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Wigner crystal of a two-dimensional electron gas with a strong spin-orbit interaction
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The Wigner-crystal phase of two-dimensional electrons interacting via the Coulomb repulsion and subject to a
strong Rashba spin-orbit coupling is investigated. For low enough electronic densities the spin-orbit band splitting
can be larger than the zero-point energy of the lattice vibrations. Then the degeneracy of the lower subband results
in a spontaneous symmetry breaking of the vibrational ground state. The 60◦ rotational symmetry of the triangular
(spin-orbit coupling free) structure is lost, and the unit cell of the new lattice contains two electrons. Breaking
the rotational symmetry also leads to a (slight) squeezing of the underlying triangular lattice.
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I. INTRODUCTION

The Wigner crystal [1], the insulating companion of a two-
dimensional metal, is predicted to appear in an electron gas of
ultralow densities formed in semiconductor heterostructures
when the Coulomb repulsion-induced ordering wins over the
zero-point quantum fluctuations [2,3]. Low densities amount
to very clean samples. That is why experimentally Wigner
crystals were observed either in naturally clean systems,
like electrons on the surface of liquid helium [4], or in
two-dimensional semiconductors when the kinetic energy is
suppressed by a strong magnetic field [5], or due to a large mass
of the charge carriers [6]. However, lowering the electronic
density not only enhances the electronic correlations, but also
tends to increase the relative importance of the spin-orbit in-
teraction, generically present in low-dimensional systems [7].
Thus, attempting to increase the role of electronic repulsion
may lead one into a regime in which quantum fluctuations
around the classical equilibrium sites of the Wigner crystal are
dominated by the spin-orbit interaction. Such crystals, as we
show, demonstrate a number of unexpected properties, having
no analog hitherto.

The structure of a crystal is usually determined by the
interaction between particles that oscillate slightly around
their static equilibrium positions. For electrons subject to the
Rashba spin-orbit interaction [8], which we consider in this
paper, this picture is modified, since in this case even the
notion “static particle position” requires a clarification. The
spin-orbit interaction splits the spectrum of free electrons,
leading to a sombrero-shaped lower subband with a circle
of degenerate minima. Naively, one would have expected
that in the crystalline phase the electrons’ wave functions
will be spread in momentum space over the entire circle of
those minima. However, for the electrons’ vibrations in the
crystal, different minima of the single-particle spectrum are
not equivalent. Since the uncertainty principle couples the
coordinates and the momenta, broken spatial symmetries in
the crystalline phase are transferred into a broken rotational
symmetry in momentum space. As we show in this paper, the
true ground state corresponds to a crystalline configuration
with each electron picking up (i.e., vibrating around) a
particular point at the bottom of the sombrero. This type of

configuration allows for effectively reducing the energy of
Coulomb repulsion among the electrons, without increasing
too much the kinetic energy.

We consider strong spin-orbit interactions, such that the
effective Hilbert space is reduced to include only electronic
states of momenta close to the ring of minima in the lower
subband [see Fig. 1(a)]. Each electron in the crystal picks
up only one of those minima. However, since the electron’s
displacement in momentum space along the line of minima
costs no kinetic energy, one may effectively freeze its spatial
vibrations in this direction. Freezing the spatial vibrational
mode reduces the average potential energy, since now the
electron never leaves its classical equilibrium location in this
direction. The vibrations along the direction perpendicular to
the ring of minima have the same effective mass as in the
absence of the spin-orbit interaction. Hence the electrons’
fluctuations when the spin-orbit coupling is strong enough are
equivalent to vibrations of particles having anisotropic masses.
Here though, the light and the (infinitely) heavy masses’
directions are chosen for each electron individually.

