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SUMMARY

The liver maintains glucose and lipid homeostasis by
adapting its metabolic activity to the energy needs
of the organism. Communication between hepato-
cytes and extracellular environment via endocytosis
is key to such homeostasis. Here, we addressed
the question of whether endosomes are required
for gluconeogenic gene expression. We took advan-
tage of the loss of endosomes in the mouse liver
upon Rab5 silencing. Strikingly, we found hepato-
megaly and severe metabolic defects such as hypo-
glycemia, hypercholesterolemia, hyperlipidemia, and
glycogen accumulation that phenocopied those
found in von Gierke’s disease, a glucose-6-phospha-
tase (G6Pase) deficiency. G6Pase deficiency alone
can account for the reduction in hepatic glucose
output and glycogen accumulation as determined by
mathematical modeling. Interestingly, we uncovered
functional alterations in the transcription factors,
which regulateG6Pase expression.Our data highlight
a requirement of Rab5 and the endosomal system for
the regulation of gluconeogenic gene expression that
has important implications for metabolic diseases.

INTRODUCTION

The liver plays an essential role in the metabolic adaptation to

nutrients through processes such as gluconeogenesis, glycogen-

olysis, lipogenesis, and fatty acid oxidation that are under the con-

trol of glucagon and insulin. In the absorptive state, when high

glucose levels induce insulin secretion, anabolic pathways, such
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as glycogen production and lipogenesis are activated, whereas

catabolic processes are inhibited. In the fasted state, when

glucagon is elevated relative to insulin, fatty acid oxidation, glyco-

genolysis, and gluconeogenesis are induced to maintain blood

glucose homeostasis (Lin and Accili, 2011). Dysfunction of

glucose production leads to severe metabolic diseases. The

most common pathology is associated with insulin resistance,

which contributes to type 2 diabetes and themetabolic syndrome

(Lin and Accili, 2011). In this disease, insulin fails to exert an inhib-

itory role on gluconeogenesis. Mutations in genes involved in

gluconeogenesis can cause glycogen storage diseases with

marked alterations in glucose homeostasis. For example, von

Gierke’s disease, the glycogen storage disease type Ia (GSD-Ia),

is an autosomal recessive disorder caused by a deficiency of

glucose-6-phosphatase (G6Pase) and characterized by hypogly-

cemia, abnormal glycogen accumulations (glycogenesis), hepa-

tomegaly, and hyperlipidemia, among others (Chou et al., 2010).

Glucose homeostasis is regulated by endocytosis. Endocy-

tosis is an essential mechanism for the uptake and signal trans-

duction of growth factors and hormones (Sorkin and vonZastrow,

2009) but also for regulating metabolic activities, by changing the

expression of hormone receptors and nutrient transporters on

the cell surface. For example, in fat and muscle cells, the amount

of internalized glucose can be modulated by varying the rates

of endo- and exocytosis of the insulin-responsive glucose trans-

porter, GLUT4 (Antonescu et al., 2014). Endocytosis governs the

clearance of low-density-lipoproteins (LDLs) from the circulation

especially in the liver, where mutations in this process cause hy-

percholesterolemia (Koivisto et al., 2001). New evidence

suggests that the endo-lysosomal system is also involved in the

regulation of metabolic gene transcription. For example, the

transcription factor EB (TFEB) translocates from lysosomes to

the nucleus in response to starvation and activates genes in-

volved in lysosomal biogenesis, autophagy, and lipid metabolism
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(Settembre et al., 2013). Conversely, metabolic activities also

regulate endocytosis, since knockdown of metabolic genes in a

genome-wide RNAi screen had dramatic effects on endocytic

trafficking (Collinet et al., 2010). Together, these findings suggest

that endocytosis and metabolism are functionally coupled.

Understanding the role of the endocytic system in the regula-

tion of metabolism would require molecular perturbations

capable of ablating the function of endosomes. The small

GTPase Rab5 regulates the membrane assembly of a multi-pro-

tein machinery conferring early endosome identity and function,

such as endosome tethering, fusion, and motility (Wandinger-

Ness and Zerial, 2014). Remarkably, liver-specific knockdown

of Rab5 by RNAi in mice causes a massive depletion of

endosomes and lysosomes, indicating that it is necessary for

endosome biogenesis (Zeigerer et al., 2012). Interestingly, ultra-

structural analysis of liver sections also revealed a strong accu-

mulation of glycogen granules and lipid droplets in the liver,

raising the question of why depletion of Rab5 and, consequently,

of the endosomal system causes severe alterations in hepatocel-

lular glucose and lipid metabolism. In the present study, we ad-

dressed this question through a systems biology approach.

