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Theorem 5.11 The numberξD (and therefore the number of linearly independent Vassiliev invariants of orderD) is
asymptotically bounded by

ξD <
D!

1.1D
.

5.6 The segment length inequality

After having estabilished our result it is perhaps worth saying a word about some possibilities left open in the proof
of our bound.

The observation made in case 2 of the proof can be generalized somewhat.

Definition 5.12 Call a segmentof an LCD a maximal piece of the solid line containing left basepoints only and its
length the number of such basepoints.

Then by the argument above we have the

Theorem 5.13 (Segment length inequality)∑
reduced reg.

LCD’sL of degD

∏
segments ofL

(
length of segment

)
! ≤ D!

Basically our proof was that we bounded theL’s with ≤ δD factors equal to one in the product and used that the rest
appears with multiplicity at least2δD in the sum. However, many reduced regular LCD’s appear with much higher
factors and if one were able to control their number (which probably requires much labour) this would improve the
base in the denominator we obtain in case 2 (and the total one for all regular LCD’s). One might even hope that one
can achieveeachbase in case 2 (and therefore as well for the total bound). But, to put an end to our dreams, recall
that we will never be able to prove(D!)1−ε (for someε > 0) this way!

6 The dimension of a graded commutative algebra and
asymptotics of Vassiliev invariants

Here we discuss the relation between the dimension of a symmetric algebra (with the induced grading) over a graded
vector space (latter called henceforth the primitive part of the algebra), and apply it to deduce a lower bound for the
number of all Vassiliev invariants.

One of the combinatorial aspects of a commutative graded algebra (CGA)A is the relation between the asymptotical
behaviour of its gradeded piecesAD depending on their primitive partsPD (d andD will denote the degree). We
will make two assumptions on such an algebra:

1) deg(a · b) = deg(a) + deg(b) ∀a, b ∈ A,

2) prime factorization is unique inA.

Consider the commutative graded Hopf algebraA = A of chord diagrams.

Recently, Chmutov and Duzhin [CD2] obtained the following result forA.

Theorem 6.1 The dimension of primitive elements inAD has the asymptotical lower boundDlog4+ε D for each
ε > 0.

As it was not explained by the authors which base of the logarithm we can choose, we should do this here.
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Proof. We have by [CD2, theorem 2.5] the lower bound

d∑
n = 1

n even

nd−n

(d− n)! · 2 (d−n+1)(d−n)
2 3d−n

.

Setn := d− logC d for fixedC > 1. The summand we consider is (temporarily omittingC for simplicity)

(d− log d)log d

(log d)! · √2
log2 d (

3
√

2
)log d .

By Stirling formula this is asymptotically equivalent to(
e (d− log d)

3
√

2 · log d · dlog
√

2

)log d

· 1
2π
√

log d

≥
(
d1−log

√
2−ε
)log d

∀ε > 0

= d

ln d

(1− ln
√

2
lnC

lnC︸ ︷︷ ︸
f(ln C)

−ε
)
. (6.1)

Now varyC and try to maximizef(x) overx := lnC ∈ (0,∞). We have

f ′(x) = − 1
x2

+
2 ln
√

2
x3

with the zerox0 = ln 2. We find

f(x0) =
1

2 ln 2
,

so the best expression in (6.1) is

dln d( 1
ln 4−ε) = dlog4+ε d 2

Remark 6.1 As all estimates were sharp and we took the maximum it is very likely that this is the best we can do.

Such a result opens the question which lower bound it implies for the dimension of the space ofall chord diagrams of
degreeD, isomorphic [BN2] to the factor space of Vassiliev invariants of degreeD modulo such of degree≤ D− 1.

Generally, the relation betweenpd := dimPd andad := dimAd is

aD =
∑

(k1, . . . , kD) ≥ 0
P

i i · ki = D

D∏
j=1

(
pj + kj − 1

kj

)
(6.2)

where theD-tuplek = (k1, . . . , kD) corresponds to products ofki factors of degreei. Denote the number of such
products byconk.