As different minima of the Rashba Hamiltonian are
classically equivalent, the proper choice of the electrons’
configuration should be the one minimizing the zero-point
fluctuation energy of the crystal. Finding the minimum of the
zero-point energy for general directions of the oscillations is a
difficult task which will not be fully accomplished in this paper.
Instead, we adopt a step-by-step approach, considering a series
of configurations depending on 1, 2, 3, . . ., angles with respect
to which the energy functional is minimized. The first three
steps in this scheme are illustrated in Figs. 1(b)–1(d). The dark
ellipses there indicate the directions along which the electrons
vibrate. First, one requires all electrons to vibrate in unison, and
minimizes the energy with respect to a single angle. Figure 1(b)
shows the best configuration of such a one-parameter family.
At the next step one allows two neighboring electrons on the
triangular lattice to vibrate along independent directions and
then repeats this configuration periodically. The unit cell now
contains two electrons. Figure 1(c) shows the configuration
realizing the minimum of the vibrational energy for such a
two-parameter family of crystals. One may consider similarly
a lattice with more independent vibrational directions; see
Fig. 1(d). Among all crystal configurations which we have
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FIG. 1. (Color online) Schematic visualization of the electronic
density in a two-dimensional electron crystal. (a) The ring of
minima in momentum space for the lower Rashba subband Ep− =
(p − mλ)2/(2m) (λ is the strength of the Rashba interaction). The
colored ellipse shows the electronic density [for structure (b)]. The
density is centered around a particular minimum, but is strongly
elongated along the line of minima, �px � �py � mλ, which helps
to lower the interaction energy. (b)–(d) Three possible periodic
configurations (see text). The dark ellipses indicate the directions of
electrons’ oscillations. Structure (c) has the lowest zero-point energy
of the lattice vibrations. The arrows in (b) indicate the in-plane spin
orientations.

analyzed, the one in Fig. 1(c) has the smallest vibrational
energy. Different crystal configurations have also a very
different vibrational spectra (Fig. 2 below), a fact which can
be exploited to distinguish them experimentally.

Recently, Berg et al. [9] have shown that the Rashba spin-
orbit interaction can stabilize the two-dimensional Wigner
crystal even when the electron-electron interaction potential
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FIG. 2. The vibration density of states as a function of the
frequency (scaled by ω0) for the Wigner-crystal configuration of
Fig. 1(b) (dashed line) and of Fig. 1(c) (solid line). Though the
spectrum extends all the way down to ω = 0 for 1(b) the average
frequency turns out to be smaller for 1(c). Note the linear vanishing of
the density (characteristic of a Dirac cone) in the middle of spectrum
for 1(c) and especially the inverse square-root divergence of the
density at the lower edge, ω ≈ 0.36ω0.

is short-range, V ∼ 1/rα with α > 2. In the absence of the
spin-orbit coupling, such a crystal would have been unstable
for any small electronic density. The price for the short-range
interaction considered in Ref. [9] is a strong asymmetry
(squeezing) of the crystal. In our paper we analyze the
crystal created by electrons interacting via the unscreened
Coulomb repulsion, V = e2/r . Then the triangular lattice
of the crystal [10] remains stable on the classical level.
However, breaking the symmetry in momentum plane changes
drastically the fluctuation properties and the electronic density
distribution.

We stress that our considerations are confined to low
electronic densities, where the dominance of the Coulomb
repulsion over the fluctuation energy ensures the stability of
the crystal. The transition from the crystalline phase to the
Fermi-liquid one is not touched upon.

The paper is organized as follows. In Sec. II we discuss
the Hamiltonian and in particular elaborate on the various
parameters governing the spectrum. In Sec. III we introduce
the effective Hamiltonian for the phonon modes which is
responsible for the largest part of the vibrational energy,
and use it to derive analytically the excitation spectrum of
the simplest configuration of the crystal. More complicated
configurations of the crystal are investigated in the Appendix.
In Sec. IV we consider the minimization of the crystal
vibration zero-point energy and discuss certain properties of
the ground state we find. Section V is devoted to an estimate
of the squeezing of the lattice. Our conclusions, as well as a
discussion of a possible experimental detection, are given in
Sec. VI.

