= ∑ =M M( ) j
n

j
j

0 . As with the Prony algorithm, we start by forming the Hankel
matrix

=
⋮ ⋮ ⋮

∈

−

− − − −

− ×

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

C

C C C

C C C

C C C

:

...

...

...

, (36)

P

P

N P N P N

N P P[1]

0 1 1

1 2

1 2

( )

from the experimental data points −{ }C C,..., N0 2

∑ ∑ρ ρ μ= =λ Δτ

= =

C e , (37)j

k

d

k
j

k

d

k k
j

1

·

1

k

2 2

with integers N P, , such that − >N P P d, 2. Generally, the larger the number of samples N,
the better the estimation of poles becomes. The optimal value for P regarding noise sensitivity
typically lies between N 3 and N 2 [23]. In this method, we make use of the fact that C[1] can
always be decomposed as

=  C (38)[1]
1 2
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with Vandermonde matrices


μ μ μ

μ μ μ

= ⋮ ⋮ ⋮ ∈
− − − − − −

− ×
⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

1 1 ... 1

...

(39)
d

N P N P
d
N P

N P d
1

1 2

1
1

2
1 1

( )
2

2

2

and



μ μ

μ μ

μ μ

=
⋮ ⋮ ⋮

∈

−

−

−

×

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

1 ...

1

1 ...

, (40)

P

P

d d
P

d P
2

1 1
1

2 2
1

1
2 2

2

and the diagonal matrix ρ ρ= ( )diag ,..., d1 2 , as can easily be verified by using equation (38).

In addition to the Hankel matrix C[1], we construct a second Hankel matrix

=
⋮ ⋮ ⋮

∈+

− − + −

− ×

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

C

C C C

C C C

C C C

...

...

...

, (41)

P

P

N P N P N

N P P[2]

1 2

2 3 1

1 1

( )

which in turn can be decomposed as

=   C (42)[2]
1 0 2

with μ μ= ( )diag ,..., d0 1 2 , and consider the linear matrix pencil

γ γ− = −   ( )C C (43)d
[2] [1]

1 0 22

with γ ∈ . Since all μ j of 1 and 2 are distinct for a non-degenerate spectrum of T and

− >N L L d, 2, the matrices 1 and 2 have rank d2 and we can see that

= = = =   ( ) ( ) ( )C C drank rank rank rank( ) . (44)[1] [2]
1 0 2

2

Generically, the matrix pencil γ−C C[2] [1] will have the same rank, except for
γ γ μ μ= ∈ { },...,j d1 2 . In that case, the jth row of γ−( )d0 2 is zero, hence

γ− = −( )C C drank 1, (45)[2] [1] 2

and there exists a non-trivial vector v with

γ− =( )C C v 0. (46)[2] [1]

In this form, the complex number γ can be regarded as a solution of the generalized eigenvalue
problem (GEVP) (46). This means that the d2 non-zero generalized eigenvalues of equation (46)
are exactly the exponentiated poles λ Δ λ Δe ,..., et td1 2 . Equation (46) can be solved by a generalized
Schur decomposition of the matrix pair C C{ , }[2] [1] or by solving the ordinary eigenvalue
problem
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γ=
+( )C C v v (47)[1] [2]

with the pseudoinverse
+( )C[1] of C[1] [22]. After having determined the poles this way, they

can be inserted into a linear equation system to obtain the according residues, as with Pronyʼs
method.

3.2.3. Technical improvements. Several improvements can be made to the original MPM
approach including features from other reconstruction methods, which led to algorithms like
Pro-ESPRIT and TLS ESPRIT [23], which we mention for the sake of completeness.
Modifications based on structured low rank approximations [2, 32] did not lead to significantly
better results. Here, we will focus on the so-called state space MPM, which shows the highest
robustness towards noise of all direct MPM descendants [19, 23] and is the one we prefer to
implement.

In this context, we continue with equation (46), but instead of solving it directly, we
perform additional noise filtering steps via SVD rank truncations [20]. Performing separate
SVD truncations like in the original approach has proven to be less robust than performing a
joint SVD on C[1] and ∈ − ×C N P P[2] ( ) by

Σ Σ= =( ) ( )C C U V U V V, : , (48)[1] [2] † [1] † [2] †

with a unitary matrix ∈ −UU N P( ), Σ ∈ − ×N P P( ) 2 containing the singular values of the
concatenated matrices ∈ − ×C C( , ) N P P[1] [2] ( ) 2 , and ∈ UV V P( , ) (2 )[1] † [2] † . Note that V [1] and

∈ ×V P P[2] 2 are not unitary, in contrast to the matrix V V( , )[1] † [2] † , and are not directly related
to the unitary matrices from the separate SVDs. We insert equation (48) into equation (46),
yielding

γ Σ γ− = −( ) ( )C C v U V V v, (49)[2] [1] [2] † [1] †

and see that if γ is a generalized eigenvalue of the matrix pair V V{ , }[2] † [1] † , then so it is of
C C{ , }[2] [1] . Hence, we can just work with V V{ , }[2] † [1] † (or V V{ , }[2] [1] since the set of poles of
our n-point functions is to be closed under complex conjugation), and can completely forget
about the singular values in Σ. We now filter the signal given in equation (48) by keeping the d2

largest singular values and the corresponding singular vectors of V [1] † and V [2] †:

Σ ⟼( ) ( )U V V V V, , . (50)T T
[1] † [2] † [1]† [2]†

trunc

The GEVP we want to solve now is

γ− ′ =( )V V v 0, (51)T T
[2] [1]

with the filtered eigenvalues γ′ ∈ . Since ∈ ×V V,T T
P d[1] [2] 2

and ≫P d2, there is still surplus
information we can use to SVD filter equation (51) one more time. For higher robustness, we
repeat the truncation process, applying it to the concatenated matrix ∈ ×V V( , )T T

P d[1] [2] 2 2
,

Σ Σ= ′ ′ ⟼ ′ ′′ ′ ′ ′( ) ( ) ( )V V U V V U V V, , , (52)T T T T T T
[1] [2] [1] † [2] † [1] † [2] †

trunc

with ′ ∈ UU P( ), Σ′ ∈ ×P d2 2
, ′ ∈ UV d(2 )2 , ′ ∈ ×V T

d d22 2
and ∈′ ′ ×V V,T T

d d[1] [2] 2 2
.