RESULTS

Rab5 Is Essential for Lipid and Glucose Metabolism in
the Liver
The three Rab5 isoforms were silenced in mouse liver by RNAi

through tail vein injection of lipid nanoparticles (LNPs) containing

small interfering RNAs (siRNAs) (against Rab5a,b,c or luciferase),

as previously described (Zeigerer et al., 2012). Five days after in-

jection, when the reduction in endosome number in Rab5 knock-

down (Rab5KD) livers is maximal (Zeigerer et al., 2012), mice

were starved for 6 hr, their liver extracted and analyzed by tran-

scriptomics, proteomics, and lipidomics. The transcriptomics

analysis was performed by microarray and RNA sequencing

(RNA-seq). Comparison of the hits from the differentially ex-

pressed genes (DEG) in both data sets revealed 451 common

DEG, resulting in 77% overlap (RNA-seq to microarray), showing

a high Spearman correlation (Figures S1A and S1B; Table S1).

Thedata setwassplit into 328up- and123downregulated genes,

which were considered separately for pathway enrichment anal-

ysis (Table S1). Strikingly, we observed severe alterations in

genes involved in metabolic pathways. Among the upregulated

genes, there was a significant enrichment for genes associated

with cell-cycle and steroid biosynthesis, suggesting that loss of

Rab5 affects cell proliferation and lipid metabolism (Figure S1C).

The upregulation of steroid biosynthesis can be explained by a

compensatory increase consequent to the block of LDL internal-

ization (Brown andGoldstein, 2009; Zeigerer et al., 2012). For the

downregulatedgenes,metabolismof xenobiotics bycytochrome

p450, fatty acid, amino acid metabolism, and glucose meta-

bolism were significantly affected (Figure S1D). These data

show that Rab5 depletion induces alterations in gene expression

for specific metabolic pathways in the liver.

For quantitative proteomics, control and Rab5KD liver tissues

were subjected to liquid chromatography-tandem mass spec-

trometry (LC-MS/MS), and a combined analysis of the spectra

from all samples resulted in the identification of �8,000 proteins
at a false discovery rate (FDR) of 1%. Using the label-free quan-

tification algorithm inMaxQuant, wemeasured the abundance of

5,800 proteins in at least one pairwise comparison (Table S2).

We detected 980 differentially expressed proteins (DEPs), of

which 553were up- and 427 downregulated compared to control

t test (p < 0.05) (Table S2). Consistent with the transcriptomics

data, most proteins were again involved in cellular metabolism

(Figure 1).

Next, we subjected the DEP to pathway enrichment analysis

using KEGG (Figures 1A and 1B; Table S2) and a topological

model of central metabolism (Figure S2A). In agreement with

the transcriptomics, proteins involved in steroid biosynthesis

were upregulated. Strikingly, most metabolic pathways, such as

b-oxidation, fatty acid, andglucosemetabolism,etc.,weredown-

regulated (Figure 1; TableS2).Comparisonof theproteomicswith

the transcriptomics data sets revealed 88 common genes/

proteins (Figure S1E; Table S3). Most hits were well correlated

(Figure S1F), suggesting a regulation at the mRNA level. These

candidates were again enriched in metabolic pathways with an

upregulation in steroid and terpenoid backbone biosynthesis

and a downregulation of fatty acid and amino acid metabolism

(Figures S1G and S1H). Taken together, these data indicate that

the liver responds to Rab5KD by boosting the pathways for ste-

roidbiosynthesiswhile reducingglucose andenergymetabolism.

The levels of lipids in the liver and serum were determined by

shotgun lipidomics. Consistent with transcriptomics and prote-

omics, we found a 2-fold enrichment of cholesterol and choles-

terol ester (CE) in liver tissue of Rab5KDmice, with all CE species

increased (Figure 1C). The excess of CE could explain in part the

increase in lipid droplets (Miller and Bose, 2011) observed by EM

upon Rab5KD (Zeigerer et al., 2012). In addition, we could not

detect an induction of autophagosomes (data not shown),

consistent with the loss of endosomes and lysosomes (Lamb

et al., 2013). This implies that also lipophagy may be inhibited

(Dong and Czaja, 2011), thus contributing to the accumulation

of lipid droplets.