Remark 6.2 In terms of the generating functionsa(x) of (ad) andp(x) of (pd), equation (6.2) can be rewritten as

a(x) =
∞∏
d=1

1
(1− xd)pd

= exp
(
p(x) +

1
2
p(x2) +

1
3
p(x3) + · · ·

)
. (6.3)

This relation is well-known in combinatorics. It appears explicitly in Cayley’s counting of rooted trees [Ca].

Using this relation, Chmutov and Duzhin gave a lower bound foraD without discussing details.

The aim of this section is to elucidate a little more the relation betweenpd andad in general, and to apply it to the
special case of chord diagrams, explaining and motivating one possible approach to such sort of problems.
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6.1 The dominating partition

In the following we discuss the search of partitions ofD which give the maximal contribution in (6.2). This maximal
contribution we denote bydom(D). For eachD we choose one special such partition (if there are several) and
consider the sequence of these partitions.

In general, the asymptotic contribution in (6.2) of a sequence of partitions ofD asD → ∞ roughly depends on the
asymptotic behaviour of the number of partsd in the partition as function ofd andD. So here is a possible strategy:
take partitions with different asymptotics of number of partsd and calculate the corresponding contributions.

Ideally, it would be nice to have a result telling uswhich asymptotics of number of parts we have to take to find
asymptotically thedominatingpartition in (6.2), that is, the onek giving the summand with the highest contribution
conk, which we will denote bydom(D), but neither I could deduce nor I know of any such (really ingenious) result.

Below we will make an ansatz to come close to the dominating partition. We will use the number of parts of a fixed
degreed in the partition to be constant, whileD →∞, except finitely manyD where it is0. We will fix this constant
a priori for each length and for givenD take so many lengths, untilD is exhausted (this of course will not work
exactly in general; we will forget about the small rest, or add it to the part in degree one). That is, we consider
partitions((di,D)lDi=1)

∞
D=1 with di,D = di,D+1 for 1 < i ≤ lD andlD ≤ lD+1. This turns out to be a good ansatz,

i.e. a sequence of partitions asymptotically producing the dominating contribution can always be chosen (by possibly
losing a minimum on the quality of the asymptotics) to have this property (note, that some small variations of the
partitions in such a sequence will produce asymptotically equal contributions). We will explain this at the end of the
subsection.

In the following I shall only briefly discuss three main cases.

1) The case of 1 primitive element per degree. The numbersad are the so-calledpartition numbersp(d) [An, Ri],
which are known to have the asymptotical behaviour

p(d) � 1
4
√

3 d
·
(
e
√

2/3 π
)√d

.

See [An, page 70]. Here the asymptotics ofad comes from the abundance of summands on the r.h.s. of (6.2),
not from their single contributions.

2) The case of polynomially many primitive elements per degreepd = di, i ∈ [0,∞) fixed.

I guess (without having a proof) that the dominating asymptotical contribution comes from partitions ofD,
where the number of parts equal tod is di, 1 ≤ d ≤ d0(D) for somed0(D) ∈ N. This contribution is between
CD

(i+1)/(i+2)

1,2 for two constantsC1,2 > 1, which can be chosen arbitrarily close to each other. This is the
maximal contribution from all partitions withdp partsd, wherep varies over[0,∞).

Note, that already in the case of polynomial behaviour the question of asymptotics ofad is basically equal to
the one of finding the dominating partition in (6.2), since even multiplication byp(d) (and adding

√
d to the

exponent) doesn’t give any significant improvement anymore.

3) Asymptoticallypd > di for all i ∈ N. By 2) you obtainaD ≥ eD1−ε

for eachε > 0.

So why was that a good ansatz? Here is one justification: For the sequence of dominating partitions either the number
of parts equal tod is bounded for alld, or grows beyond any limit for alld asD →∞ (unlesspd = 1 or pd = 0), so
that the ratio between the numberkd1 of parts equal tod1 and the numberkd2 of parts equal tod2 converges to the
ratio of (pd1 − 1)/d1 and(pd2 − 1)/d2.

In the casepd = 1 we will always have in our sequence of dominating partitionskd = 0 (unless allpd = 1, which is
not interesting), and in the casepd = 0 we setkd = 0.

