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Lemma 6.7 If pd primitive elements producead total elements, thenp2
d primitive elements produce≥ a2

d

2 total

elements. As a consequence,p2k

d primitive elements produce≥ a2k−ε′′
d total elements for allε′′ > 0.

Proof of lemma. Expand the binomial coefficients on the r.h.s. of (6.2) as a product ofkj factors as in (6.5). Now
you see that replacingpd 7→ p2

d each factor at least squares itself. It only remains to apply the standard inequality

2
∑
i`d

a2
i ≥

(∑
i`d

ai

)2

,

with ai being the contributions from the partitions of the degree. 2

Of course, for thek we have to choose in the proof of theorem 6.6, when applying lemma 6.7 we have

Ĉd/
√
f(d) ≥

(
Ĉd/f(d)

)2k

only for almostall d, say ford ≥ d0, but omitting factors of the firstd0 degrees divides the contribution by a term
bounded above by a polynomial ind, e.g. you can take

d
Pd0

i=1 Ĉ
i/f(i)

,

which can be compensated by choosingε′′ in the lemma a little bigger (sinced/f(d) grows faster thandε for some
ε > 0), so the argument still works. 2

We see that the exponential growth is a very strong “barrier”. If the growth ofpd is less than exponential, then there
is a qualitative difference between the growth of the total dimension and the one of the primitive part.

And, once it is broken, the primitive elements become dominating in each degree, so the asymptotics ofaD andpD
is (up to a negligable factor) equal.

In view of all this the decisive question is

Question. Is the exponential asymptotics a lower or an upper bound for Vassiliev invariants?

Answering this question will surely be hard. We saw why for the lower bound it will be so – we are much further
away from the exponential bound than theorem 6.5 suggests. On the other hand, for an upper bound the best we can
offer at present is something likeD!/1.1D [St6]. Thus also in this case hard work is in store for us . . .

7 The braid index and the growth of Vassiliev invariants

In this section, we use the new approach of braiding sequences to prove exponential upper bounds for the number of
Vassiliev invariants on knots with bounded braid index and arborescent knots.

Diagrams refer henceforth to knot diagrams (and not to chord diagrams).

7.1 Braiding sequences

Recall the basic definitions in the context of braiding sequences from§1.7.

Definition 7.1 For some oddk ∈ Z, ak-braiding of a crossingp in a diagramD is a replacement of (a neighborhood
of)p by the braidσk1 (see figure 6). A braiding sequence (associated to a numbered setP of crossings in a diagramD;
all crossings by default) is a family of diagrams, parametrized by|P | odd numbersx1, . . . , x|P |, each one indicating
that at crossing numberi anxi-braiding is done.

Any Vassiliev invariantv of degree at mostk behaves on a braiding sequence as a polynomial of degree at mostk in
x1, . . . , x|P | (see [St4] and [Tr]), and this polynomial is called braiding polynomial ofv on this braiding sequence.

Let C be a class of knots andv : C −→ Q a map. Extendv to singular knots as described in section 1, equation
(1.1). This extension is well-defined on those singular knots, all of whose resolutions result in knots fromC.
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−→ or

Figure 6. Two ways to do a−3-braiding at a crossing.

Definition 7.2 LetC be a knot class. Then a Vassiliev invariant of deg≤ m onC is a mapv : C −→ Q with v
vanishing on all(m+ 1)-singular knots, whose all2m+1 possible resolutions give knots inC.

Question. Is any Vassiliev invariant on some knot classC the restriction of a Vassiliev invariant (on all knots) toC?
Or, in other words, does any Vassiliev invariant onC admit an extension to a Vassiliev invariant (on all knots)?

Remark 7.1 It is maybe a question of personal taste to which degree this question is interesting. However, while the
classical approach fails to give any statement about counterexample invariants to question 7.1 (if such exist), such
counterexample invariants would be naturally incorporated into the braiding sequence approach. Therefore, until the
non-existence of such counterexamples is not proved, it is not clear, that the finite-dimensionality results of [St4]
are consequences of [Ko, Dr, BN2]. However, the braiding sequence approach fails to give any indication if (or for
which classes) such examples exist.