Interestingly, lipidomics analysis of sera from Rab5KD animals

revealed a 2- to 5-fold increase in all major lipid classes

(Figure 1D), leading to an induction of hyperlipidemia and hyper-

cholesterolemia at 5 days after LNP injection. Importantly, this

increase was reversible and serum lipids returned back to

normal levels after recovery of the endosomal system at

10 days after injection (Figure 1D; Zeigerer et al., 2012). Alto-

gether, Rab5 depletion causes severe changes in the expression

of metabolic pathways associated with steroid biosynthesis,

fatty acid, amino acid, and glucose metabolism.

Rab5 Depletion Causes Hepatomegaly
At 5 days post-injection, Rab5KD animals were similar in weight

(Figure S3A) but exhibited an increase in liver size (Figure 2A),

raising the liver/body weight ratio from 5% to 7% (Figure 2B).

Interestingly, the induction of hepatomegaly coincided with the

accumulation of glycogen (Zeigerer et al., 2012), suggesting that

the two events may be linked. Hepatomegaly could either be

caused by an increase in the size or the number of hepatocytes,

or both. To distinguish between these possibilities, we performed

a morphological analysis of liver sections and measured a 20%–

30% increase in hepatocyte area in vivo (Figures S3B and S3C).
Cell Reports 11, 884–892, May 12, 2015 ª2015 The Authors 885



Figure 1. Proteomics and Lipidomics of

Rab5KD Livers Reveal Alterations in Meta-

bolism

(A–C) Significantly enriched KEGG pathways of

up- (A) and downregulated (B) proteins. (C)

Representative profiles of all lipid classes

(normalized to phospholipids) (*p < 0.05, n = 4

mice per condition). Inset: lipid species of

cholesterol esters (mean ± SEM).

(D) Time course of lipid profiles in serum (n = 4

mice per condition, mean ± SEM).
In addition, applyingproteome ruler for theproteomicsdata set re-

vealed a 1.4-fold increase in the total protein content per cell and

cell volume (Figures S3D and S3E), in agreement with the image

analysis. Such an expansion in cell volume agrees with the obser-

vation that glycogen accumulation causes swelling of hepato-

cytes (Froissart et al., 2011). However, H&E staining revealed

also amild increase in theproliferation index inRab5KD livers (Fig-
886 Cell Reports 11, 884–892, May 12, 2015 ª2015 The Authors
ure S3F) consistent with our transcriptom-

ics analysis. Altogether, these data sug-

gest that the hepatomegaly is accounted

by an increase in hepatocytes volume

and a mild increase in their number.

Rab5 Knockdown Induces
Hypoglycemia
The alterations in glycolysis/gluconeo-

genesis together with the accumulation

of glycogen granules suggest a connec-

tion between endosomes and the regula-

tion of sugar metabolism. We therefore

undertook a detailed analysis of the ef-

fects of Rab5 depletion on glucose ho-

meostasis. We found a 30% reduction in

fasting blood glucose levels compared

to control at 5 days post-injection (Fig-

ure 2C). Surprisingly, no alterations in

serum levels of insulin and glucagon

were observed that could account for

thedecrease in blood glucose (Figure 2D),

arguing for a more direct effect of Rab5

on glucose homeostasis in the liver. Inter-

estingly, upon endosomal recovery at

10 days post-injection (Zeigerer et al.,

2012), similar to liver size, blood glucose

levels returned to normal (Figures 2B

and 2C), suggesting that hypoglycemia

and hepatomegaly correlate with the

loss of Rab5 and endosomes.

Rab5KD Phenocopies the Loss of
G6Pase in von Gierke’s Disease
The accumulation of glycogen granules

and lipid droplets, hypoglycemia, hepa-

tomegaly, hypercholesterolemia, and

hyperlipidemia observed upon Rab5KD
strikingly resemble the alterations in von Gierke’s disease

(glycogen-storage disease type Ia) (Chou et al., 2010). von

Gierke’s disease is caused by a deficiency of G6Pase, the major

enzyme controlling glucose release by the liver via glycogenol-

ysis and gluconeogenesis. Therefore, we analyzed the G6Pase

mRNA levels after 5 days post-injection. Strikingly, the expres-

sion of G6Pase was almost ablated (Figure 2E and Table S1).