Equation (51) then becomes
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γ Σ γ Σ γ− ′ = ′ − ′ ↦ ′ ′ − ″′ ′ ′ ′ ′( ) ( )V V U V V U V V (53)T T T T T T
[2] [1] [2] † [1] † [2] † [1] †

with the doubly SVD filtered eigenvalues γ″ ∈ . If there is no noise, then all the d2 generalized
eigenvalues of the matrix pencil ′ ′V V{ , }T T

[2] [1] are generalized eigenvalues of ′ ′V V{ , }[2] [1] , thus
generalized eigenvalues of C C{ , }[2] [1] and nothing else than the exponentiated poles

λ Δτ λ Δτe ,..., e d1 2 . With noise, we can assume that the filtered set of eigenvalues γ″{ } provide a
better estimate than the unfiltered γ{ } [20, 23]. Since ′VT

[1] † is invertible by construction,
everything boils down to solving an ordinary eigenvalue problem:

γ= ″′ − ′( )V V v v. (54)T T
[1] 1 [2]

This concludes the description of the state space MPM, which is our preferred technique for
pole reconstruction.

3.2.4. Generalization to higher dimensions. So far, we have developed the reconstruction
techniques for 2-point correlation functions. In this section, we show how to deal with higher
order functions and generalize the previous discussion. Additionally, we show how one can
improve the signal-to-noise ratio by exploiting redundant information in the higher order
correlation functions.

If, for an n-point function, we uniformly sample each tensor index with N sampling points,
we obtain a −n( 1)-dimensional array ∈

= −−
−

−( )Cl l
l l N

N
,...,

,..., 0 ,..., 1n
n

n

1 1
1 1

1
with

∑ ρ= λ Δτ λ Δτ

=
−

−

−
− −C e ... e . (55)l l

k k

d

k k
n l l

,...,

,..., 1
,...,

( )
n

n

n

k k n n
1 1

1 1

2

1 1
1 1 1 1

To extract the poles, we carry forward the approach of Zhu and Hua [49, chapter 17.11]. We fix
one index lj of −Cl l,..., n1 1 and sum over the other indices

∑=
=

≠

−

−C Cˆ : . (56)l
j

l
i j

N

l l
( )

{ } 0,

1

,...,j

i

n1 1

The summing provides averaging and hence increases noise stability. This procedure is only
possible because the poles and the sampling interval are the same for each index of the n-point
function data array. Inserting the definition for −Cl l,..., n1 1 and separating λ Δτe lk j j from the
summation of kj yields

∑= λ Δτ

=

C Cˆ ˇ e (57)l
j

k

d

k
j l( )

1

( )
j

j

j
k j j

2

with

∑ ρ= ⋯ ⋯λ Δτ λ Δτ λ Δτ λ Δτ

=
= −

≠

−
− − + + − −Č e e e e . (58)k

j

k d

l N
i j

k k
l l l l( )

{ } 1 ,..., ,

{ } 0 ,..., 1

,...,j

i

i

n
k k j j k j j k n n

2
1 1

1 1 1 1 1 1 1 1

Equation (57) can be be regarded as the components of a 2-point function with the sought-after

poles and C{ ˇ }k
j( )
j
, which only depend on kj, as its residues. The concrete values of these effective
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residues do not matter, since in this step we are only interested in the poles. We can average

further by summing the vectors = −C( ˆ )l
j

l N
( )

0 ,..., 1j j , each corresponding to the tensor direction j,
which leads to the N-component vector

= + + ⋯ + −( ) ( ) ( )( )C C C Cˆ : ˆ ˆ ˆ . (59)l
l l

l
l

l
l

n

l

(1) (2) ( 1)

The counting indices l{ }j do not depend on j, hence we omitted the j for clearness.

The vector C( ˆ )l still corresponds to a 2-point function with the correct poles and we can
now apply the established matrix pencil, Prony or a least squares method to obtain the poles.
Additionally, the averaging results in an effective reduction of the standard deviation of the
(white) noise by a factor of − − −n N(( 1) )n 1 1. Regarding the residues, we can reshape the array
of the poles into a matrix and obtain the residues as the solution vector of the corresponding
linear equation system in the least squares sense.

3.3. Extracting M

After having determined the poles and residues of the input correlation function—our first
reconstruction step as discussed in section 3.1—the next step is to identify the matrix M. From
M together with D, the variational parameter matrices R and Q can be determined.

First, we note that conjugating M with a diagonal matrix whose first entry is equal to one
does not change the density-like correlation functions. This observation can be used to require
that =M 1j1, for =j d2 ,..., 2, which is possible if the M j1, are non-zero. For M1,1 to be equal to
one, we need to normalize the n-point function by dividing by

Ψ Ψ Ψ Ψ = Mˆ ˆ . (60)Q R Q R

n
n

,
†

, 1, 1

In particular, we obtain ρ ρ= ⋯⋯ =M1 1 ·k
n

k k, 1 ,..., 1
( )

,1
(2)

1 1 1
. For clearness, in this section we mark

the dimensions of the residues with an additional index. We can compute Mi j, for any

=i j d, 1 ,..., 2 and ⩾n 3 via

ρ

ρ

ρ

ρ
= = =

M M

M
M . (61)

j i
n

j
n

j i

j

i j j

j
i j

, , 1 ,..., 1
( )

, 1 ,..., 1
( )

,
(3)

(2)

, ,1

,1
,

From this equation we can see that we need n to be larger than three, since a 2-point function
can at best provide the first column of M.

In practice, we may want to reduce noise by averaging over multiple independent
prescriptions for Mi j, , namely

∑
ρ

ρ
=

−
=−

−

−

M
d

1
. (62)i j n

k k

d
k k j i

n

k k j
n, 2( 3)

,..., 1

,..., , ,
( )

,..., , , 1
( )

n

n

n1 3

2

1 3

1 3

By rearranging the residues, we can express higher order expectation values in terms of
lower order:
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∏

ρ

ρ
ρ

ρ

=

=

⋯

=
=

−

− − − − − −

− − −

− −

− −
− −

+

M M M M

M M
M M

M M
M

M M

M M
M M

...

