# New regular black hole solutions

José P. S. Lemos<sup>\*</sup> and Vilson T. Zanchin<sup>†</sup>

\*Centro Multidisciplinar de Astrofísica – CENTRA, Departamento de Física, Instituto Superior Técnico - IST, Universidade Técnica de Lisboa - UTL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal, &

Institute of Theoretical Physics - ITP, Freie Universität Berlin, Arnimallee 14 D-14195 Berlin, Germany.

<sup>†</sup>Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, 09210-170, Santo André, SP, Brazil

**Abstract.** In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordström and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.

**Keywords:** Charged black holes, Regular black holes, Einstein-Maxwell **PACS:** 4.70Bw, 04.20Jb, 04.40Nr

## **1. INTRODUCTION**

An early motivation to find regular black hole models was to get rid of spacetime singularities. Such black holes would substitute the usual Schwarzschild and Reissner-Nordström black holes with singularities in their center. Gliner in 1966 [1] proposed that singularities can be avoided by matter with an inflationary equation of state, with a de Sitter core, and that a spacetime filled with a false vacuum inside a horizon could provide a description of the final state of gravitational collapse. Bardeen, in 1968 [2] put forward a solution of Einstein's equations in which there was a black hole with horizons and without a singularity. The matter is magnetically charged, and it yields a modification of the Reissner-Nordström metric. Near the center it turns, in a natural smooth way, into a de Sitter core. Gliner's ideas were further developed by himself and Dymnikova [3], while Bardeen's solutions were further explored by Ayón-Beato and García [4]. There were some tries to join directly a de Sitter vacuum onto the Schwarzschild solution, but proved to be incorrect [5, 6] (see also [7] for further incorrect matchings). Further developments were performed in [8]. Borde understood the topology and causality of these regular solutions [9]. For a review see [10].

In this work we find a new regular black hole. It is a regular charged black hole in which the interior de Sitter metric is matched to the exterior Reissner-Nordström metric. The electric charge is in an energyless coat located at the boundary of the de Sitter core. The paper is organized as follows. In Sec. 2 we display the basic equations of the system. In Sec. 3 we build the regular charged black hole, and in Sec. 4 we analyze the main properties of the solution.

XIX International Fall Workshop on Geometry and Physics AIP Conf. Proc. 1360, 145-150 (2011); doi: 10.1063/1.3599140 © 2011 American Institute of Physics 978-0-7354-0918-7/\$30.00

## 2. BASIC EQUATIONS

The cold charged fluids considered in the present work are described by Einstein-Maxwell equations with matter,

$$G_{\mu\nu} = 8\pi \left( T_{\mu\nu} + E_{\mu\nu} \right) \,, \tag{1}$$

$$\nabla_{\nu}F^{\mu\nu} = 4\pi J^{\mu} \,, \tag{2}$$

where Greek indices  $\mu$ ,  $\nu$ , etc., run from 0 to 3.  $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R$  is the Einstein tensor, with  $R_{\mu\nu}$  being the Ricci tensor,  $g_{\mu\nu}$  the metric, and R the Ricci scalar. We have put both the speed of light c and the gravitational constant G equal to unity throughout.  $E_{\mu\nu}$  is the electromagnetic energy-momentum tensor, which can be written in the form  $4\pi E_{\mu\nu} = F_{\mu}{}^{\rho}F_{\nu\rho} - \frac{1}{4}g_{\mu\nu}F_{\rho\sigma}F^{\rho\sigma}$ , where the Maxwell tensor is  $F_{\mu\nu} = \nabla_{\mu}\mathscr{A}_{\nu} - \nabla_{\nu}\mathscr{A}_{\mu}$ ,  $\nabla_{\mu}$  representing the covariant derivative, and  $\mathscr{A}_{\mu}$  the electromagnetic gauge field. In addition,  $J_{\mu} = \rho_{e}U_{\mu}$ , is the current density,  $\rho_{e}$  is the electric charge density, and  $U_{\mu}$  is the fluid velocity.  $T_{\mu\nu}$  is the material energy-momentum tensor, which, for the purpose of the present work, is taken in the form of an isotropic fluid  $T_{\mu\nu} = (\rho_{m} + p)U_{\mu}U_{\nu} + pg_{\mu\nu}$ , where  $\rho_{m}$  is the fluid matter-energy density, p is the isotropic fluid pressure. We are interested in a false vacuum state where the energy-momentum tensor satisfies the relations  $T_{0}^{0} + E_{0}^{0} = T_{1}^{1} + E_{1}^{1}$ , and  $T_{2}^{2} + E_{2}^{2} = T_{3}^{3} + E_{3}^{3}$ .