II. WIGNER CRYSTAL WITH SPIN-ORBIT COUPLING

The Hamiltonian of the system under consideration is

H =
∑

i

H0i +
∑
i<j

e2/|Rij + rij | , (1)

with Rij ≡ Ri − Rj . At equilibrium, the electrons are located
at sites Ri on a triangular lattice [10] of spacing a. The
oscillations around those sites are described by expanding the
interaction in the small displacements |ri | � a up to second
order [11]. This expansion yields a single-electron harmonic
potential and an electron-electron interaction (bi)linear in the
displacement [see Eq. (7) below]. The former allows us to
introduce the frequency [12]

ω0 =
√

γ e2/(ma3) , (2)

with γ = ∑
i �=0 a3/(2R3

i ) = 5.5171 and m being the effective
mass. The single-electron part of the Hamiltonian (1) reads

H0 = p2/(2m) + λ(σxpy − σypx) + mλ2/2 , (3)

where λ denotes the Rashba spin-orbit coupling strength and
σx,y are the Pauli matrices. The spectrum of H0 consists
of two subbands, Ep± = (p ± mλ)2/(2m), which correspond
to electrons with in-plane spins directed normal to the
momentum, and pointing to its left or right, respectively. We
focus on the regime where the spin-orbit energy exceeds the
one due to the zero-point motion of the electrons around their
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equilibrium sites,

mλ2 � �ω0 ∼
√

e2�2/(ma3) , (4)

which means that the electrons are always confined to the
lowest subband. The relative strength of the Coulomb inter-
action compared to the kinetic energy is characterized by the
dimensionless parameter rs , related to the electronic density
n and the Bohr radius aB = �

2/(me2) as πr2
s = 1/(na2

B) [13].
Obviously, in the case of a strong Rashba spin-orbit interaction
the large value of the same parameter ensures the existence of
the Wigner crystal: rs � 1 here means that the gain in the
Coulomb energy per electron in the ordered phase exceeds
the energy rise due to the zero-point fluctuations of electrons
in the lattice, e2/a � �ω0. (Quantum Monte Carlo simula-
tions [2,3] indicate that in the absence of spin-orbit coupling
the Wigner crystal exists at rs > 35.)

Once the electrons reside in the lower Rashba subband, their
(ground-state) momenta lie within a narrow ring in momentum
plane of radius mλ and width �p, determined by the zero-point
energy

(p − mλ)2 � �p2 ∼
√

e2�2m/a3 � (mλ)2 . (5)

However, in the crystal different parts of this ring are not
equivalent and each electron may choose its own small sector.
Imagine a much-elongated wave packet built from the lower
Rashba subband solutions, such that

|px − mλ| � �px, |py | � �py, �px � �py � mλ,

(6)

as in Fig. 1(a). The two spatial dimensions of this wave packet
are very different, �x � �y, and hence the minute displace-
ment along the y direction gives a negligible correction to the
interaction energy. The expectation value of H0, which has an
eigenvalue E− = 0 at |p| = mλ, is determined by the smaller
momentum extension of the packet, 〈H0〉 ∼ �p2

x/(2m). This
implies that the system may choose an anisotropic pattern
where around each lattice site the density forms a narrow
ellipse of length �x ∼ [a3

�
2/(me2)]1/4. The orientations of

these ellipses will be determined by the zero-point energy of
the vibrations pertaining to a specific pattern.

III. VIBRATION SPECTRUM

We begin with the configuration shown in Fig. 1(b). In this
structure the electrons oscillate along x, and (since the Hilbert
space is reduced to that of the lower Rashba subband) are
strongly spin-polarized along y, 〈σy〉 � 1. To find the exci-
tation spectrum around this particular structure, we shift the
x component of the momentum, px → mλ + px , multiplying
the many-electron wave function by exp[(i/�)

∑
i mλxi]. The

reduced Hamiltonian contains only the term quadratic in px ,
while py appears at higher orders in py/(mλ) and may be
discarded. The uncertainty principle then imposes no restric-
tions on the displacements along the y direction, allowing us
to choose yi ≡ 0. This results in a single-coordinate effective
Hamiltonian,

Heff =
∑

i

[
p2

xi

/
(2m) + mω2

0x
2
i

/
2
] + e2

∑
i<j

xixjuij , (7)

where uij = 1/R3
ij − 3X2

ij /R
5
ij , Xij is the x component of

Rij , and ω0 is defined in Eq. (2). The Hamiltonian Eq. (7)
contains half of the degrees of freedom of the original one,
since it allows for a single vibrational direction per electron.
In the regime given by Eq. (4), the missing degrees of freedom
pertain to low-energy nonphononic excitations, whose analysis
is beyond the scope of this paper.