Here is how fast this number can grow forD →∞. Let us assume thatp2 > 1. If not, replace the ‘2’ by some other
‘ i’ with pi > 1.

Theorem 6.2 In the sequence of dominating partitions the numberk2(D) of parts equal to 2 satisfies for allD the
relation

k2(D)−1∑
l=1

(p2l − 1) · 2l(
k2(D)
k2(D)−l

)p2−1

− 1
− 2l ≤ D . (6.4)
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Proof. The lastl factors in the expansion(
pd + kd − 1

kd

)
=

pd
1
· pd + 1

2
· . . . · pd + kd − 1

kd
. (6.5)

of the binomial coefficient
(
pd + kd − 1

kd

)
in degreed = 2 are

(
1 +

p2 − 1
k2 + 1− l

)
· . . . ·

(
1 +

p2 − 1
k2

)
. (6.6)

The factor coming to the right of (6.5) ford = 2l when augmentingk2l by one is

1 +
p2l − 1
k2l + 1

. (6.7)

Then we must have(6.6) > (6.7). Otherwise by removing the summands equal to 2 and taking one more summand
equal to2l we get a larger contribution. We have for allk2 andl < k2

(6.6) ≤ exp
(

(p2 − 1)
(

1
k2 + 1− l + . . . +

1
k2

))
≤ exp

(
(p2 − 1)(ln k2 − ln(k2 − l))

)
=

(
k2

k2 − l
)p2−1

.

Thus

k2l ≥ p2l − 1(
k2
k2−l

)p2−1

− 1
− 1

for all l < k2. The assertion is immediate, since(ki) is a partition ofD. 2

Corollary 6.1 There exist constantsC ′, C′′ so that

C′·k2(D)∑
l=1

2l
(
p2l − 1
C′′

− 1
)
≤ D .

Very roughly, replacing the sum by an integral, you see thatk2(D) must be bounded above (modulo constants) by
something likeF−1(D), whereF (l) = p2l · l2.

Definition 6.3 An asymptotic is an equivalence class of sequences of naturals modulo the equivalence(ai) �
(bi) ⇐⇒ lim

i→∞
ai/bi = 1. The asymptotic[(ai)] is higher than the asymptotic[(bi)] if lim infi→∞ ai/bi > 1.

This gives a partial ordering among all asymptotics.

Definition 6.4 Denote bydomb(D) the highest asymptotic of contributions of a sequence of partitions in (6.2) with
bounded number of partsd asD →∞.

Note thatdomb(D) is not defined as a sequence itself, only its asymptotical behaviour is determined. Furthermore
note, thatdomb(D) is a maximal element in a partial ordering, so it does not need to exist (not even by Zorn’s
lemma)! The following discussion is under the (naive) assumption that it does really exist.

Corollary 6.2 Letdomb(D) grow less fast than any exponential inD. Denote here bydomb(D) a special represen-
tantof its asymptotic. Then

dom(D) <
(
domb

(
D

B(D)

))B(D)

(6.8)

for any sequenceB(D) withB(D) ≥ k2(D).
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Proof. Take a sequence of partitions ofD/B(D) with kd(D)/B(D) partsd, use the observations directly before
theorem 6.2 and note that, expanding the binomial coefficients as in (6.5), the remainingkd(D) − kd(D)/B(D)
factors in each degree are lower than the firstkd(D)/B(D). 2

For example, if you assume the bound in 2) on 43 is the best one, you get by corrollary 6.2

dom(D) < CD
i+1
i+2+ 1

(i+1)(i+2)
,

usingB(D) := D
1

i+1 , whereB(D) can be chosen from corrollary 6.1 ignoringC′, C′′. For largei the additional
term is small. If the bound is larger, we get less of an improvement. In 3) on 43 the additional term would be
compensated by the choice ofε.

Let us come back to our original ansatz to fix the number of parts equal tod asD → ∞. It is sufficient to consider
only the asymptotic behaviour of the number of partskd equal tod asd → ∞, not their sequence(kd)∞d=1 itself.
More precizely, we have

Proposition 6.1 Take two sequences of partitions withkd, k′d parts equal tod wherekd, k′d are constant inD. Let
kd � k′d asd→∞. Then asymptotically asD →∞ we have

con1−ε
k ≤ conk′ ≤ con1+ε

k

for all ε > 0.

