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Theorem 5.11 The numbefp (and therefore the number of linearly independent Vassiliev invariants of énlex
asymptotically bounded by
D!
o <11

5.6 The segment length inequality

After having estabilished our result it is perhaps worth saying a word about some possibilities left open in the proof
of our bound.

The observation made in case 2 of the proof can be generalized somewhat.

Definition 5.12 Call a segmentf an LCD a maximal piece of the solid line containing left basepoints only and its
length the number of such basepoints.

Then by the argument above we have the

Theorem 5.13 (Segment length inequality)

> I[ (lengthof segment! < D!

reduced reg. segments of

LCD’s L of degD

Basically our proof was that we bounded th's with < § D factors equal to one in the product and used that the rest
appears with multiplicity at leag’” in the sum. However, many reduced regular LCD’s appear with much higher
factors and if one were able to control their number (which probably requires much labour) this would improve the
base in the denominator we obtain in case 2 (and the total one for all regular LCD's). One might even hope that one
can achieveeachbase in case 2 (and therefore as well for the total bound). But, to put an end to our dreams, recall
that we will never be able to proveé!)! < (for somee > 0) this way!

6 The dimension of a graded commutative algebra and
asymptotics of Vassiliev invariants

Here we discuss the relation between the dimension of a symmetric algebra (with the induced grading) over a graded
vector space (latter called henceforth the primitive part of the algebra), and apply it to deduce a lower bound for the
number of all Vassiliev invariants.

One of the combinatorial aspects of a commutative graded algebra (@@&~Ahe relation between the asymptotical
behaviour of its gradeded piecds, depending on their primitive part8p (d and D will denote the degree). We
will make two assumptions on such an algebra:

1) deda-b) = deda) +degb) Va,be A,

2) prime factorization is unique iA.

Consider the commutative graded Hopf algelAra- A of chord diagrams.

Recently, Chmutov and Duzhin [CD2] obtained the following result4or

Theorem 6.1 The dimension of primitive elements i, has the asymptotical lower bourfd'°s:+- P for each
e > 0.

As it was not explained by the authors which base of the logarithm we can choose, we should do this here.
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Proof. We have by [CD2, theorem 2.5] the lower bound

d d—n
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(d—nﬁ»;)(d—n) 3d—n .

(d—n)!-2

n=1

n even
Setn := d — log d for fixed C > 1. The summand we consider is (temporarily omitt@idor simplicity)
(d —logd)'ced
(log d)' ) ﬂlode (Sﬁ)logd .

By Stirling formula this is asymptotically equivalent to
( e (d—logd) )bgd 1
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Now varyC' and try to maximizef (z) overz :=InC € (0, 00). We have

Fla) =~ + 22
with the zerazg = In 2. We find
1
f@o) = 2’
so the best expressionin (6.1) is
dmd(ma—c) — jlogay.d O

Remark 6.1 As all estimates were sharp and we took the maximum it is very likely that this is the best we can do.

Such aresult opens the question which lower bound it implies for the dimension of the spdlcghofd diagrams of
degreeD, isomorphic [BN2] to the factor space of Vassiliev invariants of degrerodulo such of degree D — 1.
Generally, the relation betweeR := dim P; andag := dim Ay is
2 pj+kj—1
RN (O
(ki,...,kp)>0 J=I
Y,i-ki=D

where theD-tuplek = (k1,...,kp) corresponds to products &f factors of degreé. Denote the number of such
products bycony.

Remark 6.2 In terms of the generating functionéz) of (a;) andp(z) of (p4), equation (6.2) can be rewritten as

o) =TT s = () + 30la) + gola”) +---) ©3)

g 1 zd)pe
This relation is well-known in combinatorics. It appears explicitly in Cayley’s counting of rooted trees [Ca].

Using this relation, Chmutov and Duzhin gave a lower boundfowithout discussing details.

The aim of this section is to elucidate a little more the relation betwgeanda, in general, and to apply it to the
special case of chord diagrams, explaining and motivating one possible approach to such sort of problems.
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6.1 The dominating partition

In the following we discuss the search of partitiongofvhich give the maximal contribution in (6.2). This maximal
contribution we denote byom(D). For eachD we choose one special such partition (if there are several) and
consider the sequence of these partitions.

In general, the asymptotic contribution in (6.2) of a sequence of partitionsafD — oo roughly depends on the
asymptotic behaviour of the number of paitim the partition as function of andD. So here is a possible strategy:
take partitions with different asymptotics of number of partsd calculate the corresponding contributions.