We assume that the spacetime is static and spherically symmetric, so that the metric is conveniently written in the Schwarzschild-like form, namely,

$$ds^{2} = -B(r)dt^{2} + A(r)dr^{2} + r^{2}d\Omega^{2}.$$
 (3)

where r is the usual radial coordinate, A and B are function of r only, and  $d\Omega^2$  is the metric of the unit sphere. The gauge field  $\mathscr{A}_{\mu}$  and the four-velocity  $U_{\mu}$  have the form

$$\mathscr{A}_{\mu} = -\phi(r)\,\delta^t_{\mu}\,,\qquad U_{\mu} = -\sqrt{B(r)}\,\delta^t_{\mu}\,,\tag{4}$$

where  $\phi(r)$  is the electric potential.

The relevant Einstein-Maxwell field equations for the metric (3) can now be found. The only nonzero component of Maxwell equations (2) furnishes

$$Q(r) = 4\pi \int_0^r \rho_{\rm e}(r) \sqrt{A(r)} r^2 dr = \frac{r^2 \phi'(r)}{\sqrt{B(r)A(r)}},$$
(5)

where an integration constant was set to zero. Q(r) is the total electric charge inside the surface of radius r.

The *tt* and *rr* components of Einstein equations (1) furnish the following relations

$$\frac{B'(r)}{B(r)} + \frac{A'(r)}{A(r)} = 8\pi r A(r) \left[ \rho_{\rm m}(r) + p(r) \right],\tag{6}$$

$$\left(rA^{-1}(r)\right)' = 1 - 8\pi r^2 \left(\rho_{\rm m}(r) + \frac{Q^2(r)}{8\pi r^4}\right),\tag{7}$$

where the prime denotes the derivative with respect to the coordinate *r*. The conservation equations  $\nabla_v T^{\mu\nu} = 0$ , together with Maxwell equations, give

$$2p'(r) + \frac{B'(r)}{B(r)} \Big[ \rho_{\rm m}(r) + p(r) \Big] - 2\frac{\phi'(r)\rho_{\rm e}(r)}{\sqrt{B(r)}} = 0, \tag{8}$$

which is the only non-identically zero component of the conservation equations. The other nonzero components of Einstein-Maxwell equations give an additional relation which is not independent of the above set of equations.

### **3. REGULAR CHARGED BLACK HOLES**

Consider that there is matter up to the boundary radius  $r_0$ . We now do the following hypothesis

$$\rho_{\rm m}(r) + p(r) = 0, \qquad (9)$$

valid for  $r \le r_0$ , and for  $r \ge r_0$ , since vacuum always satisfies (9). With such a condition, the metric coefficients result in  $B(r) = A^{-1}(r)$ . Moreover, after the assumption (9), Eqs. (8) and (5) give

$$p'(r) = \frac{\phi'(r)\rho_{\rm e}(r)}{\sqrt{B(r)}} = \frac{QQ'}{4\pi r^4}.$$
 (10)

This means that p'(r) is proportional to the charge density  $\rho_e(r)$  and may be interpreted as the charge density giving rise to a pressure gradient.

To complete the set up we need another input. One of the simplest ansatz one can make is through the following equation

$$8\pi\rho_{\rm m}(r) + \frac{Q^2(r)}{r^4} = \frac{3}{R^2},\tag{11}$$

for  $r \le r_0$ , and where *R* is a constant to be determined. This resembles the interior Schwarzschild assumption of constant energy density.

In order for displaying the solution in a simple form, let us define, the  $\theta$  function as usual by  $\theta(r-r_0) = 1$  when  $r-r_0 \ge 0$  and  $\theta(r-r_0) = 0$  when  $r-r_0 < 0$ . Then we can write all of the functions in succinct form. The metric is now

$$ds^{2} = -B(r)dt^{2} + B^{-1}(r)dr^{2} + r^{2}d\Omega^{2}, \qquad (12)$$

where

$$B(r) = B_{i}\theta(r_{0} - r) + B_{e}[1 - \theta(r_{0} - r)], \qquad (13)$$

$$B_{\rm i} = \left(1 - \frac{r^2}{R^2}\right), \quad B_{\rm e} = \left(1 - \frac{2m}{r} + \frac{q^2}{r^2}\right).$$
 (14)

*R* thus defines a de Sitter radius. The electric potential is given by

$$\phi(r) = -\frac{q}{r_0} \,\theta(r_0 - r) - \frac{q}{r} \left[1 - \theta(r_0 - r)\right]. \tag{15}$$