Proof. Use a similar argument to the one in the proof of corollary 6.2.

6.2 A lower bound for the number of all Vassiliev invariants

We will now follow the strategy in our ansatz and consider the casepd = dlog4+ε d, which is the relevant bound for
Vassiliev invariants. It is my reproduction of the result in [CD2, Appendix] with a small correction.

Theorem 6.5 For the dimensionad of the part in degreed of the commutative graded algebra of chord diagrams,
we have asymptotically

ad ≥ Cd/(4+ε)
√

log4 d

for each constantC > 1 and eachε > 0.

Note that the variation ofε makes the choice ofC unimportant.

Proof. Look at partitions into equal parts and vary their length: set (in the notation of [CD2, Appendix])n · pn :=
(C + ε′) · d. You have as a lower bound the expression

f(n) :=
(n · pn

d

)d/n
.

Then use the fact that for eacha > 1, ε′ > 0

d

a
√

loga(Cd)
≥ (1− ε′) d

a
√

loga(d)
(6.9)

and you see that fora = 4 + ε by a reparametrization ofε you can transform the denominators in (6.9) to the one in
the theorem. 2

Remark 6.3 Theorem 6.5 was suggested to Chmutov and Duzhin by myself. It can be obtained from our ansatz, but
the proof presented here is basically due to Chmutov and Duzhin and is much more elegant.

Note that the proof holds also for the unframed case, asn > 1.

Remark 6.4 By some technical calculation you can find that, by being able to varyC by anε, no improvement by
corollary 6.2 would be possible (if this were the dominating asymptotical contribution). E.g., take (using corollary

6.1)B(D) := (4 + ε)
√

log4+ε D. So, whatever the dominating contribution of constant number of parts is, any
improvement due to considering an unbounded number of parts will be gobbled up by adding anyε > 0 to the base.
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In particular, the ansatz of Chmutov and Duzhin can only be (if at all) negligably better than mine. More precisely,
one can prove that, if

r.h.s. of (6.8) < domb(D)1+ε (6.10)

and
log dom′

b(D)
log domb(D)

is monotonously growing, then (6.10) is also true fordom′
b instead ofdomb.

To see this, take the logarithm on both sides of (6.10) fordomb anddom′
b.

Remark 6.5 If you go to the bother of taking the derivate off and find its maximal value, the lower bound forad is
a little better, but only for fixedε, in the quality of

Cd·
√

log4+ε d/(4+ε)
√

log4+ε d

(6.11)

for some constantC > 1.

My proof of theorem 6.5 works withkd := ε′ · dlog4+ε d, letting ε′ → 0. The proof suggests that taking a partition
with the number of partsd growing somewhat weaker thanε′ ·dlog4+ε d will produce a further improvement. Actually,
you can obtain (6.11) by settingkd := dlog4+ε d−C′

and a lot of highly technical arguments, which we preferred to
omit here. In fact, it is a strong challenge to find (and prove!) the asymptotics of the numberkd of parts equal tod in
our ansatz, producing the dominating contribution.

On the other hand, however, in the end such attempts wont give much, since taking more awkward asymptotics of the
number of parts will make the expressions fairly unwielding (as you can see in remark 6.5) and whatever we try, the
improvement will stay small – it turns out that we will never be able to remove that “almost” before the exponential,
unless we manage to do the same already with the bound for the primitive invariants.

6.3 The exponential barrier

More precisely, this fact can be formulated as follows.

Theorem 6.6 If pd grows less fast than any exponential, then so doesad.

Here “grows weaker than any exponential” means that the sequence does not contain a subsequence admitting a
lower exponential bound (so we do not need to restrict ourselves to monotone sequences).

Remark 6.6 Looking at the second equality in (6.3), this is just the statement that if the radius of convergence
of p(z) is 1, then so it is fora(z). This might have been noticed or implicitly conceived already by P´olya in his
celebrated paper [Po]. Such arguments are used in the asymptotical analysis of graphical trees. See, e.g., [HP]. Here
we present a proof without use of P´olya theory.

