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Reversibility is a key concept in Markov models and master-equation models of molecular kinetics.
The analysis and interpretation of the transition matrix encoding the kinetic properties of the model
rely heavily on the reversibility property. The estimation of a reversible transition matrix from simula-
tion data is, therefore, crucial to the successful application of the previously developed theory. In this
work, we discuss methods for the maximum likelihood estimation of transition matrices from finite
simulation data and present a new algorithm for the estimation if reversibility with respect to a given
stationary vector is desired. We also develop new methods for the Bayesian posterior inference of
reversible transition matrices with and without given stationary vector taking into account the need for a
suitable prior distribution preserving the meta-stable features of the observed process during posterior
inference. All algorithms here are implemented in the PyEMMA software — http://pyemma.org —
as of version 2.0. C 2015 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4934536]

I. INTRODUCTION

Markov models, Markov state models (MSMs), or master-
equation models are a powerful framework to reduce the great
complexity of bio-molecular dynamics to a simple kinetic
description that represents the underlying transitions between
distinct conformations.1–7 These models allow us to analyze
the longest-living (metastable) sets of structures,8 the effective
transition rates between them,9,10 the kinetic relaxation pro-
cesses and their relationship to equilibrium kinetics experi-
ments,7,11–14 and the thermodynamics and kinetics over mul-
tiple thermodynamic states.15–18 A key advantage of MSMs
is that they are estimated from conditional transition statistics
between states, and they thus do not require the data to be
in global equilibrium across all states. As a result, they are
an excellent tool to integrate the data of multiple simula-
tion trajectories that have been run independently and from
different initial states into a single informative model.19–21

A variety of complex molecular processes have been
successfully described using MSMs. Examples include the
folding of proteins into their native folded structure,20,22,23

the dynamics of natively unstructured proteins,24,25 and the
binding of a ligand to a target protein.21,26–30

There are two key steps in the construction of a MSM.
At first, a suitable discretization of the continuous confor-
mation space has to be obtained. In most cases, no good a
priori discretization is known and the discretization has to be
found based on the simulation data. The appropriate choice
of discretization is a topic of ongoing research.24,31,32 The
error incurred by the discretization and by the subsequent
approximation of the jump-process as a Markov process can
be systematically controlled and evaluated.7,33–35
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In the second step, one estimates the transition probabil-
ities between pairs of states based on the transition statistics.
The most common approach to estimating Markov models
from data is by means of a Bayesian framework. One first
harvests the transition counts, ci j(τ) from the data, i.e., how
often trajectories were found in discrete state i at some time
t and in discrete state j at some later time t + τ. The param-
eter τ is called lag time and is crucial for the quality of the
Markov model.7,33 Next, one computes the transition matrix
either by maximizing the likelihood, i.e., the probability over
all possible Markov model transition (or rate) matrices that
may have generated the observed transition counts7,36,37 or by
sampling Markov models from the posterior distribution.38–42

A maximum likelihood estimate gives a single-point estimate,
i.e., a single Markov model that is “most representative” given
the data. However, if some transition events are rare compared
to the total simulation length — and this is the typical case in
molecular dynamics simulation — this maximum likelihood
model might be very uncertain and thus far away from the
model that the one would converge to by increasing amount of
simulation data. The Bayesian posterior ensemble is a natural
approach to quantify such statistical uncertainties and thus
to make meaningful comparisons between a Markov model
obtained from different sets of simulations or to experimental
data.

A key property of molecular dynamics at thermal equi-
librium, and a necessary consequence of the second law of
thermodynamics, is microscopic reversibility of the equations
of motion. This property is ensured by many simulation proce-
dures43,44 and carries over to detailed balance between discrete
states, i.e., formally leads to a (time-) reversible Markov model.
A reversible Markov model is not only physically desirable,
it offers statistical advantages as it has only about half as
many independent parameters compared to a nonreversible
model, and it allows the equilibrium kinetics to be analyzed
in a straightforward and meaningful manner. Furthermore,
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imposing detailed balance with respect to a given stationary
vector can be used to aid the efficient estimation of rare-event
processes from MSMs.45

Algorithms imposing detailed balance during likelihood
maximization have been discussed in Refs. 7, 16, 36, and 37.
First methods for sampling the posterior distribution of
reversible transition matrices have been suggested in Ref. 39
and later in Ref. 46. A method working with natural priors for
reversible chains was proposed in Ref. 47. The sampling of
transition matrices reversible with respect to a fixed stationary
distribution was also presented in Ref. 39, while a Gibbs
sampling algorithm with a significantly improved convergence
rate has been developed in Ref. 42. Reference 48 discusses
methods for goodness-of-fit tests for Markov chains.

This article is deliberately broad and presents new con-
cepts, insights, and algorithms for reversible Markov model
estimation in general, maximum likelihood estimators, and
Bayesian estimators that mutually benefit from each other. For
this reason, we first give a survey of principles and conse-
quences of reversible Markov models. We then extend the
framework of maximum likelihood estimation of transition
matrices by giving a simplified maximum likelihood estimator
(MLE) for reversible transition matrices and a new estimator
for reversible transition matrices with a fixed equilibrium
distribution. The main part of the paper comprises new algo-
rithms for the full Bayesian analysis of the posterior ensemble
of reversible Markov models. As yet, three fundamental prob-
lems have not been satisfactorily solved: (i) How can one
harvest statistically uncorrelated transition counts from trajec-
tories in which subsequent transitions are correlated, so as to
give rise to meaningful uncertainty intervals? (ii) Which prior
should be used in a Bayesian analysis so as to get error intervals
that envelop the true value even for Markov models with many
states? (iii) How can we design efficient sampling algorithms
for the reversible posterior ensemble, i.e., algorithms that allow
to quickly compute reliable error bars for Markov models
with many states? In this paper we discuss (i) and give a
rather complete treatment of problems (ii) and (iii). Effi-
cient sampling algorithms are derived for reversible Markov
models and reversible Markov models with fixed equilibrium
distribution.

II. REVERSIBLE MARKOV MODELS

In this section, we will show that microscopic reversibility
carries over to the discretized situation and discuss the desir-
able properties of a reversible Markov state model.

A. From microscopic reversibility to discrete-state
detailed balance

Let µ(x) denote the equilibrium distribution on the micro-
scopic degrees of freedom x ∈ Ω, e.g., all-atom coordinates of
the system of interest, and let pτ(x, y) denote the conditional
transition density of the MD implementation. pτ(x, y) is the
probability that the system is found in state y at time t + τ given
that it has been in state x at time t. The MD implementation ful-
fills microscopic reversibility if the following detailed balance

equation

µ(x) pτ(x, y) = µ(y) pτ(y, x) (1)

holds for all pairs of states x, y ∈ Ω. Hence, the terms “detailed
balance” and “reversible” are equivalent in our context. Since
µ(x) pτ(x, y) is the unconditional probability to find the tran-
sition (x, t) → (y, t + τ), Eq. (1) means that the system is on
average time-reversible — the absolute number of transitions
from x to y is equal to the reverse. Microscopic detailed bal-
ance is desirable to have in any MD implementation when the
aim is to perform simulations in thermodynamic equilibrium.
If (1) would be violated, that would imply the existence of
cycles x → y → z → x along which there is a net transport.
Since such cycles could be used to generate work, their exis-
tence in a system that is driven by purely thermal energy would
be inconsistent with the second law of thermodynamics.

Dynamical models that are commonly employed in MD
implementations fulfill detailed balance. Brownian (over-
damped Langevin) dynamics fulfills detailed balance. Hamil-
tonian and non-overdamped Langevin dynamics fulfill gener-
alized detailed balance with respect to momentum inversion
in phase space, but when integrating over the distribution of
momenta they do fulfill ordinary detailed balance in position
space.49 In practice, some finite time-stepping integrators do
not obey exact detailed balance with respect to the Boltzmann
distribution, but we here consider that the MD implementation
has been chosen such that detailed balance is at least approxi-
mately fulfilled.

Now suppose that the state spaceΩ is partitioned into non-
overlapping subsets S1, . . . , Sn that we shall call discrete states
here. Each set has an equilibrium probability given by

πi =


Si

dx µ(x) (2)

and the transition density gives rise to a discrete state transition
matrix P(τ) with entries

pi j(τ) =

Si

dx

S j

dy µ(x)pτ(x, y)
Si

dx µ(x) . (3)

Using (2) and (3) and microscopic detailed balance, (1), it is
straightforward to verify that

πipi j(τ) = π jpj i(τ). (4)

Note that (4) holds independently of the choice of the lag
time τ. Moreover, (4) implies that π is the equilibrium prob-
ability vector of P(τ). By defining the diagonal matrix Π
= diag(π1, . . . , πn), we can alternatively write (4) as a matrix
equation,

ΠP = (ΠP)⊤, (5)
P = Π−1P⊤Π. (6)

As a result, if the microscopic dynamics are reversible, the
Markov model transition matrix must also be reversible. How-
ever, a direct estimate of P from a finite amount of simulation
data cannot be expected to fulfill (4) exactly. Thus, the principle
validity of detailed balance motivates us to enforce (4) in the
process of estimating P.
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TABLE I. Number of independent variables (degrees of freedom, dof)
and their approximated values for transition matrices depending on the
constraints.

Constraints dof ≈

None n(n−1) n2

Reversible 1
2 n(n−1)+n−1 1

2 n
2

Reversible, fixed π 1
2 n(n−1) 1

2 n
2

Enforcing detailed balance helps to reduce the statistical
error of an estimator for P because it reduces the number of
independent variables roughly by approximately one half (see
Table I). However, there are other consequences of having (4):
Given detailed balance, we can compute the molecular equi-
librium kinetics in a physically meaningful way and employ
some useful analysis tools that are not defined for nonreversible
Markov models. Moreover, we can employ more efficient and
robust matrix algebra routines when exploiting that P is a
reversible matrix.