. (63)

k k
n

k k k k k k

k k k
k k

k k
k k

k k

k k
k k k

k k
r

n
k k

k

,...,
( )

1, , , ,1

1, ,
,1 1,

1, ,1
,

,1 1,

1, ,1
, ,1

,
(3)

2

2
,

(3)

(2)

n n n n n n

n n n

n n

n n

n n

r r

r

1 1 1 1 2 2 3 1

1 1 2

2 2

2 2

2 3

2 2

2 2

2 1 1

1 2

1

This is the Wickʼs theorem for MPSs [24]. At this point, we can check the validity of the
reconstructed M, since it necessarily must obey the symmetry Ξ Ξ =κ κM Md d, , for accordingly
ordered spectrum of T.

3.4. Extracting R

To obtain a complete cMPS description of the system at hand, it is necessary to reconstruct the
variational parameter matrices R and Q. We have that, by definition,

= ⊗− ( )M X R R X (64)1

and λ= = −D X TXdiag( )j
1 with the change-of-basis matrix X indeterminate. Because of the

gauge invariance of Q and R, we can determine them only up to conjugation with an invertible
matrix and therefore will not need to determine the concrete form of X at all. In this sense, there
are no specific R and Q matrices to be reconstructed. Nevertheless, we continue using the terms
R and Q, thinking, without loss of generality, of matrices that are in a specific, yet arbitrary,
gauge.

Our strategy to recover the variational parameter matrices is to choose R diagonal, which
can be done in almost all cases, and determine Q accordingly. Equivalently, one could likewise
require Q to be diagonal and determine R accordingly, but here we use the former approach. We
first diagonalize ↦ =−M Y MY M1

diag with the change-of-basis matrix Y. SinceM, as well as its
similar matrix ⊗R R, has the spectrum rr{ }i j with =i j d, 1 ,..., , where r r,..., d1 are the
eigenvalues of R, the entries ofMdiag can be reordered with a permutation matrix O such that the
resulting matrix has the form of a Kronecker product of two diagonal matrices Rrec

= ⊗−O M O R R . (65)1
diag rec rec

Since Rrec by construction is similar to R, we can write it as = −R W RWrec
1 , where W is the

change-of-basis matrix that diagonalizes R. Diagonalizing and reordering M thus yields R in a
certain gauge, namely −W RW1 , and we can identify Rrec with a reconstruction of the matrix R.

Note that XYO has a Kronecker product structure as well, which will be important for
reconstructing Q. Rewriting equation (65), we have

⊗ =− − −( )XYO R R XYO O Y MYO( ) (66)1 1 1

which is equal to ⊗R Rrec rec, and, by definition of Rrec and using a Kronecker product identity,
hence equal to
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⊗ ⊗ ⊗−( ) ( )( )W W R R W W . (67)1

There is a little subtlety in that, in general, numerical diagonalization algorithms will not
provide Y such that XYO is a Kronecker product, but usually such that each eigenvector, a
column of Y, is normalized, yielding a matrix YN. This matrix can also be written as YN = YDY

with a diagonal matrix DY, where XYDYO in general will not correspond to a Kronecker
product. This does not affect Rrec, since diagonal matrices are invariant under conjugation with
other diagonal matrices.

To determine O and extract Rrec from ⊗R Rrec rec, it is important to take into account that
multiplying R with an arbitrary complex phase factor φei does not change ⊗R R. In the same
way,  ⊗ + ⊗Q Qd d is left invariant when adding χi · d with χ ∈ to Q. Hence, the
transfer matrix remains unchanged as well. Clearly, out of density-like correlation functions, R
and Q can only be reconstructed up to these factors since Q and R only appear in these
Kronecker product terms.

By fixing φei , one diagonal entry rj of Rrec can be assumed to be real and Mdiag can be
rearranged to a Kronecker product by successively checking if for an entry M l ldiag, , the fraction

M rl l jdiag, ,
2
yields another (real) entry of Mdiag (or, in practice with noise, is sufficiently close

to it), which must be the case for a Kronecker product matrix with spectrum rr{ }i j . After
repeating this procedure for all entries of Mdiag, all eigenvalues r{ }j are determined, in a fixed
order that determines the order of Rrec and O as well. Now, it remains to determine Q, which
will be done in the next section.

3.5. Extracting Q

The second parameter matrix to be reconstructed, Q, will in general not be diagonal in the same
gauge where R is diagonal. The goal is to find Q in the appropriate gauge. First, we take the
matrix D, which contains the eigenvalues of T, subtract the reconstructed matrix M, and see that
in principle all the information about Q is stored here:

 

− = − ⊗
= ⊗ + ⊗

− −

− ( )
D M X TX X R R X

X Q Q X

· ·

. (68)d d

1 1

1

By conjugating this with the matrix YO, which is the same change-of-basis matrix that directly
led from M to ⊗R Rrec rec, we obtain

 

 

 

⊗ + ⊗

= ⊗ ⊗ + ⊗ ⊗

= ⊗ + ⊗

−

−

− −( )

( )
( )( )

XYO Q Q XYO

W W Q Q W W

W QW W QW

( )

. (69)

d d

d d

d d

1

1

1 1

We obtain in this way = −Q W QW:rec
1 in the gauge corresponding to the gauge of

= −R W RWrec
1 and thus it represents a valid set of parameters that define the state. To extract

Qrec out of equation (69), we can, as in the case of Rrec, assume one diagonal entry qj j, of Qrec to
be real, which corresponds to subtracting Im qi ( ) ·j j d, from Q. In this way, we can read each
qj j, from the corresponding diagonal entry + =q q q2j j j j j j, , , in equation (69) and subsequently
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the remaining diagonal entries. Because of the structure of equation (69) as a Kronecker sum,
the off-diagonal entries can be read off without further preparation.