Ideally, it would be nice to have a result telling which asymptotics of number of parts we have to take to find
asymptotically thelominatingpartition in (6.2), that is, the onke giving the summand with the highest contribution
cony,, which we will denote bylom (D), but neither | could deduce nor | know of any such (really ingenious) result.

Below we will make an ansatz to come close to the dominating partition. We will use the number of parts of a fixed
degreel in the partition to be constant, while — oo, except finitely manyD where it is0. We will fix this constant

a priori for each length and for giveh take so many lengths, untiD is exhausted (this of course will not work
exactly in general; we will forget about the small rest, or add it to the part in degree one). That is, we consider
partitions((di,p)ﬁgl)°D°=1 with d; p = d; py1 for1l < i <Ip andip < Ipy;. This turns out to be a good ansatz,

i.e. a sequence of partitions asymptotically producing the dominating contribution can always be chosen (by possibly
losing a minimum on the quality of the asymptotics) to have this property (note, that some small variations of the
partitions in such a sequence will produce asymptotically equal contributions). We will explain this at the end of the
subsection.

In the following | shall only briefly discuss three main cases.

1) The case of 1 primitive element per degree. The numhgase the so-calledartition numbers(d) [An, Ri],
which are known to have the asymptotical behaviour

1 Vd
d) < —— . [eV?2/37 )
p(d) v3d (6 )
See [An, page 70]. Here the asymptoticaigfcomes from the abundance of summands on the r.h.s. of (6.2),
not from their single contributions.

2) The case of polynomially many primitive elements per deggee d¢, i € [0, oo) fixed.

| guess (without having a proof) that the dominating asymptotical contribution comes from partitiéhs of
where the number of parts equakids d’, 1 < d < do(D) for somed, (D) € N. This contribution is between
Cf;m/““) for two constants’; » > 1, which can be chosen arbitrarily close to each other. This is the

maximal contribution from all partitions witli* partsd, wherep varies over0, co).

Note, that already in the case of polynomial behaviour the question of asymptotigssobasically equal to
the one of finding the dominating partition in (6.2), since even multiplicatiop(ay (and adding/d to the
exponent) doesn’t give any significant improvement anymore.

3) Asymptoticallyp, > di for all i € N. By 2) you obtainap > ¢P' ° for eache > 0.

So why was that a good ansatz? Here is one justification: For the sequence of dominating partitions either the number
of parts equal t@ is bounded for alt, or grows beyond any limit for all asD — oo (unlessp; = 1 or pg = 0), SO

that the ratio between the numbey, of parts equal tel; and the numbet,, of parts equal tal; converges to the

ratio of (pg, — 1)/d; and(pg, — 1)/do.

In the casey = 1 we will always have in our sequence of dominating partitibps= 0 (unless allpy; = 1, which is
not interesting), and in the capg = 0 we setky = 0.

Here is how fast this number can grow for— oco. Let us assume that > 1. If not, replace the ‘2’ by some other
‘4" with p; > 1.

Theorem 6.2 In the sequence of dominating partitions the numtagiD) of parts equal to 2 satisfies for ald the

relation
k2(D)—1

Z (pgl — 1) . 2l

ko(D) \P271
=1 (—kQ(zD)—z) -1

— 921 < D. (6.4)
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Proof. The last factors in the expansion

pit+ka—1\ _ pa pat+l  patka—1
G e Y 6
pa+ka—1

of the binomial coeﬁicien( ) in degreel = 2 are

p2 —1 p2—1
(ool (et o

The factor coming to the right of (6.5) far= 2/ when augmenting,; by one is

kq

po — 1

1+ .
ko +1

(6.7)

Then we must havés.6) > (6.7). Otherwise by removing the summands equal to 2 and taking one more summand
equal to2] we get a larger contribution. We have for ajland! < ko

(6.6) < exp <(P2 -1) <ﬁ +... 4+ k_12)>
< exp((p2 — 1)(Inky — In(ks — 1))

kQ p2—1
(kz —l> '

po — 1

& p2—1
(B=)" -1

forall I < ko. The assertion is immediate, sin@g) is a partition ofD. O

Thus

ko > -1

Corollary 6.1 There exist constants’, C” so that
C’ ka (D)

po — 1
200l ———-1) < D.
2 l( oz )-

=1

Very roughly, replacing the sum by an integral, you see kh&D) must be bounded above (modulo constants) by
something likeF~1(D), whereF (I) = po; - I2.

Definition 6.3 An asymptotic is an equivalence class of sequences of naturals modulo the equivalgnce

(bij) <= lim a;/b; = 1. The asymptotid(a;)] is higher than the asymptot|¢b;)] if liminf; .o a;/b; > 1.
This gives a partial ordering among all asymptotics.