Exploiting the Bogoliubov transformation

ck ≡
∑

i

e−ik·Ri
mω0xi + ipxi√

2Nmω0�
= coshukdk + sinhukd

†
−k,

(8)

where N is the number of lattice sites, transforms the
Hamiltonian into

Heff =
∑

k

�ωk

(
d
†
kdk + 1

2

)
, ωk = ω0

√
1 + 2v(k) . (9)

Here, tanh 2uk = −v(k)/[1 + v(k)] and v(k) = ∑
i �=0 eik·R0i

[a3/(2γR3
0i)](1 − 3X2

0i/R
2
0i). In particular, at small wave

vectors the dispersion law becomes

ωk = [4πe2/(
√

3ma2)]1/2|kx |/
√

k. (10)

The
√

k dependence at the low frequencies is well-known
for the plasmon spectrum of a two-dimensional electron gas.
The striking feature though is the angular dependence of the
dispersion law (10), with vanishing frequency along the y

direction. It signals a spontaneous symmetry-breaking caused
by the degeneracy at the bottom of the lower Rashba subband.

The vibration spectra for the structures with several elec-
trons per unit cell, as in Figs. 1(c) and 1(d), are found similarly.
Details of this calculations are given in the Appendix.

IV. MINIMIZING THE ZERO-POINT ENERGY

We have investigated numerically all possible configu-
rations of the Wigner crystal with vibrational directions
depending on 1, 2, and 3 angles, as described in Sec. I.
Important examples representing these families of configu-
rations are shown in Figs. 1(b)–1(d). The ground-state energy
is determined by the frequency ωk averaged over the Brillouin
zone, which in the case of Fig. 1 gives〈

ωb
k

〉
ω0

= 0.951,

〈
ωc

k

〉
ω0

= 0.939,

〈
ωd

k

〉
ω0

= 0.971 . (11)

Quite unexpectedly, among the examined configurations the
one with two electrons per unit cell shown in Fig. 1(c) has the
smallest zero-point energy. Configuration 1(b) has the smallest
〈ωk〉 for the families with one and three electrons per unit
cell, but is not the global minimum of the vibrational energy.
The highly symmetric configuration 1(d) has the largest zero-
point energy in the family with three independent vibrational
directions.

We remind the reader that the disparity in the average
frequencies given in Eq. (11) is a measure for the energy
gain (∼�ω0 per electron) of a system being in a state with
a broken symmetry in momentum space. Had one tried
to spread the electron wave packet over the entire ring of
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minima [Fig. 1(a)], one would have found that this gain in the
vibrational energy is lost.

All phonon frequencies coincide independent of the di-
rection of vibration, ωk ≡ ω0, upon exploiting the Einstein
approximation, in which each electron is confined to a
harmonic potential created when the locations of all other
electrons are frozen [11]. In all the crystalline configurations
we have considered the average frequency was always close
to the Einstein approximation, as in Eq. (11).

One way to probe experimentally the structure of a crystal
is to measure the vibration spectrum. Figure 2 shows the
density of states (DOS) as a function of the frequency for the
structures in Figs. 1(b) and 1(c). Several interesting features
can be observed there (but unfortunately, none explains which
structure is energetically favorable, and why the resulting
〈ωk〉’s are so close to each other). For the configuration 1(b)
the DOS is finite all the way down to zero frequency due to the
plasmon mode Eq. (10). The spectrum has a step singularity
at the high-frequency end, and two logarithmic van Hove
singularities. Though the modes describing global translations
for the full Hamiltonian Eq. (1) always have zero energy, it is
only for the structure 1(b) that one of these modes is reproduced
by the effective Hamiltonian Eq. (7).

The vibration spectrum of the crystalline phase shown in
Fig. 1(c) is gapped (the solid line in Fig. 2). The DOS has
several step singularities and logarithmic divergences. The
linear vanishing of the DOS at ω ≈ ω0 corresponds to a
conical crossing of the two bands (a Dirac point). Surprisingly
enough, we observe an almost perfectly inverted square-root
singularity at low frequencies, ρ(ω) ∼ [ω − 0.36ω0]−1/2; such
a divergence usually characterizes one-dimensional systems.
Careful numerical investigation shows that the dispersion law
around these frequencies has the form[

ωc
k/ω0

]∣∣
kx≈0 ≈ 0.3584 + 0.564 × 10−3 cos(

√
3aky)

