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4 Qubit Rotations and Spin Nutations

Single qubit operations in spin quantum computing are spin nutations. They can be
studied in a transient nutation experiment measuring the magnetisation of an ensemble.
The transient nutation of a spin ensemble is described by the Bloch equations and was
first observed in NMR by Torrey [1]. It is a well established technique in NMR and
ESR, and was used to study, e.g. quadrupolar nuclei in disordered solids [2,3], or
photo–induced paramagnetic species [4]. Here, the transient nutation method is used to
study the decoherence during spin manipulation, and the behaviour of a S = 3/2 spin
system with a fine structure such as N@C60 and P@C60.

4.1 Experimental details

The pulse sequence used for the transient nutation experiment is presented in Fig. 4.1
(a). The first pulse, called the nutation pulse, rotates the spin depending on the pulse
length tp, as shown in Fig. 4.1(b). After a waiting time t, the spins are completely
dephased and the remaining z component of the magnetisation is rotated by 90° with a
second pulse so the signal can be measured in the x,y–plane. The full free induction
decay (FID) after this pulse is recorded in order to extract the spectrum by FFT. The
whole sequence is much shorter than the spin lattice relaxation time T1 (chapter 3).

Fig. 4.1: (a) Scheme of the pulse sequence used for the transient nutation experiment. The spin rotation
is driven by the first pulse. Its duration tp is varied in the experiment. After the time t = 500 ns
a π/2–pulse is applied measuring the z–magnetisation with an FID.

(b) Illustration of the spin rotation. The pulse duration tp defines the rotation angle. Only the
z–component S z of the spin is measured. Depending on tp it will oscillate between "up" and
"down" position.

If the pulses of amplitude B1 are applied in x–direction, the z component of the
magnetisation remaining after nutation pulse tp and waiting time t is rotated to the y–
axis. For a two level system with isotropic g factor, and homogeneous linewidth as
P@C60 and N@C60, after an on–resonant excitation at t = 0 the ESR signal )( ptS
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is an oscillating function of the Rabi frequency 1ω  that depends on the strength of the
applied magnetic field B1

.11 B
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ω = (4.2)

Here, Mz(0) denotes the initial magnetisation, µB is the Bohr magneton, and ge the
Landé–factor of the electron. The excitation is on resonance if ωmw = geβeB0/h. For off–
resonant excitation with a frequency shift ∆ω = |geβeB0/h – ωmw|, equation (4.1) has to
be modified to [5]:

)sin()0()()( 1
peff

eff
zpyp tMtMtS ω

ω
ω

⋅⋅=∝ (4.3)

with

22
1 ωωω ∆+=eff . (4.4)

The effective nutation frequency ωeff observed for off–resonant excitation is therefore
higher than the on–resonant nutation frequency ω1.

Spin–spin relaxation leads to an exponential decay of the signal and to [1,5]
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The spin–spin relaxation time T2 can be shortened due to static inhomogeneities in B0

and is then denoted as inhomogeneous relaxation time T2
* (see also chapter 3). In the

nutation experiment, additional inhomogeneities of B1, especially for long pulse lengths
tp, further reduce the effective decoherence time T2

*.

N@C60 and P@C60 are four level systems. Thus, their nutation is more complicated than
for a simple two level system. For a detailed analysis of the nutation frequencies the
essential couplings have to be taken into account. In our case these couplings are due to
the hyperfine interaction and the zero–field splitting, respectively.

SDSIS += aH coup (4.6)

The hyperfine interaction Hhf = aIS of group–V endohedral fullerenes is isotropic (see
chapter 2). In this case the nutation frequency does not depend on the hyperfine
coupling and the nutation frequency is expected to be ωnut = ω1 for nitrogen and
phosphorous in C60 [5].

Two cases have to be considered when measuring the nutation frequency [5,6]:
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Here, H1 is the force of the driving microwave with H1 = 2geµBB1S. For an S = 3/2
system, the term |SDS| = |D|.

In ESR spectroscopy of complex materials, advanced transient nutation methods exist
such as the rotary echo [7] or one and two dimensional PEANUT sequences [8]. These
are used to cancel effects of inhomogeneities of the magnetic fields and to simplify the
signals of complicated spectra. For quantum computing, it is of interest to keep the
pulse sequences as simple and as short as possible. Therefore, we use the simplest
possible version of the nutation experiment as shown in Fig. 4.1.