B. Eigenvalues and eigenvectors

Many methods to analyze the molecular kinetics based
on a Markov model transition matrix rely on the eigenvalue
decomposition of P. Using the diagonal eigenvalue matrix Λ
= diag(λ1, . . . , λn), we can formulate a right eigenvalue prob-
lem with right column eigenvectors R = (r1, . . . , rn), ri ∈ Rn,
and left row eigenvectors L = (l1, . . . , ln)⊤,

PR = RΛ, (7)
LP = ΛL. (8)

From (7), we can obtain a generalized eigenvalue problem,

ΠPR = ΠRΛ.

Π is symmetric positive definite and as a result of detailed
balance, ΠP is symmetric. Hence, all eigenvalues λ1, . . . , λn

are real, and the eigenvectors are orthogonal with respect to the
equilibrium distribution50

⟨ri, r j⟩π ∝ δi j,
where we have used the weighted scalar product ⟨u, v⟩π
=


i πiuivi. We can make R orthonormal by scaling an arbi-

trarily obtained eigenvector ri by ⟨ri, ri⟩−1/2
π .

Inserting detailed balance formulation (6) into decompo-
sition (7) immediately gives

P⊤ΠR= ΠRΛ,

(ΠR)⊤P= Λ(ΠR)⊤

which is a left eigenvalue problem with the choice

L = (ΠR)T ,
l⊤i =Πri.

(9)

Thus, detailed balance establishes a 1-to-1 relation between
the left and the right eigenvectors. We can decompose the
transition matrix into its spectral components by just using one

set of eigenvectors and the equilibrium distribution, such as

P = RΛR⊤Π =
n
i=1

λirir⊤i Π. (10)

1. Example 1

Consider the following reversible 3 × 3 transition matrix:

P =
*...
,

0.5 0.34 0.16
0.28 0.5 0.22
0.15 0.25 0.6

+///
-

. (11)

Suppose we generate a Markov chain of length 20 starting from
state 1, resulting in the count matrix at lag τ = 1,

C =
*...
,

4 3 0
1 4 3
1 1 2

+///
-

. (12)

Now we conduct a nonreversible and a reversible maximum
likelihood estimation of the transition matrix given C. Eigen-
values for the exact transition matrix in (11) and both nonre-
versible and reversible estimates for the given count matrix in
(12) are shown in Fig. 1.

It is seen that the nonreversible estimate contains com-
plex eigenvalues. These generally come in complex conjugate
pairs. Fig. 1 shows a much higher accuracy of the reversible
estimate compared to the nonreversible estimate. In order to
explore the statistical significance of this observation, we run
N = 1000 chains of length L = 20 using transition matrix (11).
The reversible and nonreversible estimation results, together
with the true eigenvalues, are reported in Table II.

It is seen that the reversible estimates do not only have
the correct real-valued structure but can also have smaller
uncertainties (here, especially for λ3). This is expected to be a
general result due to the smaller number of degrees of freedom
in the reversible estimate.

FIG. 1. Eigenvalues of 3×3 example system. The eigenvalues obtained
from the reversible estimate (green) are a closer approximation to the true
eigenvalues (red) than the eigenvalues obtained from the non-reversible es-
timate (blue). The unique eigenvalue λ = 1 is faithfully reproduced by both
estimates.
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TABLE II. Results for non-reversible and reversible transition matrix esti-
mation using count matrix (12).

λ1 Re{λ2} Im{λ2} Re{λ3} Im{λ3}
Exact 1 0.42 0.0 0.18 0.0
Reversible 1 0.36 ± 0.31 0.0 0.18 ± 0.04 0.0
Non-
reversible

1 0.32 ± 0.29 −0.04 ± 0.08 0.07 ± 0.21 0.04 ± 0.09

2. Example 2

Fig. 2 shows the distribution of eigenvalues from nonre-
versible and reversible Markov models from simulation data
for the alanine-dipeptide molecule (see Sec. V B). The eigen-
values of the reversible estimate are purely real while the non-
reversible estimate has eigenvalues with non-zero imaginary
part.

C. Equilibrium kinetics analyses

Since detailed balance is a consequence of a system simu-
lated at dynamical equilibrium, it is not surprising that detailed
balance in the transition matrix P is a prerequisite to analyze
the equilibrium kinetics given P. Since kinetics are related
to slow processes, we will here only consider the m largest
eigenvalues λ1, . . . , λm and assume that they are positive.
Here are a few examples for equilibrium kinetics properties
computed from reversible transition matrices:

1. The dominant relaxation rates of the molecular system are

κi = −
1
τ

ln λi, (13)

where i ≥ 2 (i = 1 has a relaxation rate of zero and corre-
sponds to the equilibrium distribution). The inverse quan-
tities are the relaxation time scales ti = κ−1

i . These rates
or time scales are of special interest because they are
often detectable in kinetic experiments such as fluorescence
time-correlation spectroscopy, two-dimensional IR spec-
troscopy, or temperature jump experiments — see Ref. 11
for a discussion.

FIG. 2. Eigenvalues for alanine dipeptide. The cluster of dominant eigen-
values indicates that the slowest processes are faithfully reproduced by the
non-reversible (blue) as well as by the reversible (green) estimate. Only the
eigenvalues of the reversible estimate are purely real.

2. Decomposition (10) can be used to write kinetic exper-
imental observables in an illuminating form.11,13,14 For
example, the long-time scale part of the autocorrelation
of a molecular observable a ∈ Rn, e.g., containing the
fluorescence values of every Markov state of a molecule,
can be written as

acf(a; τ) ≈ ⟨a, π⟩2 +

m
i=2

⟨a, ri⟩2
πe−κiτ. (14)

3. The PCCA+method for seeking m metastable sets of Mar-
kov states and its variants8,51 assumes m real-valued eigen-
values and eigenvectors. It is thus only reliably applicable
to reversible transition matrices.

4. Discrete transition path theory20,52,53 computes the statistics
of transition pathways from a set of states A to a set of states
B given a transition matrix. Discrete TPT can be used with
nonreversible and reversible transition matrices. However,
in the reversible case, we get that the forward committor
and the backward committor are complementary,

q+i = 1 − q−i

and the net fluxes, when ordering states such that q+i ≤ q+j ,
are given by

f +i j = (q+j − q+i )πipi j
which is analogous to an electric current I = UG, where
I = f +i j, U = (q+j − q+i ) is the potential difference and πipi j
is the conductivity.54

III. LIKELIHOOD, COUNTING, AND MAXIMUM
LIKELIHOOD ESTIMATION

We restate the transition matrix likelihood and formu-
late the maximum likelihood estimation problem for Markov
model transition matrices. We present new estimation algo-
rithms for reversible Markov models with known or unknown
equilibrium distribution π.

A. Likelihood

Suppose we have a discrete sequence S = {s1, . . . , sN}
with si ∈ {1, . . . , n}. If we assume that this sequence is the
realization of a Markov chain with lag time τ = 1, the proba-
bility that a transition matrix P has generated X is proportional
to the product of individual transition probabilities along the
trajectory

P(S | P) ∝
N
t=1

pstst+1. (15)

We have neglected the proportionality constant because we
will not need it in order to maximize or sample from (15).
This is very handy because one component in this constant is
the probability of generating the first state, ps0, which is often
unknown, but is constant for a fixed data set S.

Suppose we have ci j transitions from i to j. Then, we can
group all pi j terms together and get a factor p

ci j
i j . Doing this for
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all pairs results in the equivalent likelihood formulation

P(C |P) ∝

i


j

p
ci j
i j . (16)

We can see that the count matrix C ∈ Rn×n is a sufficient statis-
tics for the Markov model likelihood P(S | P) — it generates
the same likelihood although we have discarded the informa-
tion in which sequence the transitions have occurred.

If multiple trajectories are available, their count matrices
are simply added up.

B. Counting

How should we count transitions for longer lag times
τ > 1, or if S is not Markovian at lag time τ? Regarding the
first case, if S is Markovian at lag time τ, a safe approach seems
to subsample the trajectory at time steps of τ and then treat
the subsampled trajectory as above.7,9 However, this approach
is statistically inefficient: If S is also Markovian for shorter
lag times than τ, then we are using less information than we
could. Even if S only becomes Markovian at lag times of τ
or longer, transitions such as 1 → τ + 1 and τ/2 → τ + τ/2
are usually only partially correlated, such that discarding the
second transition is also not fully exploiting the data. In prac-
tical MD simulations, the lag times required such that a Markov
model is a good approximation need to be quite long (often in
the range of nanoseconds), such that subsampling the data at
τ will create severe problems with data and connectivity loss.
Regarding the second case, if S is not Markovian at lag time τ,
then treating every ci j as an independent count is incorrect.

Both cases can, in principle, be treated with the following
formalism: We always obtain the count matrix ci j in a sliding
window mode,7 i.e., we harvest all N − τ available transi-
tion counts from time pairs (1 → τ), (2 → τ + 1), . . . , (N − τ
→ N). Unless S is Markovian at lag time 1, we will now har-
vest more transition counts than are statistically independent.
We can formally correct for this by introducing a statistical
inefficiency Ii j(τ) for every count at a given lag time, such
that ceff

i j (τ) = Ii j(τ) ci j(τ) is the effective number of counts,
resulting in the likelihood

P(C |P) ∝

i, j

p
ceff
i j

i j . (17)

The determination of statistical inefficiencies for univariate
signals is well established.55 Determining Ii j(τ) for transition
count matrices is an open problem. A first approach that allows
for the first time to estimate consistent, although somewhat too
small uncertainty intervals for practical MD data is discussed
in Ref. 56. Note that the validity of the estimation algorithms
described in the present paper is independent of the choice of
the count matrix, such that future methods for estimating the
effective count matrix can be adopted without changing the
estimation algorithms.

C. Maximum likelihood estimation

We will now assume that the effective counts are given. For
better readability, we will subsequently omit the superscript

eff and just use C = (ci j) to indicate counts. Now we ask
the question what is the most likely transition matrix for the
observation C, i.e., we seek the MLE that maximizes (15) over
the set of transition matrices.