The fact that Y is only determined up to multiplication with a diagonal matrix DY, as
mentioned in the previous section, does not pose an obstacle for the reconstruction of Qrec: its
gauge needs to be fixed only up to conjugation with a diagonal matrix if Rrec is in a diagonal
gauge. Furthermore, it does not matter that also the matrix M is only determined up to
conjugation with a diagonal matrix DM, which we used to require that =M 1j1, for ⩾j 2. Using

−D MDM M
1 instead of M in equation (68) and −X TX1 being diagonal, we have

− ⊗ = − ⊗− − −( ) ( )( ) ( )X TX XD R R XD XD T R R XD , (70)M M M M
1 1 1

which is equal to  ⊗ + ⊗− ( )X Q Q X˜ ˜d d
1 with =X XD˜ M . The particular structure of X or X̃

is not needed in the algorithm.
On the other hand, if we normalize the n-point function and henceM by multiplying it by a

constant, we have to be careful since −D cM , for some ∈c , will in general not result in a
matrix similar to  ⊗ + ⊗Q Qd d . Accordingly, we have to renormalize ↦M M Mˆ ·1,1 . The

number M̂1,1 can be read off the residue ρ = Mˆ ( ˆ )n n
1 ,..., 1
( )

1,1 of the n-point function before
normalizing it.

Note that computing eigenvectors, which the matrix X consists of, can be a very unstable
(in extreme cases even discontinuous) procedure, especially for higher bond dimensions, when
eigenvalues can cluster [11, cor. 7.2.6]. Hence the procedure of determining Q is highly
susceptible to noise. To improve noise stability, we can average Y by using the symmetry
property Ξ Λ =κ Y Yd d, , which follows from the symmetries of M and ⊗R Rrec rec, and use

Ξ Λ+ κY Y( ) 2d d, instead.
This concludes the reconstruction of the variational parameter matrices Q and R, which is

the last step in our reconstruction procedure, section 3.1. Additionally, it is now possible to
construct the Hamiltonian of the auxiliary system K as in equation (7) et sqq. and relate the
cMPS to a Lindblad master equation. The fact that we can reconstruct Q only up to an additive
term χi · results in K being indeterminate up to an additive term χ · . This is reasonable since
only the differences in the spectrum of the Hamiltonian are physically relevant and these are not
affected by a global shift by χ.

4. Applicability and limitations

The proposed tomography method relies on assumptions. It is hence important to know its
limitations and how to check the applicability of the method to given data. The basic
assumption is that the correlations in the data are—at least approximately—of the type found in
cMPS spatially, or equivalently of the type found in finite dimensional quantum systems whose
dynamics are given by a Lindblad equation temporally. It is hence natural to assume that our
method is applicable to settings similar to the ground states of gapped local Hamiltonians and
for fields which originate from an interaction with finite level systems—think, e.g., of a light
beam emitted by an atom trap. In this section, we aim to give a description of ways to gain
confidence and check the consistency of the estimates obtained by our reconstruction methods
for quantum fields.

Since it is our goal to produce usable estimation tools for experimental applications, it is
very important to have a clear understanding of how to determine whether or not a particular
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reconstruction was successful or even if the cMPS ansatz is applicable to a particular situation.
In this context, we can recognize two different scenarios that can occur: (1) the idealized case,
where the data actually comes from a cMPS, and (2) a realistic case, in which the data comes
from a physical system (not a cMPS, but possibly well approximated by one) and is in general
noisy. In the following, we will discuss both in more detail.

In the ideal case, data will be produced by a generic cMPS of unknown bond dimension d.
From the 2-point correlation function, following the reconstruction methods discussed in
section 3.2.2, we can extract an estimation of d by computing the rank of the (sufficiently sized)
ansatz Hankel matrix in equation (36). Even if noise is present in the signal, an estimation of the
bond dimension can be obtained, because noise-induced singular values are small. Since some
of the elements of matrix M can be zero, some of the residues ρ corresponding to poles λ can
also be zero, thereby hiding those poles. Correlators with different n, on the other hand, can
reveal these poles at some point, but not necessarily so. Having found all the poles there are,
also implying access to the whole matrix M, is indicated by an agreement of the poles of all
available n-point functions. One should keep in mind, though, that one will never be able to
verify this, even in the idealized case, with a finite amount of data, as it possible to construct a
state which agrees with a given cMPS on e.g., a finite number of n-point functions but differs
elsewhere. However, a non-increase of the set of poles over a wide range of n-point functions is
sufficient to build confidence in the correctness of the reconstruction. It is a satisfactory feature
of our method that we can quantify the confidence of the reconstruction in this way.

In contrast, a priori information about the number of expected poles and a guarantee that
the number and numerical values of residues and poles will be consistent for all n-point
functions is not available in most real-world tomographic settings. In fact, when data comes
from an experiment, we expect a description in terms of cMPS to be possible only in an
approximate sense. A similar situation is known for discrete MPS in a lattice setting, where an
exact description of a state can be found only if its Schmidt rank is finite. However, many states
whose Schmidt numbers form a fast decaying sequence allow for an efficient description with
discrete MPS. Even if the physical system is well approximated by a cMPS in this sense, in
general we expect to have an infinite number of poles to recover. However, only a small number
of them will be associated to residues that are big enough to contribute to the correlation
functions. The number of relevant residues and poles can be identified by looking for singular
values of Hankel matrix equation (36) greater than an appropriate threshold. The tomographer,
hence, has to formulate a hypothesis about the relevance of the observed poles and try to gain
confidence in his/her assumption. The desired situation to observe in practice is that the
recovered poles do not change too much (i.e., they are within some threshold, e.g., previously
determined by the noise level) independently of the correlation function used to extract them.

In summary, if the set of poles has to be extended time and again over a wide range of
correlation functions, the assumption that the state can be described by a cMPS is clearly
wrong. In particular, such a situation would tell us that the cMPS ansatz is not a good model for
the particular system and data set. Along the lines of the discussion above, in practice, what we
propose to check and gain confidence of the applicability of our methods is the following. Use
lower order correlation functions to extract a cMPS description of the system, use the
reconstructed cMPS to predict higher order functions and compare them to available measured
ones. This way, we can check the consistency of the reconstruction procedure and the validity
of the cMPS ansatz for the field state under investigation.
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5. Applications

In this section, we show how the formalism developed so far can be applied to real world
scenarios. We demonstrate the applicability in two basic settings. First, we generate correlation
functions similar to data obtainable in current experimental settings. For this, we use simulated
data to study the performance of the reconstruction method in situations in which noise is
present. Second, we analyse the applicability of our techniques to the Lieb–Liniger model,
which is a well-known and well-investigated model in one-dimensional non-relativistic field
theory.