Proof. Note, that we may assume (making if necessarypd a little bigger) thatpd = Ĉd/f(d) with some constant
Ĉ > 1 and a monotonousf with f(1) = 1, f(d) < d1−ε for someε > 0.

First we shall establish that for thispd the sequencead is boundedaboveby an exponential ind. Use(
n+ k − 1

k

)
< nk

on the r.h.s. of (6.2) and observe that the maximal contribution of a partition (=summand) therein is the one from the
partition ofd into d parts ‘1’, which is an exponential ind. The multiplication with the number of partitions∼ C

√
d

does not change anything essential.

Now assume, that from the growth ofpd primitive elements you would also obtain an exponentiallower bound

ad > C′d with aC′ > 1. Consider nowp′d := Ĉd/
√
f(d) and note thatp′d grows faster than any power ofpd. Forp′d

you would have by the above argument an asymptotical exponential upper bound for the correspondinga′d. But now
the contradiction follows from the following lemma.
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Lemma 6.7 If pd primitive elements producead total elements, thenp2
d primitive elements produce≥ a2

d

2 total

elements. As a consequence,p2k

d primitive elements produce≥ a2k−ε′′
d total elements for allε′′ > 0.

Proof of lemma. Expand the binomial coefficients on the r.h.s. of (6.2) as a product ofkj factors as in (6.5). Now
you see that replacingpd 7→ p2

d each factor at least squares itself. It only remains to apply the standard inequality

2
∑
i`d

a2
i ≥

(∑
i`d

ai

)2

,

with ai being the contributions from the partitions of the degree. 2

Of course, for thek we have to choose in the proof of theorem 6.6, when applying lemma 6.7 we have

Ĉd/
√
f(d) ≥

(
Ĉd/f(d)

)2k

only for almostall d, say ford ≥ d0, but omitting factors of the firstd0 degrees divides the contribution by a term
bounded above by a polynomial ind, e.g. you can take

d
Pd0

i=1 Ĉ
i/f(i)

,

which can be compensated by choosingε′′ in the lemma a little bigger (sinced/f(d) grows faster thandε for some
ε > 0), so the argument still works. 2

We see that the exponential growth is a very strong “barrier”. If the growth ofpd is less than exponential, then there
is a qualitative difference between the growth of the total dimension and the one of the primitive part.

And, once it is broken, the primitive elements become dominating in each degree, so the asymptotics ofaD andpD
is (up to a negligable factor) equal.

In view of all this the decisive question is

Question. Is the exponential asymptotics a lower or an upper bound for Vassiliev invariants?

Answering this question will surely be hard. We saw why for the lower bound it will be so – we are much further
away from the exponential bound than theorem 6.5 suggests. On the other hand, for an upper bound the best we can
offer at present is something likeD!/1.1D [St6]. Thus also in this case hard work is in store for us . . .

7 The braid index and the growth of Vassiliev invariants

In this section, we use the new approach of braiding sequences to prove exponential upper bounds for the number of
Vassiliev invariants on knots with bounded braid index and arborescent knots.

Diagrams refer henceforth to knot diagrams (and not to chord diagrams).

7.1 Braiding sequences

Recall the basic definitions in the context of braiding sequences from§1.7.

Definition 7.1 For some oddk ∈ Z, ak-braiding of a crossingp in a diagramD is a replacement of (a neighborhood
of)p by the braidσk1 (see figure 6). A braiding sequence (associated to a numbered setP of crossings in a diagramD;
all crossings by default) is a family of diagrams, parametrized by|P | odd numbersx1, . . . , x|P |, each one indicating
that at crossing numberi anxi-braiding is done.

Any Vassiliev invariantv of degree at mostk behaves on a braiding sequence as a polynomial of degree at mostk in
x1, . . . , x|P | (see [St4] and [Tr]), and this polynomial is called braiding polynomial ofv on this braiding sequence.

Let C be a class of knots andv : C −→ Q a map. Extendv to singular knots as described in section 1, equation
(1.1). This extension is well-defined on those singular knots, all of whose resolutions result in knots fromC.