1. Non-reversible estimation

It is well known that the non-reversible MLE for the
transition probability from state i to state j is simply given by
the ratio of observed counts from i to j divided by the total
number of outgoing transitions from state i,57

p̂nonrev
i j =

ci j
k cik

. (18)

We use the hat in order to denote an estimator. The term non-
reversible implies that reversibility has not been used as a
constraint in the estimation of P̂nonrev. Of course P̂nonrev can
be coincidentally reversible and will be reversible if the count
matrix C is symmetric. For this reason, some early contribu-
tions in the field forced symmetry in C by counting S forward
and backward. This practice is strongly discouraged as it will
create a large bias unless the trajectories used are very long
compared to the slowest time scales of the molecule.

2. Reversible estimation

Now we consider the problem of finding the reversible
MLE P̂rev by enforcing detailed balance (4) with respect to
an unknown equilibrium distribution (πi) as constraint in the
estimation procedure. Note that the count matrix used for
this approach is not modified, i.e., it comes from a forward-
only or nonreversible counting and is generally not symmetric.
Constraints (4) can be more conveniently handled by defining
the new set of variables

xi j = πipi j . (19)

Note that

xi =

j

xi j = πi. (20)

We can thus recover the transition matrix from X = (xi j) by

pi j =
xi j

xi
. (21)

Inserting (21) into (16) and adding constraints for detailed
balance and stochasticity leads to the reversible maximum
likelihood problem,

maximize
X


i, j

ci j log
xi j
k xik

subject to Xi j = X j i,
k

Xik > 0,

Xi j ≥ 0.

(22)

Ignoring the inequality constraints, the optimality conditions
are

ci j + cj i

xi j
− ci

xi
−

cj

x j
= 0, (23)
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with ci =


j ci j and xi =


j xi j. There is no closed form solu-
tion when including the detailed balance constraint so that
(22) has to be solved numerically. One option is to directly
solve (23) for xi j and turn it into a fixed-point iteration, as first
proposed in Ref. 37,

x(k+1)
i j =

ci j + cj i

ci

x
(k )
i

+
c j

x
(k )
j

, (24)

where k counts the iteration number in the algorithm. For
a starting iterate x(0)i j fulfilling the constraints in (22), for
example, x(0)i j = (ci j + cj i)/i, j(ci j + cj i), the iterates will be
symmetric and fulfill the inequality constraints for all k > 0.

If we sum over j on both sides of (24) and use (20), we
can instead reduce the problem to iterative estimation of the
equilibrium distribution,

π
(k+1)
i =

n
j=1

ci j + cj i

ci

π
(k )
i

+
c j

π
(k )
j

. (25)

The iteration is terminated when ||π(k+1) − π(k)|| < ϵ . The final
estimate π̂ is then inserted into (23) to recover the reversible
transition matrix estimate,

p̂rev
i j =

(ci j + cj i)π j

ciπ j + cjπi
. (26)

Note that both the optimum sought by Eqs. (25) and (26)
exhibits p̂i j = 0 if ci j + cj i = 0. Thus, in both optimization
algorithms, the sparsity structure of the matrix C + CT can be
used in order to restrict all iterations to the elements that will
result in a nonzero element p̂i j > 0.

Furthermore, note that (25) and (26) are special cases of
the transition-based reweighing analysis (TRAM) method —
see Ref. 16, Eqs. (29) and (30) — for the special case of a
single thermodynamic state. An example for the progress of the
self-consistent iteration using an alanine dipeptide simulation
is shown in Fig. 3.

A different method of iterative solution presented in Ref. 7
updates xi j with the exact solution to the quadratic problem
arising from (23) while holding all other variables xkl fixed. As
shown in Fig. 3, this approach can exhibit faster convergence
properties than fixed-point iteration (25).

Uniqueness of the estimator: Optimization problem (22)
can be equivalently transformed into a convex optimization
problem by replacing the decision variables xi j with zi j
= log(xi j) (see Ref. 17 for details), which implies the unique-
ness of the maximum likelihood estimator.

3. Reversible estimation for given stationary vector

While unbiased MD simulations are useful to estimate
state-to-state transition probabilities pi j, enhanced sampling
algorithms such as umbrella sampling and replica-exchange
MD can be much more efficient in order to gain insight of
the equilibrium distribution π. Reference 45 demonstrates how
an uncertain estimate of π can be combined with unbiased
“downhill” trajectories in order to estimate rare event kinetics.
A key in such a procedure is a way to estimate a revers-
ible Markov model that is most likely given transition counts

FIG. 3. Performance of algorithms for reversible maximum likelihood esti-
mation. (a) Reversible transition matrix estimated using fixed-point iteration
(25) from an n = 228 state count-matrix obtained from alanine-dipeptide
simulation data. Convergence is shown for different total simulation lengths
T . (b) Performance comparison of direct fixed-point iteration (25) and the
quadratic optimizer described in Ref. 7 for reversible transition matrix esti-
mation given the count matrix C = ((5, 2, 0), (1, 1, 1), (2, 5, 20))⊤. Shown is
the difference of the current likelihood to the optimal likelihood. (c) Same as
b, but using the 1734×1734 count matrix from Pin WW folding simulations
used in Ref. 20.

observed from MD simulations, but at the same time has a
fixed equilibrium distribution π. Here we derive a new, efficient
estimation algorithm for this task.

Enforcing reversibility with respect to a given station-
ary vector results in the following constrained optimization
problem:

maximize
P


i, j

ci j log pi j (27)
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subject to

j

pi j = 1, (28)

pi j ≥ 0, (29)
πipi j = π jpj i. (30)

π can only be the unique stationary distribution of P if P
is irreducible. To ensure irreducibility, we restrict the state
space to the largest (weakly) connected set of the undirected
graph that is defined by the adjacency matrix C + CT . For a
system with n states, Eqs. (27)–(30) are a convex minimization
problem inO(n2) unknowns withO(n2) equality and inequality
constraints. Solving this with a standard interior-point method
requires the solution of a linear system with O(n2) unknowns
to compute the search direction at each step. The resulting
computational effort of O(n6) operations for solving the linear
system quickly becomes unfeasible for increasing n. There-
fore, we will propose a fixed-point iteration that is also feasible
for large values of n.

To solve the maximization problem, we ignore inequality
constraint (29) at first. Row-stochasticity constraint (28) is
enforced by introducing Lagrange multipliers λi and adding
penalty terms λi

�
j pi j − 1

�
for all i = 1, . . . , n to the objec-

tive function. Detailed balance constraint (30) is included into
the likelihood explicitly by the change of variables,

p′i j =



pi j if i ≤ j
π j

πi
pj i else

.

These substitutions result in the Lagrange function

F =

i

cii log p′ii +

i< j

(ci j + cj i) log p′i j

−

i< j

p′i j

(
λi + λ j

πi
π j

)
−


i

λip′ii +

i

λi + const (31)

that we seek to maximize. By setting the gradient of F with
respect to all p′i j to zero and subsequently reversing the change
of variables, we find the following expression for the maximum
likelihood estimate:

p̂i j =
(ci j + cj i)π j

λiπ j + λ jπi
. (32)

Note the similarity of this equation with maximum likelihood
result (26) where π has been self-consistently computed from
the counts. The row counts ci are here replaced by the yet
unknown Lagrange multipliers λi. In order to find the Lagrange
multipliers, we sum Eq. (32) over j,

j

(ci j + cj i)π j

λiπ j + λ jπi
= 1. (33)

This does not give a closed-form expression for λi. However,
based on this equation, we propose the following fixed-point
iteration for the Lagrange multipliers:

λ
(n+1)
i =


j,ci j+c j i>0

(ci j + cj i)λ(n)i π j

λ
(n)
j πi + λ

(n)
i π j

. (34)

Motivated by the analogy between Lagrange multipliers and
row counts described above, we set the starting point to

FIG. 4. Convergence of the reversible maximum likelihood estimation with
fixed stationary vector. The transition matrix is estimated from an n = 228
state count-matrix obtained from alanine-dipeptide simulation data. Conver-
gence is shown for different total simulation lengths. The stationary distribu-
tion was obtained using simple counting estimate (83).

λ
(0)
i =

1
2


j

(ci j + cj i). (35)

Taking the limit λi → 0+ in (34) still leads to a consistent solu-
tion. Choosing strictly positive starting parameters according
to (35) results in valid iterates from (34). In analogy to the
reversible case, we iterate (34) and (35) until

�
λ(k+1) − λ(k)

�

< ϵ . An example for the progress of the self-consistent iteration
using alanine dipeptide simulation data is shown in Fig. 4.
Note that the convergence is nearly three orders of magnitude
faster compared to the estimation with unknown equilibrium
distribution (Fig. 3).

Given converged Lagrange multipliers, we can exploit
(32) to find the maximum likelihood transition matrix P̂. For
this algorithm, inequality constraints (29) are automatically
fulfilled when ci j ≥ 0 for all i, j. Care must be taken in two situ-
ations: (i) λi = λ j = 0 — one can show that the simultaneous
limit λi → 0+ and λ j → 0+ can only occur for ci j + cj i = 0,
but then we know that p̂i j = 0. (ii) A diagonal element cii is
zero. Depending on the values of π, the solution λi may take
the value of zero such that Equation (32) for i = j becomes
p̂ii = cii/λi = 0/0 which is meaningless and is not the correct
limit of pii as cii goes to zero. However, this can be fixed easily
by using p̂ii = 1 −

j,i p̂i j for the diagonal elements of P. In
summary, we use the following equation for computing P̂ from
converged Lagrangian multipliers:

p̂i j =




π j

ci j + cj i

λiπ j + λ jπi
i , j, λi + λ j , 0

0 i , j, λi + λ j = 0

1 −


j,i
p̂i j i = j

. (36)

Uniqueness of the estimator: Since the above estimation
algorithm is iterative, it is fair to ask whether the estimator P̂
it converges to is unique, or whether there might be multiple
local maxima that we could get stuck in. In this case, it is easy
to show that the estimator is unique: Let P∗ be an optimal tran-
sition matrix. p∗i j = 0 exactly if ci j + cj i = 0. Let Ω = {pi j |ci j
+ cj i > 0}. Then, the function f (P) = 

i, j ci j log pi j is strictly
convex on Ω and the constraints restrict the solution on a
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convex subset Ω̃ ⊂ Ω. The minimization of a strictly convex
function over a convex set has a unique solution.