Figure 2. Metabolic Effects of Rab5KD

(A and B) Liver size (day 5) (A) and liver/body (B)

weight ratio (time course) for 6-hr-fasted mice.

(C) Time course of blood glucose levels for C57BL/

6N and in db/db mice.

(D) Insulin and glucagon levels of five independent

experiments normalized to control.

(E) Relative expression of G6Pase (time course)

and Pepck in livers of C57BL/6N, db/dbmice (day

5), and in primary hepatocytes.

(F and G) (F) Liver glycogen content and (G) py-

ruvate tolerance test (2 mg/kg) at day 5.

Representative experiments shown for (A)–(C) and

(E)–(G); four mice per condition used for (B)–(G);

mean ±SEM; #p > 0.1, *p < 0.05, **p < 0.001, ***p <

0.0001.
Since Rab5-depleted animals fail to mobilize their glycogen

stores (Zeigerer et al., 2012), we quantified the glycogen in the

liver and measured a 2-3-fold increase in glycogen levels in 6-

hr-starved Rab5KD mice (Figure 2F). Glycogen levels are regu-

lated by a balance of synthesis, via glycogen synthase (GS),

and breakdown, through glycogen phosphorylase (GP), both

regulated by phosphorylation. In addition, GS is also allosteri-

cally activated by glucose-6-phosphate (G6P) (von Wilamo-

witz-Moellendorff et al., 2013). We detected only a slight

increase in GS (p = 0.06) but not GP phosphorylation in Rab5KD

livers compared to control (Figures S4A and S4B). However, the

G6P levels were increased over 2-fold (Figure S4C). Such in-

crease is expected to activate GS, thus explaining the enhanced

glycogen deposition. These data suggest that the glycogen stor-

age phenotype is caused by the reduction in G6Pase, just as in
Cell Reports 11, 884–8
von Gierke’s disease (Cori and Cori,

1952), leading to the accumulation of

G6P and activation of GS.

To directly test whether gluconeogen-

esis was inhibited, pyruvate tolerance

tests were performed in control and

Rab5KD mice. Rab5KD almost com-

pletely abolished glucose production by

the liver (Figure 2G). This is consistent

with transcriptomics and quantitative

PCR (qPCR) analysis, which revealed a

strong reduction in Phosphoenolpyruvate

kinase (Pepck1), another rate-limiting

enzyme for gluconeogenesis (Table S1

and Figure 2C). Importantly, after

10 days post-injection when the levels

of Rab5 and the endosomal pathway

recovered (Zeigerer et al., 2012), the

expression of G6Pase was restored (Fig-

ure 2E), leading to normal glycemia and

receding the metabolic phenotypes (Fig-

ures 2B, 2C, and 2E).

Although Rab5 was silenced specif-

ically in the liver (Zeigerer et al., 2012),

the reduction in G6Pase and Pepck

expression could be triggered by endo-
crine signals from other organs. To rule out this possibility, we

silenced Rab5 in isolated primary hepatocytes. Once again, we

observed a strong decrease in G6Pase and Pepck1 expression

(Figure 2E), arguing that it is mediated by a hepatocyte-autono-

mous rather than a systemic effect. Taken together, these data

suggest that the expression of G6Pase as well as other gluco-

neogenic genes is subjected to regulation by the endosomal

system.

Mathematical Modeling and Simulations Suggest that
the Block in Glucose Output and Accumulation of
Glycogen Can Be Explained by Loss of G6Pase in
Rab5KD Liver
How does G6Pase loss affect glucose output and glycogen pro-

duction? We applied a mathematical kinetic model of hepatic
92, May 12, 2015 ª2015 The Authors 887



Figure 3. MathematicalModelingofGlucose

Fluxes and Glycogen Accumulation

(A and B) Model simulation of fluxes for glycolysis

(PFK1, FBP1) (A) and gluconeogenesis (PK, PC) (B)

for control (black), G6Pase knockout (blue), and the

Rab5KD (green) livers.