4.2 Nutation and Selectivity

For quantum computing one– and two–qubit gates should be fast and the qubits should
have small decoherence at room temperature, if possible. Fast operations on single
qubits, e.g. fast single spin rotations, require strong magnetic fields and short pulses
respectively, as can be seen from equation (4.2). The spin–spin relaxation time of
N@C60 is T2 = 20 µs even at room temperature, so with pulse lengths of ~ 20 ns up to
1000 rotations or quantum operations could be possible.

Fig. 4.2: Spectra after the nutation pulse sequence with pulse lengths tp = 28 ns (black line), tp = 116 ns
(red dashed line), and tp = 148 ns (blue dotted line) was applied  at the mI = 1 hyperfine line
(low field). The sinc functions corresponding to the pulse lengths are shown in the upper part
of the figure.

However, the spectrum of an N@C60 ensemble consists of three hyperfine lines with an
isotropic hyperfine coupling constant a = 16 MHz (chapter 2). Pulses are rectangle
functions in the time domain of width tp and therefore sinc–shaped in the frequency
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domain with the first zero–crossing at 1/tp. This means that short pulses will affect more
than one hyperfine line.

In Fig. 4.2, the effect of the pulse sequence in Fig. 4.1(a) on the nitrogen spectrum is
shown for tp = 28 ns (black line), tp = 116 ns (red line), and tp = 148 ns (blue line).
Because of the long coherence time T2 = 20 µs of the nitrogen spins, the time between
the pulses had to be as long as t = 12 µs. The length of the "read-out"–pulse was t(π/2) =
24 ns. The spectra shown in Fig. 4.2 were obtained after Fourier transformation of the
following FID.

From the spectra we can see that both, the mI = 1 and the mI = 0 hyperfine line, are
affected by the nutation pulse. Only the mI = -1 hyperfine line remains the same.
Therefore, in the following data analysis, the nutation cannot be taken from the bare
FID because it contains the information of all three hyperfine lines and their oscillation.
Instead, the oscillation of the on-resonant point of the mI = 1 hyperfine line has been
evaluated.

The pulse sequence form Fig. 4.1(a) was applied for many different pulse lengths tp.
The data obtained in this experiment are shown in Fig. 4.3 (black markers). In
combination with the fit to equation (4.5) (red line), they reveal the Rabi oscillation of
the Sz component as illustrated in Fig. 4.1(b).

Fig. 4.3: Transient nutation of the mI = 1 hyperfine line of N@C60 in solid state at room temperature.
The data points (black markers) have been fitted by a sine function with an exponential decay
(red line) after equation (4.5). This decay is due to inhomogeneities of the applied magnetic
fields B0 and B1 (see text).

The decay of the signal is due to T2
* relaxation. Since this is expected to follow an

exponential function, the first data points seem much higher than expected. Obviously,
the decay of the signal gets slower with increasing nutation pulse length. In other words,
the spin–spin relaxation time changes with the selectivity of the pulses.
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Non–selective pulses affect all spins of the entire ensemble. If selective pulses are
applied, only a part of the spin ensemble is measured. In this case, the variation of the
Lamor–frequency over the probed ensemble is smaller, and hence the apparent spin–
spin relaxation is slower than for non–selective pulses.

Nevertheless, the fit reveals only one nutation frequency ωnut/2π = ω1/2π  = 14.5 MHz.
With equation (4.2), this corresponds to a magnetic field in the sample of B1 = 0.52 mT.
The relaxation time obtained by the fit is T2

* = 1 µs, The relaxation time obtained by the
fit is T2

* = 1 µs, which is just the relaxation time of the FID. Thus, if a Hahn–Echo
sequence were used instead of a single π/2–pulse and inhomogeneities of B1 are
negligible, the limit of T2 = 20 µs as obtained in chapter 3 should be reached.

The hyperfine coupling constant of atomic phosphorous in C60 is a/2πh = 138 MHz
(chapter 2). In contrast to N@C60, even short pulses with tp ~ 12 ns can be applied
selectively on one hyperfine line. Therefore, the experiment described for N@C60 has
been applied for P@C60 with larger magnetic field B1 and a "read–out"–pulse with
t(π/2) = 12 ns. Due to the shorter spin–spin relaxation time of P@C60 (chapter 3), the
time between the pulses has been chosen as t = 1 µs.