5.1. Simulations and error analysis

Before typical noise models can be taken into consideration, we ask what kind of problems we
are most likely to encounter. As we have seen, given an arbitrary cMPS n-point function with
non-degenerate spectrum, its poles and residues can be obtained by matrix pencil or Pronyʼs
methods, provided there is sufficient accuracy. We keep in mind that formally it is required that
T has a non-degenerate spectrum, which is, however, the case for almost all randomized T.
Also, it is possible that M contains elements of value zero, which is, likewise, not to be
expected. On the other hand, there are other more practical obstacles related to concrete
implementation features of the numerical algorithms discussed above.

5.1.1. Typical problems to be expected. The identification of the poles when determining the
matrices M and D is the most critical part of our procedure. More concretely, we face the
problem of resolving maxima of the Laplace transform of the correlations in the complex plane.
We do not do this directly, but the challenges remain the same.

The problem is to discern poles that lie close to each other and to identify poles that have
comparatively small residues. Moreover, we might face large damping factors, which results in
a broadening of the peaks in the Fourier spectrum. The required accuracy for the correct
identification of poles and residues hence critically depends on the position of the poles λ{ }j in
the complex plane and the ratio between damping factor λRe ( )j and frequency λIm ( )j . Not
surprisingly, all these issues are aggravated for higher bond dimensions; the n-point functions
consist of a larger number of oscillatory components, typically in the vicinity of other poles.
Moreover, the reconstruction of the residues will also be affected if the poles are close to each
other. This happens because the corresponding linear Vandermonde system of equations
becomes more ill-conditioned.

When reconstructing Q from the matrix M, we face another type of typical problem.
Determining R does not lead to significant additional numerical problems since it mainly
involves an ordinary diagonalization procedure, whereas for reconstructing Q, we need the
eigenvectors of M, which are very susceptible to perturbations of the matrix.

In the following, we want to test the robustness of our method by analysing typical noise
cases independently. First, as a preparatory step, we generate typical cMPS. Second, we
examine how the reconstruction of the poles is affected by adding noise to the input correlation
functions. Third, we survey the reconstructability of R and Q when the input for this
reconstruction step, the matrixM, is perturbed. Fourth, we study the influence of the presence of
additional fields.
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5.1.2. Generating typical cMPS. In this section, we give a recipe to generate correlation
functions with structural features on a desired length scale, based on a randomization-ansatz for
the Q and R matrices. This is in principle a non-trivial task, as the length scales and damping of
the fluctuations are directly derived from the spectrum of T, which depends nonlinearly on the
entries of Q and R.

We make the ansatz of generating Q and R as complex Gaussian random matrices with
mean μ and standard deviation σ—i.e., real and imaginary part of the entries are independently
and identically normally distributed according to μ σ ( , )—and renormalize Q such that all
eigenvalues of T have real part ⩽0. This results in a roughly uniform distribution of the
eigenvalues of T within a disc left of the imaginary axis, which is not entirely unexpected when
considering Girkoʼs circular law [7] and the Kronecker product structure of T. The damping
factors of the poles are of the same magnitude as their frequencies or larger, which is not the
case if oscillations are actually to be observed and moreover aggravates the identification of
such poles and increases the accuracy requirements.

In a more refined ansatz, we hence consider sampling K and R instead, from the same
distribution, which leads to a drastically higher concentration of poles close to the imaginary
axis, when scaling both matrices with a small number η, see figure 2, where we show a
comparison of distributions of the poles in the complex plane between the naïve and the refined
method of randomly sampled cMPS. This scaling of the matrices does not constitute a gauge of
the cMPS but rather a transformation to another cMPS, see [47]. Matrix Q is mapped to

η η−R R Ki1

2
2 † , see equation (7), such that for small η the eigenvalues of Q will typically feature

much larger imaginary part than real part, since the spectrum of K is real and the R R† term adds
to Q in second order in η. This carries over to the construction of T, where ⊗R R also appears
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Figure 2. Distribution of the poles of the transfer matrices in the complex plane for 400
cMPS samples with bond dimension d = 4. The real and imaginary part of the entries of
K and R are i.i.d. with  (0, 1) (a) and  (0, 0.01) (b). In (b), most damping factors
corresponding to the real parts of the poles are much smaller than the respective
imaginary parts, which correspond to the frequencies components of the correlation
functions. This will lead to significantly better reconstructability properties of
the cMPS.

22

New J. Phys. 16 (2014) 123010 A Steffens et al



in second order in η as opposed to  ⊗ + ⊗Q Q, which are first order. Overall, for small η
most damping factors become smaller than the frequencies by several orders of magnitude, a
property expected to hold if oscillations are observed. Moreover, a distinct peak structure in the
Fourier transform emerges, and the poles and residues of T are sufficiently separated and can be
determined even with moderate amounts of noise present.

5.1.3. Effects of noisy correlation functions. Typical experimentally measured signals have
inaccurate read-out of the signal. We model such noisy situations as Gaussian noise, and study
the effect on the reconstruction procedure by adding noise to correlation functions originating
from a cMPS.

In particular, we apply the MPM to the noisy amputated 2-point function

τ τ Ψ τ Ψ Ψ Ψ τ Ψ Ψ τ+ = − +C w wˆ ( ) ( ) ˆ ( ) ˆ (0) ˆ (0) ˆ ( ) ˆ (0) ˆ (0) ( ), (71)k k k k k
(2) † † † 2

evaluated at 200 points τk, for cMPS with elements of R K, sampled from  (0, 0.01). The

white noise function w is sampled from  C(0, mean(| ˆ |)/SNR)
(2)

, where SNR is the signal-to-
noise ratio.