The other important quantities can be written as follows

$$Q(r) = q \,\theta(r - r_0), \quad Q'(r) = q \,\delta(r - r_0), \quad \rho_{\rm e}(r) = \frac{q \,\sqrt{B(r)}}{4\pi r^2} \,\delta(r - r_0), \quad (16)$$

$$8\pi\rho_{\rm m}(r) = \left(\frac{3}{R^2} - \frac{Q^2(r)}{r^4}\right)\theta(r_0 - r)\,,\tag{17}$$

$$8\pi p(r) = \left(-\frac{3}{R^2} + \frac{Q^2(r)}{r^4}\right)\theta(r_0 - r), \quad p'(r) = \frac{q^2}{4\pi r^4}\delta(r - r_0).$$
(18)

This solution represents regular black holes with a de Sitter core, an electric energyless matter coat at  $r_0$ , and Reissner-Nordström all the way up.

The solution has four parameters:  $m, q, r_0$  and R. There are a few relations among them. These relations follow from imposing appropriate junction conditions at the boundary  $r = r_0$ . Indeed one can show that the boundary at  $r_0$  can be really a boundary surface. For that, the metric  $g_{\mu\nu}$  (or the first fundamental form), and the extrinsic curvature (or the second fundamental form)  $K_{\mu\nu}$ , should be continuous at the surface, i.e.,  $g^+_{\mu\nu} = g^-_{\mu\nu}$ , and the extrinsic  $K^+_{\mu\nu} = K^-_{\mu\nu}$ , where  $\pm$  represent the exterior and interior regions. The matching of the first fundamental form requires that in Eq. (13)  $B_i = B_e$ , i.e.,  $1 - \frac{r_0^2}{R^2} = 1 - \frac{2m}{r_0} + \frac{q^2}{r_0^2}$ . This implies in the first relation among  $m, q, r_0$ , and  $R, \frac{1}{R^2} = \frac{1}{r_0^3} \left( 2m - \frac{q^2}{r_0} \right)$ . The matching of  $K_{\mu\nu}$  implies in the continuity of the first derivative of  $B_i(r)$  and  $B_e(r)$  at  $r = r_0$ , that is,  $\frac{r_0}{R^2} = \frac{m}{r_0^2} - \frac{q^2}{r_0^3}$ . This, together with the first fundamental form equation, gives two other simplified equations (assume positive q)

$$R = \sqrt{3} r_0^2 \frac{1}{q}, \quad m = \frac{2}{3r_0} q^2.$$
<sup>(19)</sup>

So there are only two free parameters,  $r_0$  and q say. From Eq. (19) we see that as  $r_0$  increases the mass *m* decreases. This is due to the fact that the pressure, and thus the density, decrease fast as  $r_0$  increases. When there is no charge there is no black hole since q = 0 implies m = 0, leaving a Minkowski spacetime alone.

From Eqs. (13) and (14) one can infer that

$$r_0 \le R,\tag{20}$$

otherwise the matter boundary would be outside its de Sitter horizon. One can also infer from  $\frac{1}{R^2} = \frac{1}{r_0^3} \left( 2m - \frac{q^2}{r_0} \right)$  that, when  $r_0 \le R$ , then  $1 - \frac{2m}{r_0} + \frac{q^2}{r_0^2} \ge 0$  which means that if there are solutions these solutions are such that, either  $r_0$  is inside or on the inner (or Cauchy) horizon  $r_-$ , or  $r_0$  is outside or on the outer (event) horizon  $r_+$ . Since we want black holes we should search for solutions in which  $r_0 \le r_-$ , but the procedure dictates what kind of solutions there are.

#### 4. THE PROPERTIES OF THE SOLUTIONS

Since we are not interested in q = 0 we can parametrize all quantities in terms of q. From Eqs. (19)-(20) one finds

$$r_0 \ge \frac{\sqrt{3}}{3}q. \tag{21}$$

Now, we have to compare  $r_0$  with  $r_-$  and  $r_+$ . In the present case, these are given by

$$r_{\pm} = m \pm \sqrt{m^2 - q^2} = \left(\frac{2q}{3r_0} \pm \sqrt{\frac{4q^2}{9r_0^2} - 1}\right)q.$$
 (22)

These radii, together with the line for  $r_0/q$ , are shown in Fig. 1. The solutions can then be divided into four classes (for details see [11]):

1. Regular nonextremal black holes with a null boundary: When  $r_0/q$ , i.e.,  $r_0$  (since we are seeing it for fixed charge) has its minimum value  $r_0/q = \sqrt{3}/3$ , then the radius of the matter coincides with the Cauchy horizon  $r_-$ . There is matter up to the null surface  $r_-$  and then two horizons [6]. A perfectly regular black hole.