Definition 7.3 Let C be a class of knots. The set of Vassiliev invariants onC is called finitely-determined, if for
all n ∈ N there exists a constructible finite setCn ⊂ C, such that any Vassiliev invariant onC of degree≤ n is
uniquely determined by its values onCn.

In [St4] I proved that Vassiliev invariants are finitely-determined on arborescent knots (and connected sums thereof)
and closed 3 braids.

Let us briefly recall the idea in [St4,§10], how braiding sequences can be used to prove finite-determination and
upper bounds for the number of Vassiliev invariants on some knot classes. We covered such a classC by braiding
sequences and worked inductively over the length/weight (in some specified sense, which depends on the context,
see lemma 7.7 and definition 7.13) of these braiding sequences. Assume that for a certain setC′ ⊂ C a Vassiliev
invariantv of degreep is 0 and use induction. Special cases of a braiding sequenceB give shorter braiding sequences,
on whichv is 0 by induction, and each such special case on the level of braiding polynomials gives asimplifyingor
recursive relation (an equality between special values of a braiding polynomialP and values of a braiding polynomial
of a shorter braiding sequence, which are 0 by induction). That is, a simplifying or recursive relation is an equality
of the kind

PB
∣∣
xi1 :=ai1 ,...,xin :=ain

= PB′
∣∣
xi′1

:=bi′1
,...,xi′m :=bi′m

for somem,n, ij, i′j ∈ N andaij , bi′j ∈ Z, andPB , PB′ being the braiding polynomials of some fixed Vassiliev
invariantv on braiding sequencesB andB′ with len(B′) < len(B).

A simplifying or recursive relation augments the degree of a non-trivial solution for the braiding polynomialP of
v onB. This happens, because ifP turns to zero settingxij := aij for someij, j = 1, . . . , k, aij ∈ Z, then any
top degree monomial ofP contains at least one of thexij ’s. If the degree ofP is pushed higher than the degree of
v by finding sufficiently many such (disjoint) sets{xij}, only the trivial solution for the braiding polynomialP of
v onB is possible, and so the induction step shows thatv is 0 on the whole classC. Then Vassiliev invariants are
finite-determined onC by settingCp := C′, and in particular, the number of linearly independent Vassiliev invariants
of degree≤ p onC is maximally|C′|.

7.2 Arborescent knots

Rational (2-bridge) knots are a nice example of such a class which can be dealt with by the above idea – the braiding
sequences are given by (the parities of) the coefficients in the Conway notation.

The Conway notation [Ad, Co] can be formally considered as a map of formal expressions built up of the letter set
Z ∪ {∞} and binary operations ‘·’ (called product and often omitted and replaced by concatenating the factors) and
‘ ,’ (called sum) to tangle diagrams, as shown on figure 7.
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Figure 7. Operations with arborescent tangles

Such tangles are called arborescent. Note, that the product operation is not associative. The omission of parenthe-
ses in the notation means left parenthesation, that isabcd is treated as((ab)c)d. Rational tangles are arborescent
tangles, whose notation does not contain parentheses and sum operations. Rational/arborescent knots are closed
rational/arborescent tangles, as shown to the right of figure 7.

Now any summation can be replaced by a product, where the first factor (tangle) has been mirrored with respect to
its NW-SE axis. More generally, it is possible to rotate a tangle through an angle ofk · π/2, k ∈ Z or mirror it in
the plane or in projection direction producing another tangle. Such an operation we will callflip. Replacing in the
Conway notation sums by products and flips, we obtain thenotation with flip.

Now, in all the Conway notations or notations with flip varying some coefficient by±2 corresponds to a braiding and
so any notation is a member of a braiding sequence given by the parities (‘+’ for even parity and ‘−’ for odd parity)
of its coefficients, e. g.,

(2, 3) · (5, 6) ∈ (+,−) · (−,+) .

Using this method, in [St4] we proved:

Theorem 7.4 ([St4]) Vassiliev invariants on rational knots are exponentially bounded in the degree, that is, there
exists someC > 1 with

dim { Vassiliev invariants of degree≤ k on rational knots} ≤ Ck .