In figure 3, p is the percentage of pole sets with λ λ λ− <=mean |( ˜ )/ | 0.1j d j j j2 ,..., 2 as a

function of the SNR, where λ{ }j are the original poles, and λ{ ˜ }j the pole estimates. Each point
is computed for 5000 runs of our numerical experiment to gather enough statistics. What we
observe is that for bond dimension d = 2, our reconstruction procedure is robust to reasonable
amounts of noise. However, for bond dimension d = 3, we see that the robustness is much
smaller, which hints to the practical limitations of our reconstruction procedure. The results can,
for example, be improved by increasing the sampling rates, however this can be difficult to
achieve in experiments.

Note that in both cases shown in figure 3 our procedure behaves as expected from a proper
estimator as a function of the SNR: the lesser the noise, the better the reconstruction. In fact, for
zero noise, we can in general expect 100% reconstructability, independent of the bond
dimension. As already mentioned, for higher order correlation functions, >n 2, the
reconstructability of the poles does not necessarily deteriorate—independent of the bond
dimension d. In fact, since one can average over all projections that fix all but one τ, a
significant part of the noise is effectively averaged out.

5.1.4. Reconstructability of Q and R when perturbing M. In this section, we look at the next
step in the reconstruction process: recovering the cMPS parametrization matrices Q and R from
an imperfectly recovered matrix M. We do so by simulating M and perturbing it directly, rather
than using a reconstructed M matrix from noisy correlation functions. We do it this way to have
control over the size of the perturbation and thus to separate these two different stages of the
reconstructed problem and investigate their effect separately.

For this purpose, we prepare matrices R and Q with entries sampled from  (0, 1), then
calculate T and M, and perturb M with an error matrix Δ. The perturbation has to be carefully
designed in order to retain the symmetry Ξ Ξ= κ κM Md d, , of the unperturbed matrix M. This is
related to the fact that for any valid reconstruction of a density-like correlation function the
residues together with the entries of the matrix M necessarily are either real or appear in pairs of
complex conjugates, see section 2.3. Perturbing with the matrix
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Δ Δ Ξ Δ Ξ= + κ κ( ):
1
2

(72)d d0 , 0 ,

with real and imaginary parts of the entries of Δ0 sampled from − M(0, 2 mean(| |))1 2 ensures
the required symmetry since Δ Ξ Δ Ξ= κ κd d, , . Furthermore, since the first row of M is set to one
due to normalization and this should not be changed for perturbed input, the first row of Δ is set
to zero.

From the reconstructed matrices Q̃ and R̃ from ϵΔ= +M M˜ with scaling parameter
ϵ ∈ + we build the transfer matrix T̃ and compare its spectrum with the spectrum of the

original T. The ratio of samples with mean deviation σ T( ˜ ) to σ T( ) not larger than 10% as a
function of ϵ is depicted in figure 4 for bond dimensions d = 2 (blue) and d = 3 (green). As the
error ϵ grows, the ratio of successfully reconstructed Q and R matrices drops for both bond
dimensions. However, the d = 2 case is clearly more robust to perturbations. Additionally, we
want to point out that any potential deviation of the spectra of T and T̃ is almost certainly due to
the reconstruction of Q.

5.1.5. Effects of additional interactions. As discussed earlier in section 2.1.2, typical
correlations under consideration can be seen as originating from processes where a field state is
generated by an interaction with a finite dimensional system, and can be described by a

Figure 3. Application of the matrix pencil method to the signal vector with

components τ τ+C wˆ ( ) ( ))k k
(2)

for d = 2 (above) and d = 3 (below). p is the
percentage of pole sets with λ λ λ− <=max |( ˜ ) | 0.1j d j j j2 ,..., 2 (blue) and

λ λ λ− ∑ − <−
=d( 1) |( ˜ ) | 0.1j

d
j j j

2 1
2

2

(green) as a function of the signal-to-noise

ratio, each point summarizing 5000 runs, where λ{ }j are the original poles, and λ{ ˜ }j

the pole estimates.
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Lindblad equation. In the ideal case, where the finite dimensional system interacts only with the
field we measure, we obtain correlations which are perfectly described by a cMPS, or
equivalently by a Lindblad equation with one Lindblad operator. In the case where the finite
dimensional system interacts with other systems or fields, which we might not even know of,
the Lindblad equation is altered and supplemented by more Lindblad operators, which
correspond to the other systems or fields. In this case, the transfer matrix takes the form [35]

  ∑= ⊗ − ⊗ + T K Ki i , (73)
j

j

where

 = ⊗ − ⊗ − ⊗ ( )R R R R R R
1
2

2 (74)j j j j j j j
† †

and the additional fields are represented by the terms with ⩾j 2. Each of the two latter
summands in  j are connected to Q via equation (7). The matrixM remains ⊗R R1 1, because it
comes from measuring the field corresponding to it, but now in the diagonal basis of a different
T than the one for a single field.

In order to analyse the sensitivity of reconstructing the variational parameter matrices, we
consider one additional perturbation field. More additional fields within the same order of
magnitude yield very similar outcomes. This results in   ϵ= ⊗ − ⊗ + + T K Ki i 1 2. In
this section, we study how well the spectrum of K can be matched depending on the scaling
parameter ϵ ∈ +. Analogous to the last section, we prepare cMPS by randomly generating K,
R1, and R2 with elements whose real and imaginary parts are sampled from  (0, 1). We then
generate M matrices and from this reconstruct R1,rec and an effective Qrec, assuming only a
single field. From R1,rec and Qrec we compute Krec and compare the differences of its
eigenvalues, Δκ κ κ= −+˜ ˜ ˜j j j1 , with the differences of the eigenvalues κ j of the actual K. Only
the differences are reconstructable, see section 3.5. The reconstruction of K is said to be
successful if

Figure 4. Reconstructability of Q depending on the perturbation of M: ratio p out of

5000 samples per point with λ λ λ− ∑ − <−
=d( 1) |( ˜ ) | 0.1j

d
j j j

2 1
2

2

as a function of ϵ

with λ σ= T{ ˜ } ( ˜ )j for d = 2 (blue) and d = 3 (green). Q̃ and R̃ depend on ϵΔ= +M M˜ .
As ϵ → 0 we have that →p 1.
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Δκ Δκ
Δκ
−

<
= −

max
˜

10%. (75)
j d

j j

j1 ,..., 1

The reconstruction rate, depending on ϵ and the bond dimension, is shown in figure 5. For
ϵ → 0 (single field case) all cMPS can be reconstructed. As the size of the additional field
approaches the size of the main field, the reconstruction rate drops to zero. The smaller the bond
dimension, the more perturbation by additional fields can be tolerated. We conclude that for
sufficiently small additional fields, a successful reconstruction is in principle still feasible.
Moreover, for d = 2, the most robust case, this is true even if the additional fields are merely one
order of magnitude smaller than the main field.