IV. BAYESIAN ESTIMATION

We introduce new algorithms for sampling the full poste-
rior probability distribution of Markov models, and, in partic-
ular, for estimating uncertainties of quantities of interest, such
as relaxation time scales or mean first passage times. A key in
these algorithms is the choice of a suitable prior which enforces
the sampled matrices to have the same sparsity pattern as the
transition count matrix, as this allows the credible intervals to
lie around the true value even for large transition matrices. The
relevance of the prior is first demonstrated for nonreversible
Markov models, for which an efficient sampling algorithm is
known. We then introduce new Gibbs sampling algorithms
for reversible Markov models with and without constraints on
the equilibrium distribution that vastly outperform previous
algorithms for sampling reversible Markov models.

A. Bayes’ theorem and Monte Carlo sampling

Bayes’ formula relates the likelihood of an observed effec-
tive count matrix C given a probability model P to the posterior
probability of the model given the observation

P(P|C)  
posterior

∝ P(P)
prior

P(C |P)  
likelihood

. (37)

The posterior accounts for the uncertainty coming from a
finite observation. It incorporates a priori knowledge about the
quantity of interest using the prior probabilityP(P). We will see
that a suitable choice of the prior is essential for the success of
a Bayesian description for high-dimensional systems.

In general, if we are interested in an observable that is a
function of a transition matrix, f (P), we would like to compute
its posterior moments, such as the mean and the variance,

⟨ f ⟩ =


dP P(P|C) f (P), (38)

Var( f ) =


dP P(P|C) ( f (P) − ⟨ f ⟩)2. (39)

While we usually use the maximum likelihood transition ma-
trix P̂ to provide “best” estimates, f (P̂), the above integrals are
of interest becauseσ( f ) = 

Var( f ) gives us an estimate of the
statistical uncertainty of f . Alternatively, we might be inter-
ested in the credible intervals which encompass the true value
of f with some probability, such as 0.683 (1σ intervals) or 0.95
(2σ intervals). As integrals (38) and (39) are high-dimensional,
we need to use Monte Carlo methods to approximate them.

In Monte Carlo methods, we generate a sample of transi-
tion matrices {P(k)}N

k=1 distributed according to the posterior
and evaluate f at each element P(k) in the ensemble. We then
approximate posterior expectation value (38) and posterior
variance (39) by

m[ f ] = 1
N

N
k=1

f (P(k)), (40)

s2[ f ] = 1
N − 1

N
k=1

(
f (P(k)) − m[ f ])2

. (41)

Obtaining good and reliable samples of the posterior P(P|C)
is very difficult. Previous approaches have suffered from some
or all of the following difficulties, that are addressed here:

1. Choice of the prior: Given n Markov states (typically
100 s to 1000 s), transition matrices have on the order
of n2 elements and are thus extremely high dimensional.
Most priors used in the past allow to populate all these
elements pi j, including those for which no transition has
been observed. Although the effect of the prior can be over-
come by enough simulation data, for any practical amount
of simulation data, such priors will lead to posterior distri-
butions whose probability mass is far away from the true
model. This problem has been first addressed in Ref. 20 by
designing a prior that equates mean and MLE for nonrevers-
ible transition matrices, leading to credible intervals that
nicely envelop the true value. Here, we design correspond-
ing priors for reversible Markov models.

2. Uncorrelated transition counts C: As discussed in
Sec. III B, the likelihood, and thus the posterior, depends
on how transition counts are harvested from the discrete
trajectories which are generally time-correlated and not
exactly Markovian at any particular lag time τ. While the
MLE is often not or little affected by the exact way of
counting C, the uncertainties will be dramatically different
if C is, e.g., counted in a sliding window mode (using tran-
sitions starting at all times t = 0, 1, 2, . . .), or by subsam-
pling the trajectory (using transitions starting at all times
t = 0, τ, 2τ). Whereas the first approach underestimates
the uncertainties, the second approach often overestimates
them and is often not practical for large lagtimes τ. Here,
we suggest to use the effective number of uncorrelated
transition counts, C = Ceff, and a first approach to compute
them is described in Ref. 56.

3. Efficiency of the sampler: Finally, given a choice of prior
and C, a sampling algorithm needs to explore the high-
dimensional space of transition matrices in a reasonable
time. This is especially problematic for reversible Markov
models. The first Monte Carlo algorithm for sampling the
reversible posterior, described in Ref. 39, suffers from poor
mixing due to small acceptance probabilities of the indi-
vidual steps. In Ref. 42, an improved sampler was proposed.
Here, we propose sampling algorithms for reversible Mar-
kov models with and without fixed equilibrium distribution
whose efficiencies go far beyond previous approaches.

B. Non-reversible sampling

Let us first illustrate the effect of prior choice on Bayesian
estimation of nonreversible Markov models. A convenient
functional form for the prior is the Dirichlet prior

P(P) ∝

i


j

p
bi j
i j , (42)

where B = (bi j) is a matrix of prior-counts. For this choice, the
posterior is given by

P(P|C) ∝

i

*.
,


j

p
zi j
i j

+/
-
. (43)
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zi j = ci j + bi j is the matrix of posterior pseudo-counts. In
the non-reversible case, we can generate independent sam-
ples from (43) by drawing rows of P(k) independently from
Dirichlet distributions


j p

αi j−1
i j with Dirichlet parameters

αi j = zi j + 1 = ci j + bi j + 1.9

Choosing a uniform prior, bi j = 0, assigns equal prior
probability to all entries, pi j, in the posterior ensemble. But
this a priori assumption can lead to serious problems when
estimating quantities for meta-stable systems.

Consider, for example, the following transition matrix
for a birth-death chain consisting of two meta-stable sets A
= {1, . . . ,m}, B = {m + 2, . . . ,n}, separated by a kinetic
bottleneck in form of a single transition state,

P =

*.......................
,

1
2

1
2 0

1
2 0 1

2
. . .

. . .
. . .

1 − 10−b 0 10−b
1
2 0 1

2

10−b 0 1 − 10−b

. . .
. . .

. . .
1
2 0 1

2
1
2

1
2

+///////////////////////
-

. (44)

For barrier parameter b = 3 and sets with m = 50 and n = 101,
the expected time for hitting B from state x = 1 is 2 · 105

steps. Now we are interested in the Bayesian estimator for
a simulation of length L = 107. The true distribution can be
estimated with arbitrary precision by repeating the simulation
many times. Here, 103 repetitions led to an estimate of the 90%
percentile for the mean first passage time of [1.5, 2.7] · 105 (see
Table III).

In practice, we cannot afford to repeat the simulation many
times but would like to approximate the true value and its statis-
tical uncertainty from the given simulation data. Sampling
the nonreversible posterior given expected counts for a single
chain of length L = 107 with a uniform prior, bi j = 0, results
in non-zero transition probabilities for elements pi j which are
zero in the true transition matrix. As a result, artificial kinetic
pathways circumventing the bottleneck are appearing in the
posterior ensemble which lead to a dramatic underestimate
of the mean first passage time. The Bayesian estimate with
90% credible interval obtained from 103 posterior samples is
[1.9, 2.0] · 103, and thus two orders of magnitude smaller than
the true value 2 · 105 (Table III).

TABLE III. Estimates and credible intervals for the mean first passage time
in a birth-death chain using uniform and sparse priors.

Method Estimate

True 2.02.7
1.5 ·105

Uniform prior bi j = 0 1.952.0
1.9 ·103

Sparse prior bi j =−1 2.02.7
1.5 ·105

FIG. 5. Convergence of the 90% credible interval for the sparse prior bi j

=−1 and the uniform prior bi j = 0. The dashed line indicates the true value.
The credible interval for the improper prior covers the true value orders of
magnitude before the credible interval for the uniform prior.

Using the prior bi j = −1 suggested in Ref. 20 results in
90% credible intervals, [1.5,2.7] · 105, which clearly cover the
true value 2 · 105 (Table III). The choice bi j = −1 leads to
a posterior distribution in which sampled transition matrices
P have the same sparsity structure as the count matrix C,
i.e., pi j = 0 if ci j = 0. As count matrices in the present context
are generally sparse, we call this prior briefly sparse prior. Ap-
parently, the sparse prior leads to consistent credible intervals
covering the true value.

Fig. 5 shows the convergence of the 90% credible interval
for the sparse and the uniform prior. The credible interval for
the sparse prior envelopes the true value already given little
data. To achieve consistency using the uniform prior requires
simulations order of magnitudes longer than the time scale of
the slowest process, thus rendering inference under this prior
unpractical.

Note that our prior induces a fixed sparsity structure. This
concept should not be confused with other sparsity inducing
priors used, i.e., in the context of Bayesian compressed sens-
ing,58 where the sparsity pattern is subject to uncertainty.

C. A prior for reversible Markov models

Now we will present a new method for the sampling of
reversible transition matrices. In our new approach, we replace
Dirichlet prior (42) by a new prior for reversible sampling.

Similarly as in reversible maximum likelihood estimation,
we define our reversible transition matrix sampler in the space
of unconditional transition probabilities xi j. For convenience,
we restrict ourselves to the independent set of variables with
i ≥ j (remember that xi j = x j i for reversible matrices), and
keep them normalized to 1,

xi j ∝ πipi j, (45)
i≥ j

xi j = 1. (46)

Although X is defined slightly different as in the maximum-
likelihood case, the mapping from X back to P is still given
by Eq. (21). We define a prior for reversible sampling on the
set of X matrices rather than on P: Choosing xi j as the set of
independent variables has the advantage that obeying detailed
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balance amounts to sampling symmetric matrices, X = XT ,

P(X) ∝

i≥ j

x
bi j
i j . (47)

The posterior for reversible sampling is then given by

P(X |C) ∝

i≥ j

x
bi j
i j


i, j

(
xi j
k xik

)ci j
. (48)

Below we will first consider how to sample from (48) using
general prior counts bi j. Then, we will consider the specific
choice bi j = −1 for all i ≥ j and show that this choice has
similar properties as the sparse prior in the nonreversible case.