We also proved in the same way:

Theorem 7.5 ([St4]) Vassiliev invariants on arborescent knots with all Conway coefficients even are exponentially
bounded in the degree.

Our first aim is the obvious extension both of these theorems.

Theorem 7.6 Vassiliev invariants on arborescent knots are exponentially bounded in the degree.

Proof. We split it into two lemmas. The first one is [St4, lemma 8.1], but we include the proof here.

Lemma 7.7

#{ simplifying relations} ≥
√
n

2
, n = len( notation) ,

where the length of a braiding sequence is the number of integers (or rather their parities) in the notation with flip,
and such that each variable appears maximally in one such relation.

Proof of lemma 7.7. Start induction withn = 2 andn = 3.
Forn = 2 there are 4 choices:−−,−+,+−,++, with possible ‘flip’s applied to some signs. In all cases one of the
following relations applies (note, that∞ = flip (0))

1 · 1 = 2
1 · 0 = 1
0 · 1 =∞
0 · 0 =∞
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and analogously for∞. So there is always 1 simplifying relation. In the same way argue forn = 3.

Now do the induction step.

Assume the inequality of the lemma is true for all notations with flip of len< n and consider a notationA with
len = n. There are 4 choices forA

(ab)c flip (ab)c a(bc) aflip (bc) (7.1)

or ‘flip’s of these 4 expressions, but it is unnecessary to considerA = flip ( something) as all the simplifications we
can achieve in ‘something’ carry over after flips.

Denote byli, i ∈ {a, b, c} the lengths of the subexpressionsa, b, c in (7.1).

Case 1.Assume, that maximally one ofa, b, c has length1. Then

#{ simplifying relations} ≥
√
la
2

+
√
lb
2

+
√
lc
2
− 1

2
,

latter term standing to equilibrate a possible uncorrect contribution from one ofla, lb, lc being1. So, asla+lb+lc = n,
√
la +
√
lb +
√
lc

2
− 1

2
≥
√
n

2
for n ≥ 3 .

Case 2.So two ofa, b, c must be of length1.

Assume, one of these two would be a ‘+’ (or a ‘flip’ thereof). Then set0 into the Conway notation. There are
basically 2 possibilities (any ‘flip’s of the factors do not change qualitatively the picture):

2.1) 0 · A A

2.2) A · 0 A

In case 1 your diagram decomposes. You obtain

. . . (0 ·A) . . . = . . . 0 . . . # flip (A) .

By the additivity ofv under ‘#’, it suffices to consider the (possibly trivial) factors separately. But both factors have
a shorter notation and are hence dealt with by induction premise.

In case 2 we just haveA · 0 = flip (A), which is also simplifying.

So in both cases there are≥
√
n−2
2 + 1 ≥

√
n

2 (n ≥ 3) recursive relations.

Case 3.Two of a, b, c are of length1 and both are ‘−’ (or flip (−)). Then by inserting appropriately1 and−1 into
these ‘−’es, you obtain modulo flips one of the following tangles

B

B

B

whereB is some flip of the remaining tangle of len> 1 in the notation (7.1). But, after performing a flype, in all 3
cases you can simplify the tangles to ones, having as a notation with flip this ofB and onlyoneadditional number
(with some ‘flip’s performed on subexpressions). But this notation is again simpler, so it produces a relation, and
you have

≥
√
n− 2
2

+ 1 ≥
√
n

2
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simplifying relations.

Now the case distinction and the proof of the lemma are complete (note, that in our inductive procedure we never
involved an entry into two recursive relations). 2

The main point now is to prove the following improved

Lemma 7.8

#{ simplifying relations} ≥ C · len( notation), C > 0 .

Then by the argument at the end of subsection 7.1, any Vassiliev invariantv of degreen on arborescent knots is
uniquely determined by its values on braiding sequences of length≤ 1/C · n , and the number of such braiding
sequences is exponentially bounded in the degree. Finally, the number of knots in each braiding sequence which
suffice to determinev on it is exponentially bounded inn as well, and theorem 7.6 is proved. 2

Proof of lemma. Let us start with a definition.