5.2. The Lieb–Liniger model

In this section, we analyse the applicability of the results discussed above to the Lieb–Liniger
model [30]. The model describes the dynamics of a one-dimensional system of bosons
interacting via a delta-potential. In second quantization, the Hamiltonian describing such a
model is given by

∫ Ψ Ψ Ψ Ψ Ψ Ψ= +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H x

x

x

x

x
c x x x xd

d ˆ ( )
d

d ˆ ( )
d

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) , (76)
†

† †

where ∈x L[0, ] is the position coordinate and c is the interaction strength.
For our application, we generate (Q,R) parametrizations of cMPS approximations for

several bond dimensions of the Lieb–Liniger ground state for particular values of interaction
strength c by using the algorithm and implementation of Hase [17]. This algorithm is an
adaptation of the time-dependent variational principle for quantum lattices [15] to the
continuous case (compare also [6]). It relates to an imaginary time evolution that exponentially
damps all excited components of an initial state vector Ψ 〉| d( ) (a cMPS with bond dimension d)
with increasing imaginary time and produces the ground state eigenvector of a Hamiltonian H,
by applying −e Hti with ∈t i to Ψ 〉| d( ) . The convergence of the energy of Ψ 〉−e |Ht di ( ) indicates
the approach to the cMPS ansatz ground state vector, which we denote by Θ 〉| Q R

d
,

( ) , together with

Figure 5. Reconstruction rate p depending on the size of an additional field and the
bond dimension d from 5000 cMPS samples per point.
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its characterizing matrices Q and R. Several interesting structural properties of the state in the
cMPS representation are revealed, signifying a symmetry in the model: degeneracies and a
block structure of the matrix M. These features emerge in the integrable Lieb–Liniger case, and
do not appear in Gaussian-sampled cMPS as described above. These features, which will be
discussed more in detail in the following, appear regardless of the bond dimension and
interaction strength used. Moreover, they do not depend on the algorithm used to obtain the
ground state.

5.2.1. Degeneracies in the eigenvalue structure of M. The topic of this section is to
characterize the structure of the spectrum of M by understanding the degeneracy structure R in
the exactly integrable case. In the case at hand, since all two-fold degenerate eigenvalues are
equally spread into one of both blocks each, one is able to predict the spectrum of R from M
even without reconstructing the second block. In our simulations, it is seen that the eigenvalues
of Q and R appear in ⌊ ⌋d 2 pairs q q{ , }j j

[1] [2] and r r{ , }j j
[1] [2] with

χ= + = φq q r ri , e , (77)j j j j
[1] [2] [1] [2] i

respectively, for each pair j, with χ ϕ ∈, independent of j. If d is odd, the two remaining
unpaired eigenvalues take the form χ= +q q̂ i and = φr r̂ei , respectively, with ∈q rˆ, ˆ . We
can simplify the structure by performing the transformations

χ↦ − ↦ φ−Q Q R Ri , e , (78)d
i

which leave the transfer matrix T and all density-like n-point functions invariant. This ensures
that the pairs now consist of complex conjugates and the spectra of Q and R are closed under
complex conjugation, which we want to require for the further argument.

Since the spectrum of M by construction is the same as that of ⊗R R (up to a
normalization constant and each λ σ∈ ⊗( )R R can be written as r r·j k with certain

=j k d, 1 ,..., , the appearance of complex conjugate pairs in the spectrum of R implies twofold
degeneracies for the according eigenvalues in the spectrum of M as products of R eigenvalues,
especially

= =r r r r r r . (79)j k j k k j
[1] [1] [2] [2] [2] [2]

Not all eigenvalues are degenerate: r rj j
[1] [2] and r rj j

[2] [1] are complex conjugates, but since j = k,
there are no other combinations that yield the same values. Assuming that R does not contain
any other degeneracies, M will comprise d non-degenerate eigenvalues and −d d2 eigenvalues
that are twofold degenerate each.

5.2.2. Block structure. Another structural observation we can make for the matrix M of the
ground state of the Lieb–Liniger Hamiltonian is the fact that it can be transformed to a block
diagonal matrix. We do this by simply grouping vanishing and non-vanishing elements in M
and interchanging its rows and columns correspondingly, which amounts to a basis
permutation. This way, we define the matrix = ⊕□M M M: 1 2, where M1 and M2 are block
matrices and relate to the non-vanishing and vanishing residues of the cMPS. The block
structure of □M and the fact that eT is diagonal imply a block structure of their products, which
carries over to the correlation functions, lets M2 decouple completely, and hence disappear from
the reconstruction.
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We can see why all the residues corresponding to M2 vanish for every n-point function in
the following way. Let us assume we reordered M and formed □M by performing the basis
permutations described above, and we consider a pole λl of the cMPS. For an arbitrary n-point
function, each residue which contains the index l at least once can be written as

ρ = □ □ □ □
− + − − + −M M M M... ... (80)k k l k k k k l l k k,..., , , ,..., 1, , , , 1j j n j j n1 1 1 1 1 1 1 1

with = −j n2 ,..., 2.
We take ζ∈ +l d{ 1 ,..., }2 , where ζ is the dimension of M1, i.e., λl corresponds to a pole

associated with M2. In this situation, we note that two things can happen. Either ζ⩽+k j 1 , and

=□
+

M 0l k, j 1
since the entry is located in the lower left block of □M , which contains just zeros,

and thus the entry vanishes. Or ζ>+k j 1 , and there exists an entry □
+

Mk k,m m 1
with >m j, ζ>km ,

and ζ⩽+km 1 such that =□
+

M 0k k,m m 1
. This has to eventually happen since the last entry in the

residue expression is of the form □
−

Mk , 1n 1
and ζ⩽1 . Clearly, the residue vanishes again, and so

does for the boundary indices =k l1 or =−k ln 1 .