(C) Simulation of glycogen dynamics in mouse

livers during re-feeding and fasting.
glucose metabolism (Figure S2A) that takes into account meta-

bolic regulation through substrates and allosteric effectors,

reversible phosphorylation controlled by plasma insulin and

glucagon, as well as changes in the amount of metabolic en-

zymes through variable gene expression. Model parameters

(Km and Ki values) were obtained from literature. Vmax values

for the reference state were calibrated to match physiological

metabolite concentrations (S.B., H.-G.H., and N.B., unpublished

data). Relative changes in protein levels of 24 proteins (Table S4)

upon Rab5KD measured by proteomics were taken to scale the

Vmax values for the Rab5KD.

Glycolytic fluxes through PFK1 and PK and gluconeogenic

fluxes through FBP1 and PC simulated with the model are de-

picted (Figures 3A and 3B). G6Pase knockout (KO) (blue) in-

creases the glycolytic flux and decreases the gluconeogenic

flux compared to control (fasted hepatocyte, black line). The pro-

teome changes upon Rab5KD (green) decrease the futile fluxes

between the opposing reactions (PFK1/FBP1 and PK/PC) in

glycolysis and gluconeogenesis. Flux through gluconeogenesis

was stronger affected by Rab5KD than by complete KO of

G6Pase alone, consistent with the reduction in additional rate-
888 Cell Reports 11, 884–892, May 12, 2015 ª2015 The Authors
limiting genes of gluconeogenesis (Table

S1). The model simulations further sup-

port the suggestion that the reduction in

G6Pase expression is sufficient to explain

the decrease of glucose production upon

Rab5KD.

To simulate glycogen dynamics asso-

ciated with the fasting-refeeding-fasting

cycle, we applied the same model to

compare control, G6Pase KO, and

Rab5KD (Figure 3C). Initial fasting and re-

feeding (gray-shaded area) were simu-

lated by blood glucose levels of 4 and

10 mM, respectively. Fluxes for glucoki-

nase (GK), G6PPase (G6PP), glucose

phosphate isomerase (GPI) (represent-

ing glycolytic/glyconeogenic flux), phos-

phoglucomutase (PGM) (representing

glycogen synthesis/glycogen degrada-

tion), and glucose transporter (GlcT) are

shown in Figure S2B. Glycogen is synthe-

sized during the refeeding period and

degraded in the fasting period in all con-

ditions. Higher glycogen content leads

to an increase in the flux through GP re-

sulting in production of G6P. G6P can

either be metabolized through glycolysis
or converted to glucose via G6Pase. The loss of G6Pase in von

Gierke’s disease and upon Rab5KD leads to (1) a higher flux

through glycolysis shown by GPI, (2) a rerouting back to

glycogen production (through higher GS flux), and (3) to the

accumulation of G6P and glycogen (Cori and Cori, 1952; Figures

S4C and 2F). The simultaneous accumulation of G6P and

glycogen lead to an increase in the flux through GS and GP

without necessarily modifying their phosphorylation state. Inter-

estingly, the proteome changes upon Rab5KD (Tables S2; Table

S4) result only in a partial compensation causing higher G6P and

glycogen content compared to control, as observed experimen-

tally. Altogether, the model simulations support our conclusion

that the reduction of G6Pase upon Rab5KD is sufficient to

explain the accumulation of glycogen.

The Rab5KD Liver Fails to Induce Gluconeogenic Gene
Expression due to an Inhibitory Effect on CREB,
ChREBP, and FoxO1 Function
The expression of G6Pase and Pepck1 is under the opposite

control of insulin and glucagon (Lin and Accili, 2011). As

the levels of insulin and glucagon did not vary significantly



Figure 4. G6Pase Reduction Is Independent

of Insulin Signaling

(A and C) Representative western blots for Akt,

GSK3b (A and C), and p-S6-RP (A) in livers after 6-

hr fast (A) and after insulin stimulation (0.75U/kg,

5 min) (C).

(B) Quantification of five independent experiments

from (A).

(D) Quantification of representative experiment

from (C) (mean ± SEM); #p > 0.1.
(Figure 2D), we inspected their signaling activity. First, we

analyzed the activation of Akt and its downstream kinases. We

observed a 20% increase in the p-Akt/Akt ratio in liver lysates

from Rab5KD animals compared to control; however, this in-

crease was not statistically significant (Figures 4A and 4B).