+ f (ky)(akx)2, (12)

with f (ky) ∼ 1. These modes correspond to a horizontal
displacement of every second row in the configuration of 1(c).
The small coefficient of the second term in Eq. (12) implies
that different electron rows “see” each other as a continuous
charge lines. This is surprising, since the distance between
the rows is only

√
3 times larger than the interval between

electrons within each row.
The zero-point fluctuations considered in this section

represent the most important, but obviously not the only,
quantum corrections to the energy of the Wigner crystal.
Since the relative variation of the zero-point energy among
the different configurations happens to be less than 3.5%
[this is the difference between Figs. 1(c) and 1(d)], one may
wonder whether effects not taken into account in our approach
may be important for finding the proper ground state. We can
envisage two such effects leading to corrections to our results.
First, there is a correction to the zero-point energy caused by
the phonon interaction, arising from the higher-order terms
in the expansion of the Coulomb interaction (∼r3,r4, . . . ).
Another unaccounted for (parametrically small) contribution
to the energy comes from the low-energy nonphononic modes,
which are not included in the effective Hamiltonian Eq. (7).
Investigation of these corrections goes far beyond the scope of

this paper. However, if the contribution of nonphononic modes
and phonons’ interaction, depending on the specific choice of
single electrons’ minima in the momentum space, turns out
to be large enough, it indeed can change the ground state in
some intermediate range of values of the electron density. (This
would make the phase diagram of the Wigner crystal with spin-
orbit interaction even richer and more interesting.) All that can
be stated at this stage is that, in the limit of very small electronic
densities, both effects mentioned above are parametrically
small and may be neglected. The small parameter, leading
to the suppression of the phonons’ interaction is aB/a � 1.
The smallness of nonphononic modes’ contribution to the
energy is governed by the small value of �p/(mλ) � 1 with
�p ∝ a−3/4; see Eq. (5) [or equivalently �ω0/(mλ2) � 1 with
ω0 ∝ a−3/2].

V. SQUEEZING THE CRYSTAL

The crystal structures of Figs. 1(b) and 1(c) have a
preferential axis, violating the 60◦ symmetry of the triangular
lattice. This opens the possibility for a (slight) squeezing of
the lattice, caused by an interplay of the classical Coulomb
repulsion and the quantum vibrations (cf. the strong squeezing
in the case of a short-range interaction [9]).

The “density preserving” squeezing is defined as Ri →
R̃i = [(1 + α)Xi,Yi/(1 + α)], where α is a small but finite
parameter. We may also write the energy per electron in a
crystal as a power series in Plank’s constant, E(α) = ε0(α) +
� ε1(α) + · · · . The first term is the electron’s electrostatic
energy,

ε0(α) = (e2/a)(c0 + αc1 + α2c2 + · · · ) , (13)

and the second comes from the average zero-point energy,

ε1(α) = ω0(d0 − αd1 + · · · ) , (14)

where ci and di are numerical coefficients. The coefficients
c0 and d0 [the latter is found in Eq. (11)] are of no interest.
Since the triangular lattice is the minimum of the electronic
Coulomb energy [10], one has c1 ≡ 0 and c2 > 0. The linear
in α term in the quantum correction to the energy, d1, would
also vanish due to the crystal symmetry in the absence of the
spin-orbit coupling, or, e.g., for the 120◦ rotational symmetric
configuration Fig. 1(d), but is allowed for the configurations
Figs. 1(b) and 1(c). Numerically we have found c2 ≈ 0.527,
db

1 ≈ 0.245 and dc
1 ≈ 0.425. Minimizing the energy E(α)

results in

αc = �ω0

2e2/a

d1

c2

=
√

γ aB

4a

d1

c2

∼
√

aB

a
. (15)

The value of the squeezing parameter, αc, grows with the
density as a−1/2 ∼ n1/4. This increase is limited, however, by
the inequality (4).

VI. SUMMARY

As we have shown, the ability of the electrons to occupy
different minima in momentum space leads to a complicated
ground-state of the Wigner crystal. We have found the ground
state by considering an effective Hamiltonian, which accounts
for a single energetic vibrational mode per electron, leaving
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untouched a number of nonphononic excitations from the low-
energy sector of the full problem. These soft modes would
correspond to a small displacement of the electron wave packet
in momentum space along the circle of degenerate minima [see
Fig. 1(a)], or to spin flips associated with the 180◦ jumps of
the electron to the opposite side of the circle of minima (see
Refs. [12,14] for a discussion of the spin structure of a Wigner
crystal.)