D. Sampling reversible transition matrices

There is no known method to generate independent sam-
ples from the posterior under the reversibility requirement.
Instead we will use a Markov chain Monte Carlo (MCMC)
method to generate samples from the posterior ensuring that
each sampled transition matrix fulfills detailed balance condi-
tion (4). Our Markov chain will generate the ensemble
{X (k)}N

k=1 via a set of updates advancing the chain from X (k)
→ X (k+1) starting from a valid initial state X (0). We can do
a simple row-normalization of the X matrices to obtain the
desired ensemble {P(k)}N

k=1. Expectation values and variances
will again be estimated using (40) and (41).

Similarly as in Refs. 39 and 42, we will construct our
Markov chain using a Gibbs sampling procedure, where we
sample a single element of X in each step while leaving the
other elements unchanged. We repeat this sampling procedure
for every element of X , thus completing a Gibbs sweep. As
detailed in the Appendix, we can use the following general
Gibbs step to sample posterior (48):

1. Select an arbitrary element xkl. Propose a new (unscaled)
matrix X → X ′ by sampling this element from the proposal
density q(x ′

kl
|X),

x ′i j =



∼q(x ′kl |X) (i, j) = (k, l)
xi j else

. (49)

Here, q(x ′
kl
|X) is an arbitrary, scale-invariant density. Scale-

invariance means that q(x ′
kl
|X) ∝ q(cx ′

kl
|cX) for any posi-

tive constant c.
2. Accept X̄ ′ as a new step in our Markov chain with proba-

bility min{1,pacc} where

pacc =
�
1 − xkl + x ′kl

�− n(n+1)
2 −b0 q(xkl |X ′)

q(x ′
kl
|X)

γ(x ′
kl
|X)

γ(xkl |X ′) ,
(50)

where b0 =


k≥l bkl and γ is the marginal density,

γ(x ′kl |X) ∝



(x ′
kk
)ckk+bkk

(xk − xkk + x ′
kk
)ck , k = l

(x ′
kl
)ckl+clk+bkl

(xk − xkl + x ′
kl
)ck(xl − xkl + x ′

kl
)cl , k , l

.

3. Renormalize the matrix X ′ → X̄ ′ such that it fulfills (46),

x̄ ′i j =
x ′i j

1 − xkl + x ′
kl

. (51)

While this approach will work for any choice of prior counts,
we will now use the sparse prior bi j = −1 for all i, j with
the hope to achieve similarly good results as in the nonre-
versible case. For this choice, γ(x ′

kl
|X) is scale-invariant,

i.e., γ(x ′
kl
|X) = γ(cx ′

kl
|cX), and the Jacobian pre-factor in (50)

is one. Thus, we have

pacc =
γ(x ′

kl
|X)

γ(xkl |X ′)
q(xkl |X ′)
q(x ′

kl
|X) , (52)

and the ideal choice of the proposal density is q ≡ γ, which
would guarantee that the acceptance probability is always 1.
This proposal density degenerates to a point probability at zero
if ckl + clk = 0, which implies bi j = −1 encodes a priori belief
that any transition for which neither the forward direction nor
the backward direction has ever been observed in the data has
zero probability in the posterior ensemble. Thus, this prior
enforces P to have the same sparsity structure as the count
matrix, like the choice bi j = −1 for nonreversible sampling.
Note that the reversible MLE has the same sparsity structure
as can be seen from update rule (24).

We will choose proposal densities q(x ′
kl
|X) that are also

scale-invariant. In this case, normalization step 3 above (X ′

→ X̄ ′) can be omitted, i.e., if we accept X ′, we can directly
set it as our new sample X (k) and obtain P(k) by row normali-
zation. We will now outline how to design the proposal density
γ such that the acceptance probability is 1 or nearly 1. For
k = l, sampling x ′

kk
∼ γ(x ′

kk
|X) is equivalent to sampling the

following transformed variable (see the Appendix):

s′ =
x ′
kk

xk − xkk + x ′
kk

∼ Beta(ckk,ck − ckk). (53)

So we can simply define q(x ′
kk
|X) ≡ γ(x ′

kk
|X) and generate

x ′
kk

by

s′ ∼ Beta(ckk,ck − ckk),
x ′kk = (xk − xkk) s′

1 − s′
.

(54)

For k , l, there is no known way to draw independent samples,
but γ(x ′

kl
|X) can be well approximated by a gamma distribu-

tion by matching the maximum point and the second deriva-
tive at the maximum. A gamma distribution can be efficiently
sampled and we use it as proposal density and accept the
resulting x ′

kl
with probability min{1,pacc}. Specifically, our

proposal step is

x ′kl ∼ q(x ′kl |X) = Gamma(x ′kl |α, β) (55)

with the parameters

α = −hv̄ , (56)
β = −hv̄2 (57)

using

v̄ =
−b +

√
b2 − 4ac

2a
, (58)
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ALGORITHM 1. Reversible sampling algorithm.

Input: C , X ( j)
Output: X ( j+1)
for all indexes (k, l) with k ≥ l and ckl+clk > 0 do

if k = l then
Sample x

( j+1)
kk

from (54)
end
else

Calculate α and β by (56), (57), and sample x′
kl

from Gamma(α, β).
pacc=

γ(x′
kl
|X )

γ(xkl |X )
Gamma(xkl |α,β)
Gamma(x′

kl
|α,β)

Accept x′
kl

as x
( j+1)
kl

with probability min{1, pacc}
Sample x′

kl
by log x′

kl
∼ N (log xkl,1).

pacc=
γ(x′

kl
|X )

γ(xkl |X )
x′
kl

xkl

Accept x′
kl

as x
( j+1)
kl

with probability min{1, pacc}
end

end

h =
ck

(v̄ + xk − xkl)2 +
cl

(v̄ + xl − xkl)2 −
ckl + clk

v̄2 , (59)

a = ck + cl − ckl − clk, (60)
b = (ck − ckl − clk)(xl − xkl) + (cl − ckl − clk)(xk − xkl),

(61)
c = −(ckl + clk)(xk − xkl)(xl − xkl), (62)

which matches the value and the first two derivatives of the
true marginal density at the maximum (see the Appendix for
derivation) and leads to acceptance probabilities close to one
for most values of xkl. However, if the current value of xkl

is in one of the heavy tails of the distribution γ(x ′
kl
|X), the

acceptance probability can be much less than 1 and the Markov
chain can get stuck. In order to avoid this problem, we utilize a
second step to generate x ′

kl
: After we sample x ′

kl
from proposal

density (55), we sample x ′
kl

according to

log x ′kl ∼ N (log x ′kl | log xkl,1), (63)

where N (x |m, s) denotes the normal distribution of x with
mean m and standard deviation s. The proposal density defined
by the above update is

q̃(x ′kl |X) = 1
xkl
N (log x ′kl − log xkl |0,1), (64)

and the corresponding acceptance probability is

pacc =
γ(x ′

kl
|X)

γ(xkl |X)
x ′
kl

xkl
. (65)

In summary, the proposed Algorithm 1 is a Metropolis
within Gibbs MCMC algorithm with adapted proposal prob-
abilities for each Gibbs sampling step. For efficiency reasons,
transition matrix elements (i, j) for which no forward or back-
ward transition counts have been observed can be neglected in
the sampling algorithm, in order to account for the effect of the
sparse prior.

E. A prior for reversible Markov models with fixed
equilibrium distribution

As before we will be working with variables xi j = πipi j
related to transition matrix entries pi j via (45). In contrast to
the previous algorithm, π is not a function of P but fixed. Thus,
single normalization condition (46) is replaced by a condition
for each row, 

j

xi j = πi, (66)

in order to ensure reversibility with respect to the given π.
All xkl in the lower triangle (k > l) are used as indepen-

dent variables. Given a valid X matrix, an update that respects
the constraints is given by

xkl → x ′kl, (67a)
xkk → xkk + (x ′kl − xkl), (67b)
xlk → x ′kl, (67c)
xll → xll + (x ′lk − xlk). (67d)

(67b) and (67d) ensure that normalization condition (66) holds
for the new sample and will thus keep π constant, while (67c)
restores the symmetry and thus ensures reversibility of P. We
will again use prior (47) defined on the set of X matrices and
sample from posterior (48). The ideal proposal density of x ′

kl

is

γ(x ′kl | X) ∝ (x ′kl)ckl+clk+bkl
�
xkk + xkl − x ′kl

�ckk+bkk
�
xll + xkl − x ′kl

�cl l+bl l (67e)

which is the conditional distribution density for given all off-
diagonal elements of X (except xkl), π, and the counts C.

We have seen that a correct choice of prior parameters was
essential in order to successfully apply the posterior sampling
for meta-stable systems. As in the reversible case, we will use
bkl = −1 for k > l to enforce xkl = 0 whenever ckl + clk = 0.

However, the choice of prior counts for the diagonal ele-
ments bkk is less straightforward. According to our experience,
a good choice is to determine the value of bkk based on the
maximum likelihood estimate p̂kk of the kth diagonal element
as

bkk =



0 p̂kk > 0,ckk = 0
−1 else

(68)

which ensures that the posterior expectation of pkk is zero if
and only if p̂kk = 0, and the conditional expectation of (67e),

E(x ′kl | X) = ckl + clk
ckl + clk + cll

(xll + xkl), (69)

matches the MLE of the one-dimensional likelihood function
for xkl given X if p̂kk > 0 and ckk = 0. (Note that for the
MLE of P, there is at most one k which satisfies p̂kk > 0 and
ckk = 0 — see proof in the Appendix.)

However, in the case that p̂kk = 0, conditional (67e) would
then degenerate so that x ′

kk
= 0 with probability one, and the

kth row and column of X would remain fixed in the sampling
process. This effect can break ergodicity in the sampled Mar-
kov chain and therefore prevent convergence of the algorithm.
This problem is avoided by regularizing the prior choosing the
prior parameter as bkk = −1 + ϵ for p̂kk = 0 such that (67e)
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does not degenerate, where ϵ > 0 is a small number. In addi-
tion, we need to ensure that the Markov chain is started from an
initial state X (0) with x(0)

kk
> 0. In summary, we select the prior

of X for reversible sampling with fixed π as

bkk =




0 p̂kk > 0,ckk = 0
−1 + ϵ p̂kk = 0,ckk = 0
−1 ckk > 0

. (70)

This choice of prior will again ensure that ckl + clk = 0
results in pkl = 0 and plk = 0 for all k < l and for all posterior
samples, a property shared by the reversible MLE with fixed
stationary vector. This ensures that the posterior mass is located
around the maximum likelihood estimate P̂ and again prevents
the occurrence of artificial kinetic pathways in the posterior
ensemble.