Furthermore, the levels of the downstream kinase GSK3b were

increased, but its phospho/total ratio and that of P-S6-RP

were unchanged (Figures 4A and 4B). In addition, the response

to insulin stimulation in vivo was not altered, as Rab5KD animals

showed a similar activation of Akt and its downstream kinase

GSK3b (Figures 4C and 4D). Occasionally, animals exhibited a

stronger increase in p-Akt levels (up to 200%) in the basal state.

However, since such an increase was not consistent between

animals, it cannot be the sole mechanism underlying the loss

of G6Pase and Pepck1.

We then verified that glucagon signaling was induced effi-

ciently in response to hypoglycemia. Glucagon leads to an in-

crease in cyclic AMP (cAMP) that activates protein kinase A

(PKA), which, in turn, phosphorylates CREB, a key transcription

factor controlling gluconeogenic gene expression (Altarejos and

Montminy, 2011). The basal cAMP levels and PKA activity were

increased in the liver of Rab5KD animals compared to control

(Figures 5A and 5B). As expected, phospho-CREB was also

increased (Figures 5C and 5D), suggesting that the liver re-

sponded normally to glucagon.

We next inspected the transcription factors responsible for

G6Pase gene expression, CREB, PGC1a, ChREBP, and FoxO1

using a combination of qPCR, western blot, and quantitative

immunofluorescencemicroscopy analysis. Surprisingly, although

the levels of CREB were increased, the expression of its target
Cell Reports 11, 884–8
PGC1a (Lin et al., 2005) was repressed

(Figure 5E). In addition, ChREBP (Ma

et al., 2006) was reduced by 50% (Fig-

ure 5E). FoxO1 is mainly negatively regu-

lated by phosphorylation (Matsumoto

et al., 2007). FoxO1 showed a modest

(20%) decrease in gene expression but a

100% increase in phospho-FoxO1, sug-

gesting a reduction in activity (Figures

5C–5E).

To verify whether the translocation

of CREB, FoxO1, and phospho-FoxO1

between the cytoplasm and nucleus

occurred normally, we visualized their

intracellular localization in primary hepa-

tocytes and mouse liver upon Rab5KD.
CREB levels were unchanged and accumulated in the nucleus

upon Rab5 depletion in vitro and in vivo (Figures S5A–S5D).

However, total FoxO1 remained largely cytoplasmic (Figures

S5A and S5C) with a modest decrease in protein levels (Fig-

ure S5B). This is consistent with a strong increase in the levels

of Akt-dependent phospho-Ser256-FoxO1 (Figures 5F, 5G,

and S5D) in primary hepatocytes and mouse liver. Therefore,

although the reduction in FoxO1 expression is modest, the

increased phosphorylation and lack of nuclear translocation

argue that its function is severely impaired. These data sug-

gest that endosomes exert a regulatory role on the expression,

activity, or nuclear translocation of the transcription factors for

the gluconeogenic genes.

Rab5KD Rescues Hyperglycemia in Diabetic db/db Mice
Patients with type 2 diabetes fail to respond to insulin, a defi-

ciency known as insulin resistance. Consequently, the liver en-

hances gluconeogenesis, contributing to hyperglycemia. If the

regulation of gluconeogenic gene expression via endosomes

were part of this mechanism, silencing Rab5 in the liver might

rescue the hyperglycemia in diabetes. To test this possibility,

we downregulated Rab5 in a mouse model of type 2 diabetes

(db/db; LepR KO) and tested the effects on blood glucose and

gluconeogenic gene expression in the liver of 10-week-old db/

db mice. Strikingly, depletion of Rab5 5 days post-injection

led to a 50% decrease in blood glucose, suggesting that

loss of endosomes improved glucose homeostasis specifically

in db/db mice (Figure 2C). Interestingly, the expression of

G6Pase and Pepck1 was strongly reduced upon Rab5 loss

in livers of db/db mice (Figure 2E) supporting an involvement
92, May 12, 2015 ª2015 The Authors 889



Figure 5. G6Pase Transcription Factor Al-

terations upon Rab5KD

(A–E) cAMP amount (A), PKA activity (B), western

blots of p-CREB and p-FoxO1 (C), and quantifi-

cation thereof (E), relative mRNA expression of

CREB, FoxO1, PGC1a, and ChREBP (E) from

livers of 6-hr-starved control and Rab5KD mice

(representative experiment shown; n = 4 mice per

condition).