Definition 7.9 A critical entry in a notation with flipC is a ‘−’, which appears as one ofa, b, c in one subexpression
ofC of the form

(ab)c flip (ab)c a(bc) aflip (bc) (7.2)

such that the other 2 expressions have length> 1 (where length is the number of signs ‘+’ and ‘−’).

We proved in lemma 8.1 of [St4], that every pair of signs of non-critical entries gives rise to a relation, so that each
variable appears maximally in one such relation.

Therefore, to prove the lemma 7.8, it suffices to see that

#{ critical entries} ≤ C · len( notation), C < 1 .

This, however, follows from the observation, that in any notation with flip, we have

#{ critical entries} ≤ #{ non-critical entries} − 1 ,

which can be proved straightforwardly by induction over the construction of the notation, and this completes the
proof of lemma 7.8. 2

7.3 Bounds for braid representations

In the following we will use closed braid representations of knots combined with the braiding sequences approach to
Vassiliev invariants to give upper bounds for the number of Vassiliev invariants on classes of knots with special braid
representations. Although it is my feeling (because of the special shape of diagrams it restricts us to) that this is not
the best attack for solving the question of finite-determination of Vassiliev invariants on all knots, they give rise to a
considerable generalization of the results on closed 3 braids in [St4].

Theorem 7.10 For all k ∈ N the space of Vassiliev invariants of degree≤ n on knots with braid index≤ k is
finite-dimensional and exponentially bounded inn.

Although a little restrictive, I hope this statement provides a flavour of the capabilities of the new approach and we
hope it proves to be useful in a later attempt to settle the question of finite-determination of Vassiliev invariants on
all knots using the closed braid approach.

For its proof we need to introduce a specific, but very appealing notation for braid words.

Definition 7.11 A braid scheme is a checkerboard diagram with integers put on the black fields, e. g.

−5 6
−1 −2 3

1 3 2 4

σ1 . . . . . . . . . . . . . σ7

.
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If integers are omitted, they are assumed to be0. The braid word corresponding to the diagram is the concatenation
of powers of interchangingly with the row of the scheme (rows are numbered from bottom to top) odd and even index
(Artin) generators, the powers given by the entries in the scheme. E. g., the braid word corresponding to the above
scheme is

(σ1σ
3
3σ

2
5σ

4
7) (σ−1

2 σ−2
4 σ3

6) (σ−5
3 σ6

7) .

Definition 7.12 A reducing move in a braid scheme is the “pulling down” of an entry (in row≥ 3) two rows below,
if one row below its 2 neighbors (or its 1 neighbor, if it is the first or last generator), are equal to0,

x
0 0

y
−→

0
0 0

x+ y
,

adding it to the below entry (if it is not0).

Example 7.1

3 −2
0 0 −4

1 0
1 2 3

−→ 4 −2
1 2 −1 .

Definition 7.13 The weight of a scheme is the sum of all generator indices in the corresponding braid word (i. e.,
(1 + 3 + 5 + 7) + (2 + 4 + 6) + (3 + 7) = 38 in the example of definition 7.11).

Definition 7.14 A scheme is called reduced if it does not admit a reducing move. Any scheme can be reduced by
finitely many reducing moves, not augmenting its weight.

Proof of theorem 7.10. The idea is always the same as used for all the previous theorems: to any braid scheme
there corresponds a braiding sequence according to the parity of its entries. Then prove, that inserting special values
into this scheme at sufficiently many different positions gives braids, admitting a scheme representation of smaller
weight.

So the key point is as always before the following

Lemma 7.15

#{ recursive relations} ≥ C · 1
k3
, weight( scheme) , C > 0 .