Although we expect the true ground state of the crystal
to be the structure in Fig. 1(c), other configurations may
exist as metastable states. If the configuration 1(b) would
be realized experimentally, one will be able to probe the
angular-dependent plasmon modes, Eq. (10).

Finally, the existence of the spin-orbit dominated phase
of the Wigner crystal described in this paper requires the
validity of the inequality (4). This inequality may be rewritten
as m∗λ2 � Ry/r

3/2
s , where Ry = m∗e4/2�

2ε2 and m∗ and ε

are the effective mass and dielectric constant, respectively.
For [15] InAs, m∗λ2 ≈ 0.2 meV and Ry ≈ 2.5 eV. Assuming
that in the presence of spin-orbit interactions the crystal
stability still requires the large value of rs ∼ 35, we expect
our results to be always applicable for Wigner crystals in such
materials.
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APPENDIX: VIBRATION SPECTRUM FOR SEVERAL
ELECTRONS PER UNIT CELL

We first show how to obtain the phonon spectrum belonging
to configuration in Fig. 1(c). This is an example of a lattice
with two electrons per unit cell (which turns out to be our
best candidate for the ground state). We then sketch briefly the
derivation of the spectrum in the case of three electrons per
unit cell, vibrating along three arbitrary directions.

1. The configuration of Fig. 1(c)

When there are two electrons within each unit cell, it is
convenient to introduce two sublattices, a and b. The effective
vibration Hamiltonian for the configuration of Fig. 1(c) is then

Heff =
∑
i∈a

(
p2

xi

2m
+ mω2

0x
2
i

2

)
+ e2

∑
i<j∈a

xixj

R3
ij

(
1 − 3

X2
ij

R2
ij

)

+
∑
i∈b

(
p2

yi

2m
+ mω2

0y
2
i

2

)
+ e2

∑
i<j∈b

yiyj

R3
ij

(
1 − 3

Y 2
ij

R2
ij

)

− 3e2
∑

i∈a,j∈b

xiyj

XijYij

R5
ij

. (A1)

Introduction of the creation/annihilation operators

a =
√

mω0

2�

(
x + ipx

mω0

)
, b =

√
mω0

2�

(
y + ipy

mω0

)
(A2)

leads to the Hamiltonian

Heff = �ω0

⎛
⎝∑

i∈a

(
a
†
i ai + 1

2

)
+

∑
i<j∈a

vx
ij (ai + a

†
i )(aj + a

†
j )

+
∑
i∈b

(
b
†
i bi + 1

2

)
+

∑
i<j∈b

v
y

ij (bi + b
†
i )(bj + b

†
j )

+
∑

i∈a,j∈b

wij (ai + a
†
i )(bj + b

†
j )

⎞
⎠ , (A3)

where

vx
ij = a3

(
R2

ij − 3X2
ij

)
2γR5

ij

, v
y

ij = a3
(
R2

ij − 3Y 2
ij

)
2γR5

ij

wij = −3
a3XijYij

2γR5
ij

.

(A4)

In Fourier space, this Hamiltonian takes the form

Heff = �ω0

∑
k

[(
a
†
kak + 1

2

)
+ vx(k)

2
(ak + a

†
−k)(a−k + a

†
k)

+
(

b
†
kbk + 1

2

)
+ vy(k)

2
(bk + b

†
−k)(b−k + b

†
k)

+w(k)(ak + a
†
−k)(b−k + b

†
k)

]
, (A5)

with

vx(k) =
∑

0∈a,i �=0∈a

vx
0ie

ik·Ri ,

vy(k) =
∑

0∈a,i �=0∈a

v
y

0ie
ik·Ri , (A6)

w(k) =
∑

0∈a,i∈b

w0ie
ik·Ri .