(F and G) (F) Representative confocal images

(maximal projections of three merged middle

sections) of primary hepatocytes stained with p-

FoxO1 plus DAPI and (G) quantification thereof

within cellular masks by QMPIA.

Scale bar, 20 mm (mean ± SEM) *p < 0.05, **p <

0.01, ***p < 0.0001.
of endosomes in the regulation of gluconeogenic gene

expression.

DISCUSSION

In this study, we have uncovered a requirement of Rab5 and the

endosomal system for the regulation of hepatic metabolism.

Depletion of Rab5 boosts steroid biosynthesis while blocking
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gluconeogenesis. The induction of ste-

roid biosynthesis is an expected con-

sequence to the inhibition of LDL endo-

cytosis (Brown and Goldstein, 2009;

Zeigerer et al., 2012). Much more unex-

pected are the effects on glucose meta-

bolism. The accumulation of glycogen

granules, the increase in liver size, and

the reduction in G6Pase gene expression

all point at a striking similarity with the von

Gierke’s disease (Chou et al., 2010). The

loss of G6Pase in von Gierke’s disease

appears to be sufficient to induce all

the consequent metabolic abnormalities,

e.g., accumulation of glycogen (Cori and

Cori, 1952), hepatomegaly (Froissart

et al., 2011), as well as hypercholester-

olemia and hyperlipidemia (Bandsma

et al., 2002). Mathematical kinetic

modeling and simulation of hepatic

glucose metabolism suggest that the

reduction in G6Pase expression alone

can explain the marked decrease in

glucose production upon Rab5KD.

Rab5 may exert its function through its

signaling effectors (Christoforidis et al.,

1999; Schenck et al., 2008; Shin et al.,

2005). However, we favor the interpreta-

tion that the metabolic alterations are

the consequence of the loss of endo-

somes and lysosomes. First, the Rab5

signaling effectors are localized to endo-

somes (Schenck et al., 2008). Second,
the metabolic alterations remarkably correlate with the depletion

of endosomal compartments. Third, lysosomes play an impor-

tant role in glycogenolysis (see below). Another indication of

such a regulation is that Rab5 depletion was sufficient to over-

come the insulin resistant phenotype of diabetic mice.

Interestingly, a functional genomics screen revealed that

the endosomal system is modulated by a number of metabolic

pathways, including glycolysis, gluconeogenesis, and steroid



biosynthesis (Collinet et al., 2010). This argues that the functional

relationship between metabolism and endocytosis is bi-direc-

tional. Such a relationship goes beyond the classical view that

endocytosis regulates the surface expression of nutrient sensors

and transporters, e.g., GLUT4 (Antonescu et al., 2014). In our

study, the decrease of gluconeogenic gene expression and

occurrence of hypoglycemia upon Rab5KD cannot be explained

solely by the 30% reduction of GLUT2 observed by proteomics.

Insulin signaling was also not reproducibly affected.

Clearly, endocytosis is a key cellular process that, when per-

turbed, could have multiple direct or indirect effects on meta-

bolism. Among the many possible interpretations, one is that

endosomes could exert a regulatory role on the transcription fac-

tors responsible for gluconeogenic gene expression. We found

that loss of G6Pase upon Rab5KD is due to impairment in the

transcription factors regulating its expression. CREB was phos-

phorylated and translocated to the nucleus upon Rab5 depletion

but failed to induce the expression of its downstream target

PGC1a. The levels of ChREBP were reduced, and the nuclear

translocation of FoxO1 was inhibited, while its phosphorylation

increased. These results suggest that endosomes are directly

or indirectly necessary for the activity (CREB), expression

(ChREBP), and phosphorylation (FoxO1) of the transcription fac-

tors for G6Pase expression. One possibility is that they could

interact with Rab5 on the endosomal membrane, or through

intermediary molecules. Endosomes could provide a scaffold

for the transport toward the nucleus, as shown for CREB during

the retrograde transport from the growth cone to the cell body in

neurons (Cox et al., 2008), or for regulating their phosphorylation

state, as they regulate signal transduction (Sorkin and von Zas-

trow, 2009). Akt phosphorylates FoxO proteins leading to their

association with 14-3-3 and retention in the cytosol (Obsil and

Obsilova, 2008). Addressing this question requires the develop-

ment of new tools to detect the transcription factors intracellu-

larly and follow how signals are transmitted from the endosomes

to the kinases and phosphatases controlling their activity.