F. Sampling reversible Markov models with fixed
equilibrium distribution

We now investigate how to efficiently sample conditional
(67e). Here, we assume without loss of generality that xkk

< xll and transform x ′
kl
∈ (0, xkk + xkl) into a new variable

v ′ ∈ (0,+∞) via

v ′ =
x ′
kl

xkk + xkl − x ′
kl

. (71)

The ideal proposal density of v ′ is then

γv(v ′|X) ∝
�����
∂x ′

kl

∂v ′

�����
γ(x ′kl |X)

= (v ′)ckl+clk+bkl
( s

s − 1
+ v ′

)cl l+bl l
· (1 + v ′)−(ckl+clk+ckk+cl l+bkl+bkk+bl l+2)

= (v ′)a1
( s

s − 1
+ v ′

)a3(1 + v ′)−(a1+a2+a3), (72)

with

s =
xll + xkl

xkk + xkl
,

a1 = ckl + clk + bkl,

a2 = ckk + bkk,

a3 = cll + bll .

Like in the previous algorithm, we can approximate the condi-
tional of v by a gamma distribution as

γv(v ′|X) ≈ Gamma(v ′|α, β), (73)

with

α = −hv̄ , (74)
β = −hv̄2, (75)

and

v̄ =
−b +

√
b2 − 4ac

2a
, (76)

h = −a1

v̄2 −
a3�

s
s−1 + v̄

�2 +
a2

(1 + v̄)2 , (77)

a = a2 + 1, (78)

b = a2 − a1 +
a2 + a3 + 1

s − 1
, (79)

ALGORITHM 2. Reversible sampling algorithm with fixed stationary
vector.

Input: C , π, X ( j)
Output: X ( j+1)
for all indexes (k, l) with k > l and ckl+clk > 0 do

if xkk < xl l then
v =

xkl
xkk

s =
xl l+xkl
xkk+xkl

a1= ckl+clk+bkl

a2= ckk+bkk

a3= cl l+bl l

end
else

v =
xkl
xl l

s =
xkk+xkl
xl l+xkl

a1= ckl+clk+bkl

a2= cl l+bl l

a3= ckk+bkk

end
Calculate α and β by (74) and (75)
Sample v′ from Gamma(α, β).
Let x′

kl
=min{xkk+ xkl, xl l+ xkl} · v

1+v .
pacc=

γv(v′|X )Gamma(v |α,β)
γv(v |X )Gamma(v′|α,β) using (67a)–(67d)

Accept xkl as x
( j+1)
kl

with probability min{1, pacc}
Sample v′ by log v′∼ N (logv,1).
pacc=

γV (v′|X )v′
γV (xkl |X )v

Let x′
kl
=min{xkk+ xkl, xl l+ xkl} · v

1+v .
Accept x′

kl
as x

( j+1)
kl

with probability min{1, pacc}
end

c =
s (a1 + 1)

1 − s
. (80)

See the Appendix for derivation. Then, v ′ can be sampled
by a Metropolis sampling step with the proposal density
Gamma(v ′|α, β) and the acceptance ratio

min{1,pacc} = min


1,
γv(v ′|X)Gamma(v |α, β)
γv(v |X)Gamma(v ′|α, β)


,

where v = xkl/xkk denotes the original value of v . In addition,
in order to avoid the sampler from getting stuck at an extremely
small or large value of v , we also utilize the same strategy as
in Section IV D to generate v ′ by

log v ′ ∼ N (log v ′| log v,1).
The proposed Algorithm 2 for sampling of reversible tran-

sition matrices with fixed stationary vector can again be char-
acterized as a Metropolis within Gibbs MCMC algorithm with
adapted proposal probabilities.

V. RESULTS

A. Validation

We first demonstrate the validity of the reversible sampl-
ing algorithm for the following 2 × 2 count-matrix:

C = *
,

5 2
3 10

+
-
. (81)
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FIG. 6. Sampled histogram frequency (a) and analytical probability density
(b) of reversible posterior for 2×2 count matrix. Sampled frequencies are in
agreement with the analytical probabilities.

In Fig. 6, we compare the sampled histograms using Algo-
rithm 1 with analytical values for the non-reversible posterior
with Dirichlet-prior-counts bi j = −1. Any 2 × 2 transition ma-
trix automatically fulfills detailed balance, and therefore the
analytical and sampled densities are expected to be equal. The
histogram for samples of the reversible algorithm is indeed in
agreement with the analytical posterior.

In Fig. 7, the sampled histogram for count matrix (81) with
fixed stationary distribution π = (0.25, 0.75)⊤ using Algo-
rithm 2 is compared with the exact posterior distribution.
Detailed balance relation (4) with fixed stationary vector en-
forces a linear dependency between the transition matrix
element p12 and p21. The resulting posterior is, therefore,
restricted to the line π1p12 = π2p21 such that the projection on
p12 in Fig. 7 already contains the full information about the
one-dimensional posterior. A comparison between histogram
frequency and analytical density demonstrates the validity of
the algorithm.

B. Applications

To demonstrate the usefulness of the proposed algorithms,
we apply them to molecular dynamics simulation data. Here,
two systems are chosen to illustrate our methods: (1) the
alanine-dipeptide molecule and (2) the bovine pancreatic
trypsin inhibitor (BPTI) molecule.

We start by discussing the alanine dipeptide results. The
system was simulated on GPU-hardware using the OpenMM
simulation package59 using the amber99sb-ildn forcefield60

FIG. 7. Sampled histograms and analytical probability density for reversible
posterior with fixed stationary vector for 2×2 count-matrix.

and the tip3p water model.61 The cubic box of length 2.7 nm
contained a total of 652 solvent molecules. We used Langevin
equations at T = 300 K with a time step of 2 fs. A total of
10 µs of simulation data was generated. The φ and ψ dihedral
angles were discretized using a 20 × 20 regular grid to obtain
a matrix of transition counts C = (ci j), here by sampling one
count per lag time τ. Below we will show histograms for
two important observables, largest implied time scales ti and
expected hitting times, τ(A → B), for pairs A, B of meta-stable
sets. We compute the posterior sample-mean and 90% credible
intervals for 1 µs of simulation data and show that the credible
intervals nicely envelop a reference value obtained from the
MLE transition matrix for the total simulation data, supporting
the proposed prior as a “good” choice for reversible sampling
in meta-stable systems.

1. Alanine dipeptide, reversible sampling

In Fig. 8, we show histograms of implied time scales
computed from a reversible posterior sample. The mean values
estimated from the posterior sample are in good agreement
with the reference values. Tables IV and V compare the refer-
ence values with the sample mean µ and sample standard
deviation σ for each observable.

In order to gain a first impression of the efficiency of the
sampling and the quality of our estimates, we compute the
integrated autocorrelation time tcorr for each quantity sampled
(here implied time scales and hitting times). The error of the
sample mean m[ f ] compared to the true mean ⟨ f ⟩ can then be
estimated as

ϵ = E[(m[ f ] − ⟨ f ⟩)2] = σ2[ f ]
Neff

, (82)

where Neff = N/(1 + 2tcorr) is the effective number of samples
with N the total number of samples. See Ref. 62 for a thorough
discussion. tcorr and ϵ are also reported in Table IV.

Figs. 8(d)–8(f) show histograms for expected hitting times
for the three transitions C5 → Cax

7 , C5 → αL, and C5 → αR

between meta-stable sets in the φ and ψ dihedral angle plane.
Again, mean values are in good agreement with the corre-
sponding reference values. Table V summarizes the computed
results. The table columns again contain the reference value
τ̂, the mean value µ, the standard deviation σ, the estimated
correlation time tcorr, and the error of the mean value ϵ .

2. Alanine dipeptide, reversible sampling with fixed
equilibrium distribution

Below we report results for sampling with fixed stationary
distribution. The stationary distribution πi was, for sake of
simplicity, computed using the relative frequencies of state
occurrences,

πi =


k cik
j,k cjk

. (83)

It should be noted that a more useful and independent source
of π are enhanced sampling simulations targeted at rapidly
generating a good estimate of the equilibrium probabilities
alone. See Ref. 45 for methods and applications that combine

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

87.77.118.212 On: Fri, 11 Dec 2015 08:43:13



174101-14 Trendelkamp-Schroer et al. J. Chem. Phys. 143, 174101 (2015)

FIG. 8. (a)-(c) Implied time scales, ti. Histograms obtained from reversible posterior sampling. Dashed lines indicate the reference value, t̂i, dotted lines
indicate the posterior sample mean, µ(ti). MLE and posterior mean are in very good agreement for the proposed choice of prior. The 90% credible intervals
are the shaded regions in gray. Expected hitting times, τ, (d)-(f). Histograms obtained from reversible posterior sampling. Dashed lines indicate the reference
value, τ̂, dotted lines indicate the posterior sample mean, µ(τ). In all cases, the reference value obtained from a long simulation is clearly compatible with the
posterior sample (credible interval).

TABLE IV. Comparison of reference implied time scales (t̂i) with mean
µ and standard deviation σ from the reversible posterior using N = 105

samples. ϵ is the estimated error of the mean µ and tcorr is the autocorrelation
time of the sampled quantity.

t̂i (ps) µ (ps) σ (ps) ϵ (ps) tcorr

t2 1462 1556 303 19.00 197
t3 71 73 1 0.01 10
t4 36 43 5 0.06 7

TABLE V. Expected hitting times computed from reversible posterior using
N = 105 samples. See Table IV for definition of other symbols.

τ̂ (ns) µ (ns) σ (ns) ϵ (ns) tcorr

τ(C5→ Cax
7 ) 60.4 56.7 12.0 0.77 202

τ(C5→ αL) 43.6 40.6 8.3 0.53 206
τ(C5→ αR) 0.253 0.250 0.005 0.0004 218

MD simulations and enhanced sampling simulations in order
to efficiently compute rare-event kinetics.