In Fig. 4.4 (a) the data (black markers) and the fit (red line) are shown. The data have
been multiplied with an exponential function exp(x/500 ns) for better illustration. As for
nitrogen, the relaxation time increases with the length of the nutation pulse until a pulse
length of tp ~ 150 ns is reached. The nutation frequency obtained from the fit is ωnut/2π
= 22.1 MHz corresponding to a field B1 = 0.8 mT.

Fig. 4.4: (a)Data (black markers) and fit (red line) of the transient nutation experiment with P@C60 .
The applied magnetic field was B1 = 0.8 mT. data are multiplied with  exp(x/500 ns).

(b)Nutation of N@C60 and fit from Fig. 4.3 multiplied with exp(x/1100 ns). The applied
magnetic field was B1 = 0.52 mT. Note that the x scale is different from fig. (a).
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For comparison, the data and the fit of Fig. 4.3 scaled by exp(x/1100 ns) are shown
again in Fig. 4.4 (b). Though the conditions are not ideal, more than 50 oscillations for
N@C60 and about 30 oscillations for P@C60 can be observed. This means that at least
50 (30) single qubit operations can be done at room temperature. For short QC gates
(e.g. a two–qubit CNOT) this is sufficient. Therefore, QC pulse sequences can be done
without refocusing and thus can be kept shorter and simpler than in liquid NMR.

4.3 Nutation of P@C60 (solution)

In chapter 2 we found that three different transitions can be observed in a single
hyperfine line for P@C60 in solution due to second order hyperfine splitting. In order
study the influence of this splitting on single qubit rotations, the transient nutation of
P@C60 in solution has been studied. As the molecules rotate very fast in the solvent, all
dipolar interactions, in particular the zero–field splitting, are averaged out. So, the
hyperfine coupling is the only interaction remaining.

The pulse sequence of Fig. 4.1 has been applied on the hyperfine line mI = 1/2  with
t(π/2) = 16 ns, a waiting time t = 500 ns, and an applied field B1 = 0.79 mT.

Similarly to N@C60, the experiment revealed only one nutation frequency ωnut/2π  = 21.7
MHz (Fig. 4.5(a)) corresponding to an applied field B1 = 0.78 mT indicating that the
field inside the sample is nearly the same as outside.

Fig. 4.5: (a) Transient nutation of P@C60 in solution at room temperature. The nutation frequency of
ωnut/2π  = 21.7 MHz corresponds to a field B1 = 0.775 mT. The oscillations observed belong to
the integrated signal of the centre line of the fine structure triplet at mI  = 1/2.

(b) Spectrum of P@C60 during the first oscillation of the transient nutation in (a) at tp = 8 ns
(black), tp = 16 ns (blue), tp = 32 ns (red), and tp = 48 ns (green). The nutation pulse affects all
transitions in the same way.

In Fig. 4.5 (b) the spectrum of P@C60 in solution is shown for different nutation pulse
lengths tp. The centre line corresponds to the (1/2,-1/2) transition, the outer lines to the
(±1/2, ±3/2) transitions respectively. All transitions are affected equally during the first
oscillation. This is nearly the same during the whole experiment, because even at pulse
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lengths as long as tp = 700 ns, the frequency width of the nutation pulse covers the all
finestructure lines. In this case the S = 3/2 system can be treated as a simple single
qubit.

In order to observe differences in the nutation of the different transitions, the applied
field and therefore the nutation frequency has to be smaller than the splitting of  ~ 1
MHz. This has been done in the measurement shown in Fig. 4.6. It reveals a very small
Rabi frequency of ωnut/2π  = 0.3 MHz for the (1/2,-1/2) transition corresponding to a
field B1 = 0.011 mT. After a Fourier transformation of the Rabi oscillation, components
with higher frequencies become visible. A strong contribution of the 1 MHz off–
resonant (±3/2, ±1/2) transitions is shown in the inset of Fig. 4.6 with ωeff/2π  = 1 ± 0.25
MHz in agreement with equation (4.4).

Fig. 4.6: Transient nutation of P@C60 at B1 = 0.011 mT. The oscillation observed belongs to a single
point of the centre line of the fine structure triplet at mI = 1. The inset shows the Fourier
transform of the signal that contains two peaks. The first at ω /2π  ~ 0.3 MHz corresponding to
the nutation frequency of the (1/2,-1/2) transition, the second at ω /2π ~ 1 MHz corresponding
to the off resonant components of the (±1/2,±3/2) transitions.

