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3 On the number of chord diagrams

In this section we treat some enumeration problems of certain kinds of chord diagrams. Recall, that a chord diagram

(a CD) is an object like this,

i. . an oriented circle with finitely many dashed chords in it and considered up to isotopy.

The essential difficulty of this enumeration is determining their linearized relatives, called LCD's, fixed by a certain
cyclic permutation of the basepoints. This we achieve by introducing some new objects called generalized linearized
chord diagrams or short GLCD’s.

It should be mentioned, that similar enumeration problems have been treated in another way in several other papers,
e. g. [Be, S, NW, Bo, DP, HS].

3.1 Notations

For two numbersn, n € N their g.c.d. is denote@n, n) andm%n is m mod n.
If Pis afinite set, by the symbe# P we will denote its cardinality and b7 (P) its power set (set of all subsets).

In the following we will need some number-theoretic function&z) will denote the BILER function, which can be
defined by

p(n) == #{0<n <n; (nn)=1} =n- [] <1—1).

. p
p prime
pln
A well-known property of these values is that foralke N ;.
> eld) =n. (3.1)
d|n
Let |
n.
(n)a = —dl
denote the number akfold ordered choices out of elements.
The bifactorialn!! of an integral numben is defined by
=
nll = H n— 21
1=0
forn > 0 and by convention we sét! := 1, (—1)!! := 1 andn!! =0 forn < —2.

[P(x)]4 will denote the coefficient af< in the polynomial (or power series) in the formal variabler.
By |n| we will mean the greatest integer not greater than

For two sequences of numbérs )2, and(b;)2,, the expression; < b; denotedim,,_,~ a;/b; = 1, or, in words,
that(a;) and(b;) are asymptotically equivalent.

3.2 Linearized chord diagrams

One can obtain a linearized chord diagram ( an LCD ) from a usual chord diagram by “cutting” the solid line
somewhere. Then one has something like this

cut here
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Both chord diagrams and LCD’s are graded by the number of their ch@oshe picture above is of degree 4.

Let us use the following notations.

Cp = {CD’sofdegD } oD #Cp
Lp := {LCD’sofdegD } Ap = #Lp

A generalization of the LCD’s with more than one solid line are the so catiéag link diagrams (for pictures look
e. g. in [BN4]). Let

Lpy = { stringlink diagrams witt strands of de@ } Aok = #Lpk

The motivation to start these considerations was for me the fact, that the naplarLCD’s of deg D can be
computed very easily. In fact, it is a simple exercise to show the following

Lemma 3.1
Ap = (2D — 1)”

As a generalization of this fact, one can prove the following statement aloit

Lemma 3.2

2D+ k-1
_ —1n
AD )k < 9D ) (2D - 1!

Hint: Glue all strands into one and place a mark on the point of each gluing.

The symmertric group,p acts onL p by permuting the order of the base points of fdehords, and in this sense
Cp is isomorphic to the orbit space of the cyclic subgr@sp C Sap generated by the cycle, := (123 ...2D)
on Lp. So, we shall consider the behaviour of LCD’s under this action.

Letforo € Sap
R, = { LCD's Y ofdegD witho(Y) =Y } re = #R,

3.3 CyclicCD’'s and GLCD’s

Definition 3.3 A generalized linearized chord diagram ( GLCD ) is a pair of the following form

JAg— 2
> NN
[ A S IR RN
v ! i\ v VA , 1

wheren € N and the first component is something like an LCD, but has the following 2 additional features

e If nis even, it may contain self-loops _, i. e. chords starting and ending onto the same basepoint

e Eachreal chord (.a chord which is not a self-loop ) is equipped with a number between 0 (in this case we drop
the number for convenience ) and- 1. We will say that it'scolouredor labeledby this number.

Let the GLCD's be graded by the number of the basepoints ( not chords !) and the cyclicity of a GLCD be its second
component. So the LCD'’s are exactly GLCD’s with cyclicity 1. Then the above picture has degree 10 and cyclicity
n.

It will be sometimes convenient to drop the cyclicity and take only the first part (what is meant will be clear from the
context).

Let
Iy. := {GLCD'sofdegdandcyclicityc} and vgq. = #la4..

Furthermore, we introduce an actionzyf onI'y . by lettingl € Z, act on a GLCD in the following manner.

3From the point of view of the following considerations it might appear more natural to take the number of basepoints (i. e. the double number
of chords ) as graduation but | preferred to keep the original definition of this notion from knot theory.
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¢ |t flips self-loops and real chord ends from the right-most position to the left-most

e Each time it flips one of the ends of a real chord, its number changesiftom — 1 — k, e. g.

It will turn out as useful to know the cardinality; . of I'y .. This is an easy combinatorial task.

If ¢ is odd, then self-loops don'’t exist and the only non-vanishing caselisieven. Then we are left with counting
LCD’s with numbered chords.
If ¢ is even then sum over all possible numbers ‘of and over the choices to put them between the real chords.

Then

0 2 fe,d
c2(d— 1) 2 fe,2|d
Yd,e = I_%J d : (32)
Z< > 20— DI 2le
‘ 21
=0
Let
Lp. := {LCD'sY ofdegD with Z, C staly,, (Y) C Zzp }
Cp,. = {CDsY ofdegD with Z. C staly,, (Y) C Zp },

whereCp . counts the chord diagrams obtained by closing up the LCD’s countécbhy In other words

Lp,.= RZ2DD/c and CD,c = RZ?DD/C/Z )

c

A relation between GLCD’s and CD’s is given by the following

Theorem 3.4 There is a bijection
®p.c
Cpe ™25 Twe/q.,

Proof. We should best use an example to demonstrate what we are goingto do. Givena GLél}, say31 , )
construct the corresponding chord diagrarﬁ)i%%n followingly :

1. Separate an oriented circle intcarcs and mark on each ardasepoints. Number the arcs from Orte- 1
and the basepoints on each arc from 1to 7.