2. Regular nonextremal black holes with a timelike boundary: For larger  $r_0/q$ , i.e., larger  $r_0$ , the Cauchy horizon  $r_-$  grows faster and remains outside the radius of the matter,  $r_0 < r_-$ . There is matter up to  $r_0$  and then outside the matter stand two horizons. Also a perfectly regular black hole.



**FIGURE 1.** A plot of several radii as a function of  $r_0/q$ . The minimum value of  $r_0/q$  is  $\sqrt{3}/3$ , and the vertical dashed-dotted line is at  $r_0/q = 2/3$ .

3. Regular extremal black holes with a timelike boundary: When  $r_0/q = 2/3$  then the Cauchy and event horizons coincide, it is an extremal regular black hole. The horizon is now at the furthest coordinate distance from the surface of the matter at  $r_0$ . This means that  $r_0$  cannot be the radius of the horizon of an extremely charged Reissner-Nordström

black hole (see Fig. 1). In fact, as found in Ref. [12], in the extremely charged limit in which the Cauchy and the event horizons are identical,  $r_- = r_+$ , if the boundary of the de Sitter region is pushed to the double horizon, i.e., in the limit  $r_0 \rightarrow r_+ = r_-$ , the resulting solution is a quasiblack hole, and not a regular black hole.

4. Regular overcharged stars with a timelike boundary: For  $r_0/q > 2/3$  there are no black holes. An overcharged star (i.e. charge greater than mass) pops up with no horizons. They have disappeared. It is funny that  $r_0$  of the first star is still less than  $r_-$  of the extremal regular black hole. Perhaps this is no surprise as we are familiar with the fact that the Reissner-Nordström solution has the same feature, after the extremal horizon the singularity at r = 0 becomes bare.

For a range of parameters, the solution is thus a regular electrically charged black hole. It is built from false vacuum up to, but not at,  $r_0$ , at  $r_0$  there is a thin electrical layer of an energyless field, and outside is pure Reissner-Nordström, with two horizons at  $r_-$  and  $r_+$ . The radius to charge ratio and mass to charge ratio of the solution is well defined. The metric for  $r < r_0$  is the de Sitter metric, where the isotropic pressure is constant ( $p(r) = -\rho_m(r) = 3/8\pi R^2$ ) in the region inside the surface  $r = r_0$ , and goes to zero at  $r_0$ . Furthermore, since the charge density  $\rho_e(r)$  is a Dirac delta function centered in  $r = r_0$ , the total charge q is distributed uniformly on the surface  $r = r_0$ . The limit of zero charge is not a regular black hole, it is Minskowski spacetime.

#### ACKNOWLEDGMENTS

This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) -Portugal, through projects No. CERN/FP/109276/2009 and PTDC/FIS/098962/2008. JPSL thanks the FCT grant SFRH/BSAB/987/2010. VTZ thanks Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico of Brazil (CNPq) for financial help.

#### REFERENCES

- 1. E. Gliner, Sov. Phys. JETP 22, 378 (1966).
- 2. J. Bardeen, in *Proceedings of GR5*, Tbilisi, URSS, 1968.
- 3. I. G. Dymnikova, Gen. Relativ. Gravit. 24, 235 (1992).
- 4. E. Ayón-Beato and A. García, Phys. Rev. Lett. **80**, 5056 (1998).
- 5. O. Gron, Lett. Nuovo Cim. **44** (1985) 177.
- 6. E. Poisson and W. Israel, Phys. Rev. D 41, 1796 (1990).
- 7. D. V. Gal'tsov and J. P. S. Lemos, Class. Quant. Grav. 18, 1715 (2001).
- 8. K. A. Bronnikov, H. Dehnen, and V. N. Melnikov, Gen. Rel. Grav. 39, 973 (2007).
- 9. A. Borde, Phys. Rev. D 55, 7615 (1997).
- 10. S. Ansoldi, arXiv:0802.0330 [gr-qc] (2008).
- 11. J. P. S. Lemos and V. T. Zanchin, "Regular black holes: electrically charged solutions, Reissner-Nordström outside the core", to be published (2011).
- 12. J. P. S. Lemos and V. T. Zanchin, Phys. Rev. D 81, 124016 (2010).

Copyright of AIP Conference Proceedings is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.