5.2.3. Reconstruction. Because of the block structure of M, we conclude that there is no direct
way of obtaining all poles of cMPS approximations of the Lieb–Liniger ground state from an n-
point density-like correlation function. In this case, the p-number [24], which is defined as the
minimum order for a p-point function of a cMPS to reveal all poles, is infinite. There is a useful
connection between the degeneracies in the spectrum of M and its block structure for the Lieb–
Liniger model. It turns out that all the non-degenerate eigenvalues are related to □M entries in
the first block, while the degenerate pairs are distributed such that always one eigenvalue is
associated with the first block and the other with the second. This way, since only the first block
contributes to any density-like correlation function, all degeneracies are effectively lifted, and
hence full reconstruction is possible. Since all eigenvalues of M that appear in the vanishing
second block also appear in the visible first block one can in principle determine the spectrum of
R even without full knowledge of M. The same holds for the spectrum of Q since also −D M
has the same spectral properties. For reconstructing both R and Q in the corresponding gauge,
however, our procedure requires full knowledge of M. But again, note that for full
reconstruction of the density-like correlation functions, this full knowledge is not required here.

This structure disappears if integrability is broken, and hence in a neighbourhood around
the (cMPS approximation of the) Lieb–Liniger ground state. Imaginary time evolution gives us
a notion of distance to the limit of the approximation process, as we can, e.g., observe
convergence of matrix entries along imaginary time paths. The block structure and degeneracy
become more clearly defined the closer one gets to the limit point. Ultimately, at the limit point
of the imaginary time evolution, the degeneracies and block structure of M will prevent our
methods to recover a full cMPS description in terms of matrices Q and R of the system. On the
other hand, for each state along such a path, we can in principle apply our reconstruction
method. The closer we get, the better all characteristic parameters can be reconstructed although
the more ill-conditioned the problem becomes. A reconstruction of the n-point functions of
arbitrary order is still possible, as it is based on the observable blocks of the matrices D and M
alone and determining these quantities is in principle possible. Since the second block does not
contribute to any n-point function, the applicability of ‘Wickʼs theorem’ for (continuous) MPSs
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is maintained even in this case and we still can successfully predict higher order from lower
order correlation functions.

6. Summary and outlook

In this work, we have introduced the concept of quantum field tomography. In spite of the
inherent difficulties of attempting to reconstruct a continuous system, i.e., a system with infinite
degrees of freedom, we have shown that this task can be done when only a relevant class of
naturally occurring states is considered. This is physically well motivated since one expects
naturally appearing states not to be of the most general form but restricted to a smaller class of
states. This is clearly the case in physical applications in which, for example, MPSs have been
shown to be a very successful model to describe correlations and dynamics. Here, we
concentrated on developing tomographic tools for one-dimensional continuous many-body
systems or quantum fields.

For this purpose, we employed the continuous generalization of the MPS variational class
of states: the continuous MPS formalism. Based on this formalism and the predicted structure of
the relevant data, i.e., the correlation functions, we developed a procedure to extract a best fit
cMPS using state of the art statistical estimation tools. In this way, we are able to deliver a
working and readily applicable tool to study this type of system. The procedure we offer can
indeed be seen as the natural way to think of efficient quantum field tomography. This does not
mean, however, that for tasks of direct estimation of fidelities and properties of states,
alternative methods may not be advisable. The machinery here aims at reconstructing the states
as such.

Formally, we have used the cMPS framework to describe the structure of correlation
functions that can in principle be measured in experiments. Having identified this basic
structure, we defined the tools needed to extract the pertinent information from the data. For this
purpose, we employed the MPM as a viable way to determine the variational parameters of the
cMPS from a correlation function. We showed that one can successfully extract a cMPS
description of a system in principle for arbitrary bond dimensions. However, for noisy signals,
one is in general limited to lower bond dimension approximations. Generally, this approach is
applicable to states with low entanglement, similarly to matrix-product states approximating
states that satisfy an area law for suitable Renyi entanglement entropies. In the discrete case, the
connection of having ‘low entanglement’ and being approximable with a MPS of low bond
dimension has been fully rigorously fleshed out already [8, 41]. In the continuous case, this
connection is surely equally plausible, but is awaiting a similar fully rigorous treatment.

Moreover, we have given an in-depth study of the applicability of the reconstruction tools
and their robustness for different noise models. Extensive numerical simulations were employed
which provide at least empirical confidence of the performance of the reconstruction tools. We
found that for the cases studied in this work, our methods are reasonably robust to noise when
searching for low bond dimension cMPS estimates.

It is important to note that the methods developed in this work are likewise readily
applicable to the translationally invariant discrete MPS case. Since in reality one deals with
discrete (sampled) data even if the system is continuous in nature, all the methods developed
here carry to the discrete case of MPSs, reflecting a finite lattice spacing, with minimal
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modifications. Furthermore, there is evidence that the approach taken here reveals insight into
the structure of the underlying model as such and can detect signatures of integrability.

The novel methods proposed in this work open a new avenue to explore continuous
systems of many particles in both equilibrium and non-equilibrium. It constitutes a step towards
assessing strongly correlated models with a topographic mindset, without having to make a
model of the system in the first place: instead, one asks what the state is that is most compatible
with the data found. This is a most healthy mindset specifically in the context of emergent
quantum technologies, where one aims at assessing the state of a quantum system without
making overly strong assumptions in the first place. In quantum information science, quantum
state tomography is already a pillar on which the field rests, a technique routinely applied in
most experiments. The present work opens up perspectives to think of quantum field
tomography of strongly correlated quantum systems, as they feature in dynamical quantum
simulators. Specifically in this context, the tools presented here can be used for partial
benchmarking of analog quantum simulators. To fully explore the potential of such an approach
to study many-body systems out of equilibrium constitutes a truly exciting perspective.
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