No change in the nutation frequency corresponding to ωnut = 2⋅ω1 (for the (1/2,-1/2)
transition) or ωnut = v3⋅ω1 (for the (±3/2, ±1/2) transitions) could be observed. This is
consistent with the fact that the hyperfine coupling is isotropic [5]. However, if small
driving fields are used in a quantum computing sequence, the off–resonant qubit
rotations have to be taken into account.

4.4 Nutation of P@C60 (powder)

One striking difference between nitrogen and phosphorous in C60 at room temperature is
that for the latter only the (1/2,-1/2) transitions are visible in the spectrum. This may
have its origin in a powder broadening of the other transitions due to a large zero–field
splitting Hfs = SDS.
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A transient nutation experiment can reveal the influence of the fine structure
Hamiltonian because the nutation frequency ωnut depends on the matrix element of the
S± operator for the spin transition [5]. The nutation frequency ωnut of the (1/2,-1/2)
transition will be ωnut  = 2⋅ω1 for 2geµBB1 << |D(ϑ)| with |SDS| = |-1/3 D(ϑ)S2 + Sz

2 D
(ϑ)| = |ms

2 – S(S+1)/3|·|D(ϑ)| (for details see discussion  in chapter 5), according to
equation (4.7). For 2geµBB1 >> |D(ϑ)| it will be equal to the field induced frequency ω1

from equation (4.2) with ωnut = ω1 as discussed before. If the transient nutation of this
spin transition is measured as a function of B1, the value of D can be estimated.

From Dinse et al. [9] it is known that in N@C60, D is in the order of D/geµB ~ 20 µT.
Thus, in a sufficient B1 regime, the condition 2geµBB1 >> |D(ϑ)|  will be valid and
N@C60 can be used as a standard for the B1 strength. In Fig. 4.7, the nutation frequency
of a N@C60 powder sample is shown as a function of the applied field B1. As expected,
it is a straight line through zero, so indeed this sample is a good standard in this B1

regime.
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Fig. 4.7: Nutation frequency of N@C60 as a function of the magnetic field B1. The magnetic field was
calculated from the nutation frequency for the highest point and then has been scaled down by
the attentuation. The points are lying on a straight line through origin, indicating that the
frequency ω 1 can be used as a standard for the B1 strength.

Due to the isotropic hyperfine interaction, there is no influence of the different nuclear
spins I = 1 for nitrogen and I = 1/2 for phosphorous on the nutation frequency [5,10].
Therefore, the nutation frequencies of the different samples can be compared directly.

The nutation frequencies ωnut of two P@C60 powder samples of different spin
concentration, "Pharao" and "Phobos", have been investigated at room temperature. The
ratio of filled to empty fullerene molecules is 1 ·10-6 for the further and 1.6 ·10-4 for the
latter sample. Again, the pulse sequence of Fig. 4.1 has been used. The time between
the pulses was t = 1µs, the length of the "read–out" pulse has been adjusted to the field
strength in order to get the maximum signal.
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In Fig. 4.8, the nutation of the on-resonance point of the mI = 1/2 hyperfine line
"Pharao" (dashed red line) is compared with the nutation of N@C60 (black line) at
different strengths of B1.

Fig. 4.8: Nutation of "Pharao" (dashed red line) and N@C60 (black line) at (a) B1 = 60 µT with 32 ns
steps in pulse length and (b) B1 = 240 µT with 16 ns steps.

At B1 = 60 µT (see Fig. 4.8(a)), the nutation frequency of the phosphorous sample is
twice as high as the nutation frequency of the nitrogen sample. In contrast, Fig. 4.8(b)
shows that at B1 = 240 µT, the nutation frequencies of both samples are nearly the same.
A small deviation can be explained with the slight deviation of B1 in "Pharao" compared
to the "Nike" standard.

For both phosphorous samples, "Pharao" and "Phobos", the ratio of ωnut/ω1 as a function
of B1 is shown in Fig. 4.9, where ω 1 is the "standard" nutation frequency taken from
Fig. 4.7. The Fourier transform (with Hanning window) of the nutation reveals the ratio
~ 1 for B1 > 240µT and ~ 2 for B1 < 60µT, independent from the amount of filled
fullerene molecules which is 160 times as high in "Phobos" compared to "Pharao". The
deviation from the integer numbers is due to slightly smaller B1 fields in the
phosphorous samples compared to the N@C60 sample.