Definition 6.4 Denote bydom; (D) the highest asymptotic of contributions of a sequence of partitions in (6.2) with
bounded number of partsas D — co.

Note thatdom, (D) is not defined as a sequence itself, only its asymptotical behaviour is determined. Furthermore
note, thatdom,, (D) is a maximal element in a partial ordering, so it does not need to exist (not even by Zorn’s
lemma)! The following discussion is under the (naive) assumption that it does really exist.

Corollary 6.2 Letdom, (D) grow less fast than any exponentialih Denote here byom,; (D) a special represen-

tantof its asymptotic. Then
D B(D)

for any sequenc8(D) with B(D) > ks(D).
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Proof. Take a sequence of partitions B/ B(D) with k,(D)/B(D) partsd, use the observations directly before
theorem 6.2 and note that, expanding the binomial coefficients as in (6.5), the remajtihg— k4(D)/B(D)
factors in each degree are lower than the figgtD)/B(D). O

For example, if you assume the bound in 2) on 43 is the best one, you get by corrollary 6.2

1+1+ 1
i+2 " (i+1)(i+2
dom(D) < CP e

using B(D) := D7, whereB(D) can be chosen from corrollary 6.1 ignoriag, C”. For largei the additional
term is small. If the bound is larger, we get less of an improvement. In 3) on 43 the additional term would be
compensated by the choiceaof

Let us come back to our original ansatz to fix the number of parts equahsd — oo. It is sufficient to consider
only the asymptotic behaviour of the number of parisequal tod asd — oo, not their sequencgk,)3 , itself.
More precizely, we have

Proposition 6.1 Take two sequences of partitions with, k/; parts equal tal wherekgy, &/, are constant irD. Let

kq =< kI, asd — oco. Then asymptotically a® — oo we have
con,lfs < conyr < con,lc“

forall £ > 0.

Proof. Use a similar argument to the one in the proof of corollary 6.2.

6.2 A lower bound for the number of all Vassiliev invariants

We will now follow the strategy in our ansatz and consider the ggse d'°8++ <, which is the relevant bound for
Vassiliev invariants. It is my reproduction of the result in [CD2, Appendix] with a small correction.

Theorem 6.5 For the dimensiony of the part in degreel of the commutative graded algebra of chord diagrams,

we have asymptotically

ag > O/ reVIERd

for each constanf’ > 1 and eache > 0.

Note that the variation of makes the choice @' unimportant.

Proof. Look at partitions into equal parts and vary their length: set (in the notation of [CD2, Appendiy]) :=
(C +¢€’) - d. You have as a lower bound the expression

flm) = (2"

Then use the fact that for eagh> 1,¢' > 0
d d

— > (1-€&)— 6.9

aVieg.(Cd) ( )a\/loga,(d) (6.9)
and you see that far = 4 + ¢ by a reparametrization afyou can transform the denominators in (6.9) to the one in
the theorem. m]

Remark 6.3 Theorem 6.5 was suggested to Chmutov and Duzhin by myself. It can be obtained from our ansatz, but
the proof presented here is basically due to Chmutov and Duzhin and is much more elegant.

Note that the proof holds also for the unframed case, asl.

Remark 6.4 By some technical calculation you can find that, by being able to @aoy ane, no improvement by

corollary 6.2 would be possible (if this were the dominating asymptotical contribution). E.g., take (using corollary

6.1) B(D) := (4 + e)V'*8++= P S0, whatever the dominating contribution of constant number of parts is, any

improvement due to considering an unbounded number of parts will be gobbled up by adding &y the base.
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In particular, the ansatz of Chmutov and Duzhin can only be (if at all) negligably better than mine. More precisely,
one can prove that, if
r.h.s. of (6.8) < domy(D)**¢ (6.10)

and
log domy, (D)

log domy(D)
is monotonously growing, then (6.10) is also truedom;, instead ofdom,.
To see this, take the logarithm on both sides of (6.10)6en; anddom;,.

Remark 6.5 If you go to the bother of taking the derivate paind find its maximal value, the lower bound foris
a little better, but only for fixed, in the quality of

V198 /(1) Ve (6.12)

for some constan®’ > 1.

My proof of theorem 6.5 works witl,; := ¢’ - d'°81+- ¢, |ettinge’ — 0. The proof suggests that taking a partition
with the number of parté growing somewhat weaker thah d'°&+< ¢ will produce a further improvement. Actually,
you can obtain (6.11) by settirig := d'°%++= 2=C" and a lot of highly technical arguments, which we preferred to
omit here. In fact, it is a strong challenge to find (and prove!) the asymptotics of the négbigarts equal ta in

our ansatz, producing the dominating contribution.