Results are shown in Table VI and Fig. 9. The sample
mean is again in good agreement with the reference value. For

the computation of the reference value, we use the MLE tran-
sition matrix of the full simulation data reversible with respect
to the input stationary distribution for the posterior sampling.
The additional constraint imposed by fixing the stationary
distribution is clearly reflected in smaller standard devia-
tions for all shown observables compared to the reversible
case.

Histograms for expected hitting times between meta-
stable sets are shown in Figs. 9(d)–9(f). The sample mean is
again in good agreement with the reference value. Again, we
summarize our results, cf. Table VII.

TABLE VI. Comparison of reference implied time scales, (t̂i), with mean
µ and standard deviation σ from the reversible posterior using a fixed
equilibrium distribution and N = 105 samples. ϵ is the estimated error of the
mean µ and tcorr is the autocorrelation time of the sampled quantity.

t̂i (ps) µ (ps) σ (ps) ϵ (ps) tcorr

t2 1594 1520 196 0.6 1
t3 72 73 1 0.003 1
t4 38 41 3 0.01 1
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FIG. 9. (a)-(c) Implied time scales, ti. Histograms obtained from reversible posterior sampling with fixed stationary vector. Dashed lines indicate the reference
value, t̂i, dotted lines indicate the posterior sample mean, µ(ti). The 90% credible intervals are the shaded regions in gray. (d)-(f) Expected hitting times τ.
Histograms obtained from reversible posterior sampling with fixed stationary vector. Dashed lines indicate the reference value, τ̂, dotted lines indicate the
posterior sample mean, µ(τ). The reference value obtained from a long simulation is clearly compatible with the posterior sample (credible interval).

3. Bovine pancreatic trypsin inhibitor,
reversible sampling

For BPTI, we used the 1 ms simulation generated on the
Anton supercomputer.63 Please refer to that paper for system
setup and simulation details. We prepared data as follows: Cα

atom positions were oriented to the mean structure and saved
every 10 ns, resulting in about 100 000 configurations with
174 dimensions. Time-lagged independent component anal-
ysis (TICA)24,32 was applied to reduce this 174-dimensional
space to the two dominant ICs as a spectral gap was found
after the second nontrivial eigenvalue. k-means clustering with
k = 100 was used to discretize this space.

Effective count matrices were obtained using the method
described in Ref. 56 at a range of lag times up to 2 µs.

TABLE VII. Expected hitting times computed from reversible sampling with
fixed stationary vector using N = 105 samples. See Table VI for the definition
of symbols.

τ̂ (ns) µ (ns) σ (ns) tcorr ϵ (ns)

τ(C5→ Cax
7 ) 56.0 54.5 5.0 1 0.02

τ(C5→ αL) 41.5 39.5 5.1 1 0.02
τ(C5→ αR) 0.249 0.251 0.003 1 9.7 ·10−6

Fig. 10 shows the implied relaxation time scales obtained
from a maximum likelihood estimate with values comparable
to the Hidden Markov model analysis in Ref. 10. The figure
also shows uncertainties computed from a reversible tran-
sition matrix sampling as described above with N = 1000
samples. Only every 20th transition matrix sample was used
to compute time scales in order to reduce the computational
effort to 50 eigenvalue decompositions. It is seen that the
MLE is nicely contained in the 2σ (95%) credible interval.
The entire transition matrix sampling for Fig. 10 took about
12.5 s on a 1.7 GHz Intel Core i7. Given that 8 lag times were
used for 1000 samples of 100 × 100 matrices that contained
about 40% non-zeros, about 2.56 × 106 elements are sampled
per second, and about 640 full transition matrix samples are
generated per second. Below, a more systematic analysis of
the computational efficiency is made.

C. Efficiency

We compute acceptance probabilities of the Metropolis-
Hastings steps and compare the statistical efficiency of the
proposed sampling algorithm with the algorithm proposed
in Ref. 39 that uses uniform proposal densities. Efficiency
is measured in terms of achieved autocorrelation times for
sampling of transition matrices with different sizes. As a
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FIG. 10. Implied time scales for a Markov model of bovine pancreatic trypsin
inhibitor (BPTI). The error bars are 95% confidence intervals estimated
using the reversible transition matrix sampling algorithm described here using
transition counts as described in Ref. 56.

representative observable, we choose the largest relaxation
time scale t2 for the alanine dipeptide molecule and compute
autocorrelation functions and autocorrelation times from a
large sample of size N = 106. Two differently fine discretiza-

FIG. 11. Autocorrelation function for reversible sampling. Sampling of tran-
sition matrices with n = 233 states (a) and (b) with n = 1108 states. Increasing
the dimension of the state space has only a small effect on the new sampling
algorithm.

TABLE VIII. Acceptance probability and autocorrelation times for old vs.
new reversible sampling algorithm. n: number of states; poffdiag, pdiag: accep-
tance probabilities for off-diagonal and diagonal elements, respectively. tcorr:
autocorrelation time for the sampling of the slowest relaxation time scale, in
number of transition matrix sampling steps.

Algorithm n poffdiag pdiag tcorr

Old
233 0.216 0.011 1088.1

1108 0.271 0.005 3241.9

New
233 0.994 1.0 194.7

1108 0.995 1.0 242.6

tions were used, resulting in n × n-shaped transition matrices
with n = 258 and n = 1108.

Fig. 11 shows autocorrelation functions for the second
largest relaxation time scale, t2, for a reversible posterior
ensemble. The autocorrelation function for the reversible
sampling algorithm with posterior adapted proposals shows
a much faster decay than the autocorrelation function for
the algorithm in Ref. 39. Table VIII compares acceptance
probabilities and autocorrelation times. The present proposal
steps lead to very high acceptance probabilities, p > 0.99, for
the sampling off-diagonal entries. The main advance, how-
ever, comes from the fact that the step for sampling diagonal
transition matrix elements in Ref. 39 has suffered from a
very poor acceptance probability. As that step was the only
step that modified the equilibrium distribution, the sampler

FIG. 12. Autocorrelation function for reversible sampling with fixed station-
ary distribution. Sampling of transition matrices with n = 233 states (a) and
(b) with n = 1108 states. Increasing the dimension of the state space has only
a small effect on the new sampling algorithm.
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TABLE IX. Acceptance probability and autocorrelation times for old vs. new
reversible sampling algorithm with fixed stationary distribution. Symbols as
in Table VIII.

Algorithm n poffdiag tcorr

Old
233 0.175 72.096

1108 0.230 >1000a

New
233 0.752 2.893

1108 0.706 3.157

aAutocorrelation function not converged.

in Ref. 39 has very poor mixing properties. In contrast, our
current algorithm generates independent samples for the
diagonal elements, resulting in an acceptance probability
of p = 1.0.

The autocorrelation times for the new sampler are more
than a factor 5 shorter for the small (233 state) matrix and
more than a factor 13 shorter for the large (1108 state) ma-
trix, indicating a much higher efficiency of the new approach.
The autocorrelation time of the new algorithm increases only
mildly for matrices of increased dimension, indicating that the
present algorithm will be useful for very large Markov models.

Fig. 12 shows autocorrelation functions for reversible
sampling with fixed stationary vector. The posterior adapted
proposals in reversible sampling algorithm with fixed station-
ary distribution again result in a much faster decay of the
autocorrelation function than the uniform proposals of the
algorithm in Ref. 39. Table IX compares acceptance proba-
bilities and autocorrelation times for the two algorithms. For
sampling with fixed stationary vector, there is no sampling step
for the diagonal elements. Although the average acceptance
probabilities are only a factor of 3-4 better for our new algo-
rithm, the autocorrelation times are decreased by a factor 35 for
the small system (233 states) and over a factor 300 for the large
system (1108 states). Again, there is only a mild increase in
autocorrelation time when the dimension of the sampled space
is increased.

VI. CONCLUSION

In this work, we have described and significantly extended
the state of the art in reversible Markov model estimation.
Reversible Markov models are expected to naturally arise from
molecular dynamics implementations that fulfill microscopic
reversibility. Reversibility is an essential property in order to
analyze the equilibrium kinetics of a molecule. However, in
order to have reversibility in a Markov model, it needs to be
enforced in the estimation procedure. When done correctly,
reversible estimation does not bias the model but rather reduces
statistical errors as a result of a smaller number of degrees of
freedom.

We have presented minor improvements to an existing
self-consistent estimation algorithm for reversible Markov
models. Then, we have presented a new and efficient algorithm
to estimate reversible maximum likelihood Markov models
given a fixed equilibrium distribution.

The main part of the presented work focuses on the long-
standing problem of Bayesian estimation of the posterior

ensemble of reversible transition matrices. Although several
algorithms to sample reversible Markov models have been
presented in the past, they have been hampered by three
fundamental problems, two of which are addressed here: (i)
Which prior should be chosen such that the posterior is located
around the true value rather than completely elsewhere? (ii)
How should transition counts be obtained when time series
are correlated and not really Markovian at any given lag time
τ? (iii) How can the sampling algorithm be made efficient such
that also large transition matrices can be sampled in reasonable
time?

To address problem (i), we develop priors that ensure that
reference values and sample mean are similar. The key prop-
erty of these priors is that they make the a priori assumption
that transitions between states that have not been sampled in
the trajectory in either direction have zero probability. This
is a sparse prior, i.e., an improper prior enforcing that the
sampled transition matrix has the same sparsity structure as the
maximum likelihood estimate and as induced by the observa-
tion. In contrast to most other priors that have been previously
suggested, these sparse priors achieve the desired property of
creating errors bars that nicely envelop the reference estimates.

For problem (ii), we have described the principles of how
it can be addressed. We suggest that effective count matrices
are obtained using the concept of statistical inefficients. A
separate preprint56 suggests an initial solution towards this aim
that is successfully applied on simulation data of the bovine
pancreatic trypsin inhibitor in the present paper. The solution
of problem (ii) is still in its infancy and needs further investi-
gation.