Using this lemma, we know, that to determine a Vassiliev invariant of deg≤ n on knots with braid index≤ k, we
only need to consider braiding sequences of weight≤ C′ · k3 · n (for some constantC′ > 0). As such schemes
have≤ C ′ · k3 · n entries and each entry of the braiding sequence (or rather the corresponding sequence of braid

words) is given by the index of the generator and the parity of the exponent, we have≤ (2(k − 1)
)C′·k3·n

braiding
sequences to consider. The number of monomials of the braiding polynomials of all such braiding sequences is at

most
(C ′ · k3 · n+ n

n

)
, which is exponentially bounded inn, and so the theorem follows. 2

Proof of lemma. We will show, that we have at least in every2k-th row of each reduced scheme of a braiding
sequence (that is, a braid scheme with± signs instead of numbers) a situation like this

x
x 0

x
, where allx ∈ {+,−},

(and thex’s are not necessarily equal).

Such setting always gives rise to a recursive relation: if one of thex’s is ‘+’, then set0 and the entry disappears. If
all x’s are ‘−’, set into the upper two entries1 and apply a Reidemeister III move (or Yang-Baxter relation) to slide
the lower generator to the top, reducing its index by1 (and so also the weight of the scheme). Then eventually bring
the resulting scheme into its reduced form, which does not augment its weight.
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Consider the function, assigning to each row in the reduced scheme the maximal index of its entries (i. e., the position
of the right-most entry in this row of the scheme). This function has odd values on odd rows and even values on even
rows. Eachk rows it has an ascent. As the scheme is reduced, this ascent is by1 (in row≥ 3).

Then you have a picture like this
x

x 0

1 2

If 2 is not empty, then you are done. If it is, then1 cannot be empty as the scheme is reduced. Therefore,
you obtain the same picture one row below and with the index of the generators decreased by1. If you repeat this
argument, at least afterk steps, when your index of the generator has become1 and 1 does not exist, you must be
able to find the desired picture.

As the contribution (index sum) to the weight of the scheme, coming from2k rows, is cubically bounded ink, the
lemma follows. 2

Evidently, the problem to extend the theorem to arbitrary braid index is the possibility to have large parts in the
scheme, consisting of ‘−’es only, so that there are no empty entries (see [St11, remark 3.4] for an example).

Whenever we can avoid this, we are almost immediately done. Here is an example of a theorem which does not
involve a bound on the braid index. It can easily be proven in the same way. The details are always the same and
therefore I leave them to the reader.

Theorem 7.16 Vassiliev invariants are finitely-determined and exponentially bounded on all knots, which are closed
braidsβ with

β =
r∏
i=1

σri
pi
,

pi > 0, ri ∈ Z, such that even (index) generators appear with exactly one odd power (that is, for each even
p ≤ maxrj=1 pi ∃ !i with pi = p andri odd).

Remark 7.2 Any generator must appear with at least one odd power,β̂ to be a knot.

Proof sketch. Consider formal connected sums of reduced schemes (i. e., expressions like

< scheme 1> # < scheme 2> # < scheme 3> ,

where “schemei” stands for some scheme) with the weight defined by the number of all entries in all schemes.

It easily follows from the premise and the reducedness of the scheme that

#{ odd entries} −#{ generators}
2

≤ #{ even entries} ,

and isolated (odd) occurences of a generator in a scheme can be made into isolated crossings in the braid diagram by
setting±1, and then turning the entry into a ‘#’, which is also simplifying.

This shows, that
#{ recursive relations} ≥ 1/9 · weight( scheme sum) .

So for degree≤ n Vassiliev invariants you only need to consider schemes withk ≤ 9n entries. Now for each
such scheme/braiding sequence, the braiding polynomial of deg≤ n is uniquely determined by its values on tuples
(x1, . . . , xk) with 0 ≤ xi,

∑k
i=1 xi ≤ n (see remark 7.3 below), and all braids corresponding to such(xi)ki=1 have

≤ 11n crossings. To finish with, use the result of D. Welsh [We], as quoted in [Ad, p. 49], that the number of knots
with n crossings is exponentially bounded (above) inn. 2

Remark 7.3 The fact, that a polynomialP of deg≤ n in k variablesx1, . . . , xk is uniquely determined by its values
on (x1, . . . , xk) with 0 ≤ xi,