Also vx(k) = vx(−k), vy(k) = vy(−k), and w(k) = w(−k).
An important point to note here is that vy(k) �= vx(k). In the
next step one decouples the two vibration polarizations,

ck = cos(τk)ak + sin(τk)bk,

dk = −sin(τk)ak + cos(τk)bk,
(A7)

with tan(2τk) = 2w(k)/[vx(k) − vy(k)], to obtain

Heff = �ω0

∑
k

[(
c
†
kck + 1

2

)
+ v1(k)

2
(ck + c

†
−k)(c−k + c

†
k)

+
(

d
†
kdk + 1

2

)
+ v2(k)

2
(dk + d

†
−k)(d−k + d

†
k)

]
,

(A8)
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FIG. 3. (Color online) Definition of the basis vectors for the
original triangular lattice, a1 and a2, and for the superlattice with
three electrons per unit cell, A1 and A2. Electrons from the three
different sublattices are shown by different colors.

where

v1,2(k) = 1
2 [vx(k) + vy(k) ±

√
[vx(k) − vy(k)]2 + 4w2(k)].

(A9)

Each polarization can be now Bogoliubov transformed exactly
as is carried out in the main text.

2. Phonon spectrum for superlattices with three
electrons per unit cell

The triangular lattice of a usual Wigner crystal is defined
by two lattice vectors, a1 = (a,0) and a2 = (a/2,

√
3a/2). The

superlattice with three atoms per unit cell is defined by the lat-
tice vectors A1 = (3a/2,

√
3a/2) and A2 = (3a/2,−√

3a/2),
such that |A1| = |A2| = √

3a, as is shown in Fig. 3. The
electrons on this lattice naturally form three sublattices whose
sites coordinates are iA1 + jA2, (a,0) + iA1 + jA2, and
(−a,0) + iA1 + jA2. Here i and j are two arbitrary integer
numbers.

Let the displacement vectors for the three sublattices be
ui , vi , and wi , where u = unu, v = vnv , and w = wnw, with
the three unit vectors nu, nv , and nw pointing along the
directions of the allowed vibrations for each sublattice. For
example, for the electronic configuration shown in Fig. 1(d)
of the main text one has nu = (0,1), nv = (

√
3/2,−1/2), and

nw = (−√
3/2,−1/2). However, our derivation below does

not assume any specific orientation of nu, nv , and nw.
The Hamiltonian takes the form

H = hu+ hv + hw + Vu + Vv + Vw + Wuv + Wuw + Wvw,

(A10)

where, for example,

hu =
∑
i∈u

(
p2

ui

2m
+ mω2u2

2

)
, (A11)

and

Vu = e2
∑

i<j∈u

uiuj

(
1

R3
ij

− 3
(nu · Rij )2

R5
ij

)
,

(A12)

Wuv = e2
∑

i∈u,j∈v

uivj

(
1

R3
ij

− 3
(nu · Rij )(nv · Rij )

R5
ij

)
.

Let

ui =
√

3

N

∑
k

eik·Ri uk,

vi =
√

3

N

∑
k

eik·Ri vk , (A13)

wi =
√

3

N

∑
k

eik·Ri wk,

where N is the total number of electrons and Rj is the
true coordinate of the corresponding N -electron lattice site.
Similarly we introduce the Fourier transformed momenta
puk ,pvk ,pwk , so that [pk,xq] = −iδk+q. It follows that

huk =
∑

k

(
pu−kpuk

2m
+ mω2u−kuk

2

)
, (A14)

Vu → V (k)
u = e2

2

∑
k

u−kukVu(k),

Vu(k) =
∑

j

eik·R0j

(
1

R3
0j

− 3
(nu · R0j )2

R5
0j

)
,

(A15)

and

Wuv → W (k)
uv = e2

∑
k

u−kvkWuv(k),

Wuv(k) =
∑

j

eik·R0j

(
(nu · nv)

R3
0j

− 3
(nu · R0j )(nv · R0j )

R5
0j

)
.

(A16)

Next we perform a unitary rotation of the coordinates uk,
vk, and wk, in order to diagonalize the matrix

e2

2

⎛
⎜⎝

Vu(k) Wuv(k) Wuw(k)

Wvu(k) Vv(k) Wvw(k)

Wwu(k) Wwv(k) Vw(k)

⎞
⎟⎠ , (A17)

which we do numerically. After that the Bogoliubov transfor-
mation for each polarization is carried out similar to the way
it is done in the main text.
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