On the other hand, however, in the end such attempts wont give much, since taking more awkward asymptotics of the
number of parts will make the expressions fairly unwielding (as you can see in remark 6.5) and whatever we try, the
improvement will stay small — it turns out that we will never be able to remove that “almost” before the exponential,
unless we manage to do the same already with the bound for the primitive invariants.

6.3 The exponential barrier

More precisely, this fact can be formulated as follows.
Theorem 6.6 If pg grows less fast than any exponential, then so dges

Here “grows weaker than any exponential” means that the sequence does not contain a subsequence admitting a
lower exponential bound (so we do not need to restrict ourselves to monotone sequences).

Remark 6.6 Looking at the second equality in (6.3), this is just the statement that if the radius of convergence

of p(z) is 1, then so it is fora(z). This might have been noticed or implicitly conceived already bly&in his
celebrated paper [Po]. Such arguments are used in the asymptotical analysis of graphical trees. See, e.g., [HP]. Here
we present a proof without use oblpa theory.

Proof. Note, that we may assume (making if necessary little bigger) thatp, = C4/1(@) with some constant
C > 1 and a monotonougwith f(1) = 1, f(d) < d' ¢ for some= > 0.

First we shall establish that for thig the sequence, is boundedboveby an exponential in. Use

( k ><n

onther.h.s. of (6.2) and observe that the maximal contribution of a partition (=summand) therein is the one from the
partition ofd into d parts ‘1’, which is an exponential i The multiplication with the number of partitions C'V'
does not change anything essential.

Now assume, that from the growth p§ primitive elements you would also obtain an exponeritaler bound

aq > C' with aC’ > 1. Consider now/, := C%V/(4) and note thap/, grows faster than any power pf. Forp/,
you would have by the above argument an asymptotical exponential upper bound for the corresgprigiitigiow
the contradiction follows from the following lemma.
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Lemma 6.7 If p, primitive elements produce; total elements, thep? primitive elements produce “Q—d total
elements. As a consequenp?, primitive elements produce aff‘s" total elements for alt” > 0.

Proof of lemma. Expand the binomial coefficients on the r.h.s. of (6.2) as a product faictors as in (6.5). Now
you see that replacing; — p? each factor at least squares itself. It only remains to apply the standard inequality

QZafz (Za>2

ikd
with a; being the contributions from the partitions of the degree. a

Of course, for thé: we have to choose in the proof of theorem 6.6, when applying lemma 6.7 we have
k
CUVI@ (@al/f(al))2

only for almostall d, say ford > dg, but omitting factors of the firsfy degrees divides the contribution by a term
bounded above by a polynomialdhe.g. you can take

G
which can be compensated by choosifign the lemma a little bigger (sina#/ f(d) grows faster thad® for some

e > 0), so the argument still works. ]

We see that the exponential growth is a very strong “barrier”. If the growth &f less than exponential, then there
is a qualitative difference between the growth of the total dimension and the one of the primitive part.

And, once it is broken, the primitive elements become dominating in each degree, so the asymptgtiandp
is (up to a negligable factor) equal.

In view of all this the decisive question is
Question. Is the exponential asymptotics a lower or an upper bound for Vassiliev invariants?

Answering this question will surely be hard. We saw why for the lower bound it will be so — we are much further
away from the exponential bound than theorem 6.5 suggests. On the other hand, for an upper bound the best we can
offer at present is something like!/1.1” [St6]. Thus also in this case hard work is in store for us . ..

7 The braid index and the growth of Vassiliev invariants

In this section, we use the new approach of braiding sequences to prove exponential upper bounds for the number of
Vassiliev invariants on knots with bounded braid index and arborescent knots.

Diagrams refer henceforth to knot diagrams (and not to chord diagrams).

7.1 Braiding sequences

Recall the basic definitions in the context of braiding sequences§tom

Definition 7.1 For some odd € Z, ak-braiding of a crossing in a diagrambD is a replacement of (a neighborhood
of) p by the braids¥ (see figure 6). A braiding sequence (associated to a numberétaferossings in a diagranb;

all crossings by default) is a family of diagrams, parametrized/yodd numbers:y, ..., z|p|, €ach one indicating
that at crossing numberan x;-braiding is done.

Any Vassiliev invariant of degree at most behaves on a braiding sequence as a polynomial of degree atnrost
r1,..., 7 p| (See [St4] and [Tr]), and this polynomial is called braiding polynomiabadn this braiding sequence.

Let C be a class of knots and : ¢ — Q a map. Extend to singular knots as described in section 1, equation
(1.1). This extension is well-defined on those singular knots, all of whose resolutions result in knot.from