For problem (iii), we present highly efficient Gibbs sampl-
ing algorithms for reversible transition matrices and reversible
transition matrices with fixed equilibrium distribution. Both
methods are demonstrated to have acceptance probabilities
close to 1 in their individual update steps. Autocorrelation
times from samples of the slowest relaxation time scale are one
or two orders of magnitude shorter than with a previous Gibbs
sampling algorithm, indicating a high statistical efficiency of
our sampler.

Implementations of all algorithms described here are
available in PyEMMA64 as of version 2.0 or later — www.
pyemma.org.
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APPENDIX: DETAILS FOR TRANSITION
MATRIX SAMPLING
1. Reversible transition matrix sampling:
Derivation of marginal densities

We first pick a single element (k, l) of X (diagonal or off-
diagonal) and sample it from a proposal density x ′

kl
∼ q(x ′

kl
|X)
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that is scale-invariant with q(x ′
kl
|X) ∝ q(cx ′

kl
|cX) for all c > 0,

x ′i j =



∼q(x ′kl |X), (i, j) = (k, l)
xi j, else

(A1)

and then renormalize the matrix such that it retains an element
sum of 1,

x̄ ′i j =
xi j

1 − xkl + x ′
kl

. (A2)

Since q(x ′
kl
|X) is a probability density function, we can obtain

from its scale-invariance that
q(cx ′kl |cX)dx ′kl =

1
c


q(cx ′kl |cX)d �

cx ′kl
�
=

1
c

(A3)

and

q(cx ′kl |cX) = 1
c

q(x ′kl |X). (A4)

According to Theorem 13.1 in Ref. 65, the posterior distri-
bution P(X |C) is the invariant distribution of the proposed
update step if we accept X̄ ′ as the new sample with probability
min{1,pacc} and

pacc =
P(X̄ ′)
P(X) ·

P(C |X̄ ′)
P(C |X) ·

qx(xkl |X̄ ′)
qx(x̄ ′kl |X) ·


(i, j),(k,l),(i′, j′)

∂ x̄ ′i j
∂xi j

,

(A5)

where qx(x̄ ′kl |X) denotes the proposal density of x̄ ′i j given X .
Note X only contains n(n + 1)/2 − 1 free variables. So we
select {xi j |i ≥ j, (i, j) , (i′, j ′)} as the free variable set of X ,
where xi′j′ is an arbitrary element of X with i′ ≥ j ′ and (i′, j ′)
, (k, l). Let us consider each term on the right hand side
of (A5).

From the definition of X̄ ′, we have

P(X̄ ′)
P(X) =

(
1

1 − xkl + x ′
kl

)b0
(
y

xkl

)bkl
=

(
1 − x̄ ′

kl

1 − xkl

)b0( x ′
kl

xkl

)bkl
(A6)

and

P(C |X̄ ′)
P(C |X) =




�
x ′
kk

�ckk(xk − xkk + x ′
kk
)−ck

xckk
kk

(xk − xkk + xkk)−ck , k = l

�
x ′
kl

�ckl+clk(xk − xkl + x ′
kl
)−ck

xckl+clk
kl

(xk − xkl + xkl)−ck
×
(xl − xkl + x ′

kl
)−cl

(xl − xkl + xkl)−cl , k , l

. (A7)

The proposal density of x̄ ′
kl

given X can be expressed as

qx(x̄ ′kl |X) =
(
∂ x̄ ′

kl

∂x ′
kl

)−1

q(x ′kl |X)

=
1 − xkl

(1 − x̄ ′
kl
)2 q(x ′kl |X)

=
1 − xkl

(1 − x̄ ′
kl
)2 q

(
1 − xkl

1 − x̄ ′
kl

· x̄ ′kl |X
)
. (A8)

Therefore,

qx(xkl |X̄ ′) =
1 − x̄ ′

kl

(1 − xkl)2 q
(

1 − x̄ ′
kl

1 − xkl
· xkl |X̄ ′

)
=

1
1 − xkl

q (xkl |X ′) (A9)

and

qx(xkl |X̄ ′)
qx(x̄ ′kl |X) =

(
1 − xkl

1 − x̄ ′
kl

)2 q(x ′
kl
|X)

q(xkl |X ′) . (A10)

The partial derivative of x̄ ′i j with respect to xi j for (i, j) , (k, l)
can be calculated according to (A2) as

∂ x̄ ′i j
∂xi j

=
1

1 − xkl + x ′
kl

=
1 − x̄ ′

kl

1 − xkl
. (A11)

Combining all the above results leads to

pacc =
�
1 − xkl + x ′kl

�− n(n+1)
2 −b0 q(xkl |X ′)

q(x ′
kl
|X)

γ(x ′
kl
|X)

γ(xkl |X) , (A12)

with

γ(x ′kl |X) ∝




�
x ′
kk

�ckk+bkk

(xk − xkk + x ′
kk
)ck, k = l

�
x ′
kl

�ckl+clk+bkl

(xk − xkl + x ′
kl
)ck(xl − xkl + x ′

kl
)cl, k , l

.

(A13)

2. Reversible transition matrix sampling: Efficient
proposal densities
a. Diagonals

Let us define variable s′ =
x′
kk

xk−xkk+x′kk
. If x ′

kk
is sampled

from the proposal density γ(x ′
kk
|X), the corresponding pro-

posal density of s′ can be expressed as

s′ ∼
�����
∂x ′

kk

∂s′
�����
γ(x ′kk |X). (A14)

Note that

x ′kk = (xk − xkk) s′

1 − s′
. (A15)

Therefore,

∂x ′
kk

∂s′
= (xk − xkk) (1 − s′)−2 (A16)

and

s′ ∼ (xk − xkk)(1 − s′)−2 ·
�
x ′kk

�ckk−1 · (xk − xkk + x ′kk)−ck

∝ (1 − s′)−2 ·
(

s′

1 − s′

)ckk−1

· (1 − s′)ck

= (s′)ckk−1(1 − s′)ck−ckk−1. (A17)

The above equation implies that s′ follows the beta distribu-
tion with parameters ckk and ck − ckk. So we can sample s′

∼ Beta(ckk,ck − ckk) and get x ′
kk

by the back-transform.

b. Off-diagonals

We consider how to approximate γ(x ′
kl
|X) with k , l and

bkl = −1 by a gamma distribution density function. Define
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�
x ′kl

�ckl+clk−1(xk − xkl + x ′kl)−ck(xl − xkl + x ′kl)−cl
=

�
x ′kl

�−1 exp f (x ′kl). (A18)

The function f (x ′
kl
) is then given by

f (x ′kl) = (ckl + clk) log x ′kl − ck log(xk − xkl + x ′kl)
− cl log(xl − xkl + x ′kl). (A19)

We approximate f using a three parameter family of functions

f̂ (x ′kl |α, β, f0) = α log x ′kl − βx ′kl + f0 (A20)

so that the corresponding approximate γ(x ′
kl
|X) is

γ̂(x ′kl |X) ∝ �
x ′kl

�−1 exp f̂ (x ′kl |α, β, f0). (A21)

(A21) is a gamma distribution with parameters α, β which can
be efficiently sampled.66

The three parameters α, β, f0 are obtained matching f and
f̂ up to second derivatives at the maximum point

v̄ = arg max f (x ′kl). (A22)

This leads to the following linear system:

α log v̄ + v̄ β + f0 = f (v̄), (A23a)
α

v̄
− β = f ′(v̄) = 0, (A23b)

− α
v̄2 = f ′′(v̄) = h, (A23c)

with solution

α = −hv̄2, (A23d)
β = −hv̄ , (A23e)
f0 = f (v̄) + hv̄2(log v̄ − 1), (A23f)

and

h = f ′′(v̄) = ck
(xk − xkl + v̄)2 +

cl
(xl − xkl + v̄)2 −

ckl + clk
v̄2 .

The maximum point can be computed as the root of a quadratic
equation in the usual way,

v̄ =
−b +

√
b2 − 4ac

2a
, (A23g)

with parameters a, b, c given by

a = ck + cl − ckl − clk, (A23h)
b = (ck − ckl − clk)(xl − xkl)
+ (cl − ckl − clk)(xk − xkl), (A23i)

c = −(ckl + clk)(xk − xkl)(xl − xkl). (A23j)

The second solution corresponding to (A23g) with nega-
tive sign in front of the square root can be safely excluded since
ȳ is required to be non-negative.

3. Reversible sampling with fixed stationary
distribution: Efficient proposal densities

We first prove that there exists a maximum likelihood
estimate P̂ = [p̂i j] of the transition matrix which satisfies
|{k |p̂kk > 0,ckk = 0}| ≤ 1. Suppose that X′ = [x ′i j] is a maxi-
mum likelihood estimate of X and there are two different

indices k, l which satisfy that x ′
ll
≥ x ′

kk
> 0 and ckk = cll = 0.

We can then construct a new matrix X′′ = [x ′′i j] with

x ′′kl = x ′kl + x ′kk,

x ′′kk = 0,

x ′′kl = x ′kl + x ′kk,

x ′′ll = x ′ll + x ′kl − x ′kk .

It can be verified that the likelihood of X′′ is larger than X′,
which implies that X′′ is also a maximum likelihood esti-
mate of X. Repeat the above procedure, we can finally get an
maximum likelihood estimate X̂ of X which has at most one
k with x̂kk > 0 and ckk = 0, and the corresponding P̂ satisfies
that |{k |p̂kk > 0,ckk = 0}| ≤ 1.

We will now investigate how to approximate the density

γv(v ′|X) ∝ (v ′)a1
( s

s − 1
+ v ′

)a3
(
1 + v ′

)−(a1+a2+a3+2)
, (A24)

with s > 1 by a gamma distribution density.
As in the reversible case, we will use the representation

γv(v ′|X) = (v ′)−1 exp f (v ′) (A25)

and approximate f (v ′) using the three parameter family, f̂ (v ′|α,
β, f0), given in (A20). The resulting approximate density,
γ̂v(v ′|X), has the same nice properties as the one from (A21).

Parameters α, β, and f0 are given by (A23d), (A23e),
and (A23f). The maximum point v̄ is given by (A23g). The
parameters a, b, c are

a = a2 + 1, (A26a)

b = a2 − a1 +
a2 + a3 + 1

s − 1
, (A26b)

c =
s(a1 + 1)

1 − s
. (A26c)
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