Between B1 = 240 µT  and B1 = 60 µT, two main frequency contributions, ωnut = ω1 and
ωnut = 2⋅ω1, are always visible. This is due to the powder distribution of the angle
dependent SDS term. It can be treated as a dipolar coupling (see chapter 5) with D(ϑ) =
D0⋅(3cos2ϑ −1), with ϑ the angle of the main axis of D with respect to B0.

In a powder sample, all angles are present and therefore, couplings as strong as 2⋅D0 can
be measured, which fulfil D0 >> geµBB1 for rather strong magnetic fields. Spins
belonging to this sub–ensemble show the nutation frequency ωnut = 2⋅ω1. However,
there is always a number of spins with D(ϑ) < 2geµBB1 present, too. Especially the
nutation frequency of those spins with |D(ϑ)| = 0 will be ω1 for every applied B1. This
explains why in Fig. 4.9 (b) – (f), both nutation frequencies are measured. The sub–
ensemble with |D(ϑ)| < 2geµBB1 gets smaller with decreasing B1, while the number of
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spins with |D(ϑ)| >> 2geµBB1 increases shifting the intensity of the peaks from ω1

towards 2ω1.

Fig. 4.9: The nutation frequency spectrum of the P@C60 samples "Pharao" (solid red line) and
"Phobos" (dashed black line)  at room temperature for different magnetic fields B1, (a) B1 =
480 µT, (b) B1 = 240 µT, (c) B1 = 180 µT, (d) B1 = 120 µT, (e) B1 = 90 µT, and (f) B1 = 60 µT.
The frequency axis is labelled in units of  the N@C60 nutation frequency ω1 corresponding to
the applied field.

Nutation frequencies 2⋅ω1 arise when B1 = 240 µT (Fig. 4.9 (b) to (f)). This contribution
belongs to those spins that have the strongest coupling possible with 2geµBB1 << 2⋅D0.
Hence, a zero–field splitting of D0/geµB ~ 240 µT can be estimated.

Two clearly distinct lines are observed in the nutation spectra for B1 = 240 µT, no
matter of the exact value of B1. The "complicated behaviour" of the nutation frequencies
for H1 ≈ SDS as predicted in [5] is not resolved in these experiments. This might be due
to the bad frequency resolution of pulsed experiments. For a more detailed investigation
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of this point, a low power experiment would be necessary in order to detect the spin
nutation during the B1 pulse.

Turning back to the question whether the zero–field splitting can explain the vanishing
of the second order hyperfine structure in solid P@C60 at room temperature, we find
that the value D0/geµB ~ 240 µT is much too small to explain the strong broadening of
the lines. An additional, large non–axial term E/2geµB ~ 600 µT in the zero–field
splitting could explain the observed huge line broadening. But this would be
contradictory to the almost spherical symmetry of solid C60 at room temperature. Thus,
a fast relaxation of the (±3/2, ±1/2) transitions has to be considered as the reason for the
vanishing lines.

With decreasing temperature both relaxation times, T1 and T2, increase (see chapter 3).
If the (±3/2, ±1/2) transitions are invisible due to fast relaxation at room temperature,
measurements at low temperatures might give more insight. In Fig. 4.10, the nutation
for the low field hyperfine line of the sample "Phobos" at T = 10 K is shown. The
applied field has been chosen very small with B1 = 9 µT to be as selective as possible
with the "read–out"–pulse t(π/2) = 480 ns. In contrast to the above measurements, we
did not choose to observe the oscillation of a single point of the spectrum. Instead, the
integrated intensity of the FID has been measured in order to increase the signal to noise
ratio.

Fig. 4.10:(a)Transient nutation at T = 10 K and B1 = 9 µT of the sample "Phobos". The usual pulse
sequence has been applied at the mI = 1/2 hyperfine line. The red line shows the nutation of the
(1/2,-1/2) transition, the black line shows the same measurement at 0.5 mT off–resonant
excitation.