The functional connection between the endosomal system

and metabolism is exemplified by the Target of rapamycin

mTOR-TFEB pathway. The serine/threonine kinase mTOR is

localized to lysosomes and responds to nutrients, growth fac-

tors, bioenergetic needs, and cellular stress (Laplante and

Sabatini, 2012; Polak and Hall, 2009). When nutrients are avail-

able, mTORC1 phosphorylates the transcription factor TFEB

and inhibits its activity, whereas under starvation TFEB translo-

cates to the nucleus and induces the CLEAR transcriptional

network required for lysosomal biogenesis, autophagy, and lipid

catabolism (Settembre et al., 2013). Despite the severe loss of

endosomes and lysosomes upon Rab5KD, we did not observe

a significant induction of autophagy or TFEB activation. We

found only 13 genes of theCLEAR network that are transcription-

ally affected, 12 of them being upregulated upon Rab5KD. These

results make it unlikely that the mechanism by which Rab5KD

leads to the metabolic changes is TFEB dependent. Further-

more, we did not observe an induction of autophagosomes

probably due to the loss of endosomes and lysosomes,

which are necessary for their biogenesis (Lamb et al., 2013).

The disturbed response to starvation could therefore add to

the observed phenotypes. Clearance of intracellular lipids via
lipophagy is probably perturbed, contributing to the accumula-

tion of lipid droplets. In addition, lysosomes have been impli-

cated in the breakdown of glycogen granules (Dong and Czaja,

2011), further substantiating the lack of glycogenolysis.

It is likely that endosomal regulation of metabolic activities is

not restricted to the liver but plays amore general role in different

tissues. Dysfunctions of the endosomal system could play a

regulatory role also in the development of metabolic diseases

such as hepatic insulin resistance. On the other hand, pharma-

cological modulation of selective components of the endosomal

system could be a possible strategy for therapeutic intervention.

Our results showing that depletion of Rab5 reduces blood

glucose levels in a mouse model of type 2 diabetes provide a

proof of principle for such an approach.

EXPERIMENTAL PROCEDURES

Animals

Animal studies were conducted in accordance with German animal welfare

legislation and in pathogen-free conditions in the animal facility of the MPI-

CBG, Dresden, Germany. Protocols were approved by the Institutional Animal

Welfare Officer (Tierschutzbeauftragter), and necessary licenses were ob-

tained from the regional Ethical Commission for Animal Experimentation of

Dresden, Germany (Tierversuchskommission, Landesdirektion Dresden).

Proteomics

Liver tissueswere processedaccording to the FASPmethod and separated us-

ing strong anion exchange (Sharma et al., 2014). MS analysis of resulting pep-

tides was performed by Q-Exactive mass spectrometer coupled on-line to a

nanoflowUHPLC instrument (ThermoFisherScientific). Spectrawere searched

against the Uniprot FASTA database using MaxQuant (Cox and Mann, 2008),

version 1.4.1.6. An FDR < 0.01 for proteins and peptides was required. Prote-

ome quantification was performed using LFQ algorithm (Cox et al., 2014).

Shotgun Lipidomics

Lipids were extracted frommouse liver and plasma by a modified Folch proto-

col (Folch et al., 1957) and analyzed by shotgun mass spectrometry (Schuh-

mann et al., 2012). Molecular species of 15 lipid classes were identified and

quantified by LipidXplorer software (Herzog et al., 2011).

Glucose Flux Modeling

The mathematical kinetic model comprises the pathways of glycolysis/gluco-

neogenesis and glycogen synthesis/glycogenolysis. Inputs are the external

glucose and insulin and glucagon concentrations as well as protein abun-

dances. Relative protein abundances are mapped as changes in Vmax values

on the respective reactions. Simulations were performed for varying external

glucose concentration between 3 and 15 mM. For the simulation of the

Rab5KD condition, a total knockout of G6Pase was assumed.
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