∑k
i=1 xi ≤ n, can be observed from the multivariable Newton formula (see [Tr] and

loc. cit.) by remarking, that∆a1
x1
. . .∆ak

xk
P (0) can be computed out ofP (x1, . . . , xk) with 0 ≤ xi ≤ ai, and only

such difference sequences appear in the formula, where
∑k
i=1 ai ≤ n. (Here∆ai

xi
means taking theai-th difference

sequence ofP with respect toxi.)
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Remark 7.4 As quoted in [Ad, p. 49], D. Welsh proved the exponential upper bound only for prime knots. From
this, however, it follows for composite knots as well. The key point in this argument is to notice, that it suffices to
see it for alternating composite knots. This is, because the number of crossing changes is exponentially bounded,
and it follows from the Tait flyping conjecture [MT] and the fact, that crossing changes commute with flypes, that
you can achieve a minimal diagram of any knot by crossing changes in alternating diagrams, such that for each
alternating knot you just takeonealternating diagram. The exponential upper bound for alternating knots follows
from the fact for alternating prime knots, which is proved by Welsh, using the additivity of the crossing number for
alternating knots under connected sum (which follows from results of Menasco [Me] on the one hand and Kauffman
[Ka3], Murasugi [Mu] and Thistlethwaite [Th] on the other hand, see [Ad,§6.2] for details), and some standard
combinatorial arguments (e. g., that the partition function [An, p. 70] is subexponentially growing; see e. g. [St10]
for details).

Remark 7.5 Theorem 7.10 can also be proved via the Fundamental theorem for braids [Hu]. However, the way
via (proving first) the Fundamental theorem is of course more tedious, and theorem 7.16 shows that our arguments
appear more universally applicable even for braids.

Question. Which knots have braid representations as in theorem 7.16? Maybe all knots?

7.4 The growth of the number of knots and Vassiliev invariants

Finally, we will try to outline a possible strategy to prove the finite-determination of Vassiliev invariants on all knots,
relating their growth to the growth of the number of knots.

Here is a project, which will lead to a very simple proof of the finite-determination of Vassiliev invariants on all knots
using braiding sequences.

Conjecture 7.17 There exists a functionf : N→ R with

1) limn→∞ f(n) =∞, f(n+ 1) > f(n).

2) In any minimal diagram of a knot ofn crossings, there exists a Gousarov scheme [G, Ng, NS] (a family of
disjoint sets of crossings in the diagram)N with #N ≥ f(n), such that∀S ∈ N , after changing of a set
of crossingsS′ ⊂ S in the diagram, the resulting diagram can be (crossing) reduced by Reidemeister moves,
involving crossings ofS only.

Theorem 7.18 Assume conjecture 7.17 is true. Then Vassiliev invariants are finite-determined on all knots. More
exactly, any Vassiliev invariant of degree≤ n is uniquely determined by its values on alternating knots with≤
f−1(n) + 2n crossings. In particular, if in conjecture 7.17 we can choosef(n) ≥ C · n for some constantC > 0,
then Vassiliev invariants are exponentially bounded in the degree.

Proof. Consider the braiding sequences, associated to the minimal knot diagrams ordered by the number of cross-
ings. Then choose for a fixed diagram (and its associated braiding sequence) the schemeN , and inserting special
values into the variables corresponding to crossings in any set inS ∈ N , you obtain a recursive relation (we need
the additional condition to the simplification by Reidemeister moves to ensure that the recursive relation holds for
all values of the remaining variables!). The rest of the argument is as usual.

Now note, that we only need to consider braiding sequences of diagrams with≤ f−1(n) crossings. Combining the
observations in the proof of theorem 7.16 with the one that appropriate sign choice of the arguments of the braiding
polynomial corresponds to alternating diagrams only, we deduce the second assertion. For the third assertion, use
again the above cited result of D. Welsh. 2

One motivatation for this conjecture is to note, that all our previous proofs were basically proofs of special cases of
this conjecture, with the difference that we distinguished for any considered knot a set of diagrams and proved that
simplification of a distinguished diagram gives again a distinguished diagram, such that the simplification commutes
with the other braidings (i. e., the insertions of the braidsσ2k+1

1 into the distinguished rooms of the braiding sequence,
see figure 1). This way we can relax our conjecture.