(b)The Fourier transformation of the nutation reveals clearly the ratio of the frequencies. For
the (1/2,-1/2) transition ω nut = 2⋅ω 1, and for the outer finestructure line it is ω nut = v3⋅ω 1 as
expected for the (±3/2, ±1/2) transitions.
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If B0 is chosen on resonance with the (1/2, -1/2) transition (red line), the nutation
frequency is ωnut/2π = 0.52 MHz = 2ω1/2π, exactly as expected9. The black line shows
the nutation at 0.5 mT off–resonant excitation with ωnut/2π  = 0.44 MHz = v3⋅ω1/2π  as
expected for the (±3/2, ±1/2) transitions. In Fig. 4.10 (b), the Fourier transform (with
Hanning window) of the nutation signals proves that the accuracy of the measurement is
good enough to resolve the different frequencies.

As mentioned before, the signal of the the (±3/2, ±1/2) transitions seems to vanish at
room temperature. However, at T = 10 K and B1 = 9 µT, echo detected spectra as in Fig.
4.11 (black line) reveal the fine structure triplet. There are reports about similar
structures measured at low temperatures (10 K – 80 K) in W-Band experiments [6].

The simulation (red line) shows that the centre line is of Lorentzian shape. A zero–field
splitting of D0/geµB = 650 µT has been assumed for the outer lines that are supposed to
have the same width as the centre line (100 µT).  The intensity ratio of the lines in the
simulation is 3:4:3 as expected for dipolar interaction [[4]]. The large D value is
supported by nutation experiments at T = 10 K similar to those shown in Fig. 4.9, where
frequencies of 2ω1 already contribute at B1 = 400 µT.

Fig. 4.11: Echo detected spectrum of the low field hyperfine line of the powder sample "Phobos" at T =
10 K and B1 = 9 µT (black line). The spectrum has been simulated with a linewidth of 100 µT
and a splitting of D/geµB = 650 µT (red line). Only a large distribution of D splittings can
explain the strong broadening of the (±3/2, ±1/2) transitions (see text). The arrows indicate the
positions, where the spin–spin relaxation and the nutation shown in Fig. 4.10 have been
measured selectively.

                                                
9 The nutation at large magnetic field, B1 = 646 µT >> D/2ge µB (ω1/2π = 18.1 MHz), has been used as

reference. To reach  B1 << D/2ge µB , an attenuation of  37 dB has been used.



4.4  Nutation of P@C60 (powder) 57

57

Selective measurements10 of the spin–spin relaxation yield T2 = 3 µs for the (1/2, -1/2)
transition at B0  = 343.46 mT and T2 = 4 µs at B0 = 342.96 mT. The delay time between
the two echo pulses has been t = 3 µs. Therefore, the longer relaxation time of the outer
lines is the reason for the higher intensity of these lines compared to the centre line.

In contrast to the spin–spin relaxation, the spin–lattice relaxation time T1 = 1.3 ms is
much shorter at the off–resonant position B0 = 342.96 mT than at the (1/2, -1/2)
transition, where two relaxation times can be measured, T1 = 25 ms and T1 = 5 ms.
These times are very long compared to the pulse sequence, so no influence on the line
shape is expected.

The strong line broadening of the (±3/2, ±1/2) transitions could be due to anisotropic
dipolar interaction of the endohedral spin with a 13C atom on the fullerene molecule.
Indeed, a small anisotropic dipolar coupling of 13C with the endohedral atom has been
observed for N@C60 [9,13]. However, if the linewidth of the centre line is assumed to
be due only to dipolar coupling with adjacent spins, the (±3/2, ±1/2) transitions are
expected to be three times broader. Even then, the simulation would not fit the data. To
sum up, neither relaxation effects nor dipolar interactions can explain the line
broadening.

A strong broadening that affects only the (±3/2, ±1/2) transitions can be explained by a
distribution of D values. This can have two different origins:

X–ray diffraction measurements of pure C60 crystals revealed a non-uniform charge-
density distribution on the C60 cage induced by crystal-field effects (see [14] for a nice
review). Such a deformation of the fullerene cage causes a zero–field splitting of the
endohedral spin, as observed in liquid crystal experiments with N@C60 (this will be
discussed in detail in chapter 5). A distribution of the magnitude of such deformations
would cause a distribution of D values. It is likely that there are different crystal–fields
in a powder sample. Especially, a difference between bulk and surface material has to
be expected. But to result in such a broad distribution as indicated by the spectra, the
distribution of cage distortions has to be of the same order of magnitude as the effect of
the distortions on the endohedral atom.

Alternatively, a variation of off–centre positions of the phosphorous atom in the C60

cage could provide another explanation of a broad, Gaussian distribution of D values.
Some calculations [25,26] predict an off–centre position of the endohedral phosphorous
atom due to a change of symmetry or a flat potential inside the fullerene molecule.
However, in both cases the hyperfine coupling would be expected to be anisotropic. No
evidence for anisotropic interactions has been found experimentally. This supports the
calculations that show a centre–position of the phosphorous atom [23,24]. Thus, it
seems that the amorphous or nano–crystalline structure of the powder samples is the
reason for the distribution of D values.

                                                
10 The frequency width of the π–pulse has been ∆ω1/2π = 2.27 MHz corresponding to ∆B1 = 80 µT.
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Irrespective of its origin, the distribution of D values would be averaged out at room
temperature due to the fast rotation of the C60 molecules. Thus, one would expect to see
a three line powder spectrum similar to the simulation in Fig. 4.11. Indeed, the nutation
experiments at room temperature indicate an averaging of the zero–field splitting (zero–
field splitting) to a smaller D value. But only T2 relaxation can be responsible for the
"vanishing" of the finestructure lines.

For P@C60 in solution, it is known that the modulation of the zero–field splitting is the
main spin–spin relaxation mechanism [19]. With decreasing temperature the correlation
time increases, and the (±3/2, ±1/2) transitions get broader. At T = 163 K the outer lines
of the finestructure triplet cannot be resolved anymore.

The rotation of the C60 molecules in a powder sample may lead to a modulation of the
zero–field splitting. For correlation times τc ~ 32 ps the (±3/2, ±1/2) transitions will
vanish completely. These rotations freeze out at T = 80 K, the zero–field splitting is not
modulated anymore, and the transitions are again observed.

4.5 Conclusions

Fast spin nutations and therefore fast single qubit operations require short pulses and
strong magnetic fields, respectively. As shown, different aspects have to be taken into
account when trying to operate P@C60 and N@C60 as qubits:

Because of the large hyperfine coupling constant of P@C60, pulses applied on–
resonance on one hyperfine line will always be selective on this transition. In contrast,
the distance between the outmost hyperfine lines of N@C60 is only 1.12 mT. It has been
shown that with an on–resonance applied magnetic field of B1 ~ 0.5 mT on one of the
outer hyperfine lines, the other outermost hyperfine line remains completely unaffected.

The hyperfine coupling is completely isotropic for both of the endohedral fullerenes. As
discussed, the hyperfine interaction has therefore no influence on the intrinsic nutation
frequency and all hyperfine lines are affected equally by a strong enough pulse.

In solution, the three different transitions of a single hyperfine line of P@C60 can be
observed due the second order hyperfine splitting. Even for nutation pulses as long as tp
= 700 ns the frequency width of the pulse covers the whole hyperfine line. Only for an
applied magnetic field as small as B1 = 11 µT, corresponding to t(π/2) = 832 ns, off–
resonant components in the nutation frequency were observed at 1 MHz. In a quantum
computing scheme with a large interaction between the qubits, the separation between
the finestructure lines would be large and off–resonant excitation has to be considered.

For two P@C60 powder samples, the transient nutation has been used to analyse the
spectra. At room temperature as well as at T = 10 K, a zero–field splitting (zero–field
splitting) has been found as evidenced by a change of the nutation frequency for low
magnetic fields B1. From the dependence of the rotation frequency with respect to the
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applied field, the zero–field splitting has been estimated as D/geµB ~ 240 µT at room
temperature and D/geµB > 400 µT at T = 10 K.

Echo-detected spectra measured at low temperatures indeed reveal a splitting of the fine
structure transitions. However, the (±3/2, ±1/2) transitions are much too broad for the
estimated zero–field splitting. A distribution of D values was discussed as the likely
explanation. Crystal–field distortions of the fullerene cage are known to cause a small
zero–field splitting in N@C60 D/geµB ~ 20 µT. To explain the broad lines of P@C60, this
effect and its variation would have to be stronger by an order of magnitude compared to
N@C60.

All of the effects due to zero–field splitting measured for P@C60 in solid state with
transient nutation will be valid for chemical modifications of N@C60 that have a large
zero–field splitting, as well.

It has been demonstrated that, without any refocusing, about 50 single qubit operations
can be done with N@C60 at room temperature. Up to 30 oscillations could be observed
for P@C60. This is sufficient for the implementation of short quantum algorithms.
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