2. For each real chord in your GLCD afd< m < n — 1 connect the left end basepoint on the aravith the
right end basepoint on the afa + 1) mod n, wherep is the number of the chord, e. g. for= 8 in the case
of arc 0 and the chord numbered by 3 in the example we use we get the right chord in the following picture

3. For a self-loop, connect the basepoint inarwith the same basepoint in afe: + %) mod n, €. g. forarc 0
we get the left chord in the picture above.

4. Glue all the arcs together and remove all markings on them.

Now it is easy to see how to construct the invers@efseparate for a cyclic chord diagramdi . the circle into

c pieces WIth2D basepoints and assign the unique numbers to the chords in your GLCD, counting the difference
between the arc numbers. If chords in your chord diagram start and end on the same position in different arcs (i. e.
you obtain a self-loop), thenmust be even and the arcs opposite in order the chord diagram to be cyclic. Now check
that the action ozg factors out exactly the arbitrarity how to choose the splitting of the baseline into arcsa
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3.4 Counting all chord diagrams

Using theorem 3.4 we see that LCD'’s invariant undee Zsp bijectively correspond to GLCD’s with cyclicity
¢ = 2D/d. Noticing that an LCD is invariant undére Z,p exactly if it is undew -l where(l,2D/d) = 1, we have

Tzp = 7(2D70)7%

and by BJRNSIDE'S lemma on counting orbits of a finite group action we get the following combinatorial expression
forop.

Theorem 3.5 With (3.2) one has

1
9D = 55 Z p(c) Ve - (3.3)
d-c=2D

This formula is probably originally due t&eAN BETREMA [SI].

3.5 Symmetric chord diagrams

A variation of the enumeration problem is to count chord diagrams up to mirror images (or equivalently, up to change
of orientation of the solid line). Let

6p = #{ CD's of degreeD }/symmetry

and
op" = #{ symm.CD’s s of degre® } .
Then clearly,
sym
6p = %. (3.4)

6 p can also be computed using Burnside’s lemma. In view of (3.4) it is more convenient torgimgerms ofogm,

since the resulting formulafa»rfjym turns out to be surprisingly simple.

Theorem 3.6 For D > 0 we have
5]
D — 1)y
oy =3 (D= s 5 Joi (D — 2i) .
i=0 ’
The resulting formula foé p is originally due to V. Liskovets [Li]. See [$4] for discussion of symmetric LCD’s.

Proof. We are looking for the orbits of the dihedral grdup
Dyp = {(wp,zp) C S2p,
wherewp (i) :=2D + 1 — 14,7 < i < 2D. We have

4D D>1
#DQD_{ 2 D=1

For D > 1 we have by Burnside’s lemma

1 2D—1
Op = E E . rzj'j +7nwD~z"’D .
i=

This is however also true fap = 1 (since we count both elements twice and divide by twice the group order).

Then
2D—1
P |
Op = 40D O’D—QD er'Z”D
=0

4This definition of the dihedral group is in fact orrect only for> 1.
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Lemma 3.7 There is a bijection froanD,ziD to'p_;%20.

Using this lemma we get
1
0?3”“ = 5{ Yp,2 +YD-1,2 }
from which the formula follows by an easy transformation. |

Proof of lemma. The bijection froml’p_;¢2 5 t0 R
transposition od1,...,i} and{i +1,...,2D}.

Defineamapn; : {1,...,D —i%2} — P({1,...,2D}) by

i can be described as follows. Note thaj - zi actsas a

wp-z

{|[ZE+j1+2D+ 4] -4} D—i%2>j> |4

For a self-loop at basepoiritmake a chord between the two pointsnin(j). For a chord between basepoirits
andj. connect the four basepointsmf; ({j1, j2}) in two pairs by connectingiin(m; (j1)) with min(m;(jz)) for a
chord labeled by and tomax(m;(jz)) if the label is2. Finally, if i is odd, connect basepoinjtst? | and| L | + D.

One can check that this procedure indeed describes a bijection. a

3.6 Degenerate CD’s and LCD’s

Definition 3.8 Let a chord diagram ( or linearized chord diagram ) Hegeneratgf it has anisolatedchord, i. e.
one not crossed by any other, e. g. like in the following diagrams

S TTTS
or ~>5< At P N
AN o \ /v

The count ofF'I relations is the same as the count of degenerate CD’s or LCD’s. Let
wp :=# { degenerate CD’s of deB } , Yp :=# { degenerate LCD’s of deD }

andwp andyp the corresponding counts of non-degenerate CD’s and LCD's.

For the explanation of our approach it will be helpful to introduce the following appealing notions.

Definition 3.9 We will say that a chordi of an LCD (or GLCD)enclosesnother chord (or a self-loop (or B is
enclosedy A, or B is insideof A), if the endpoints of3 are between the endpoints 4f

Conversely, we will say thaB is appearingoutsideof A if A does not enclos® (which doesnot mean thatB
enclosesd !). A chord (with a certain property) will be callechinimal (with this property) if it does not enclose
another chord (with the same property). In the same way it will be catladimalif there is no other chord enclosing
it.

Another definition we will need later is the following one.

Definition 3.10 Thelengthof a chord A in an LCD is the byl augumented number of basepoints of other chords
between the two basepoints4f The length of a chord in a chord diagram will be the minimum of its lengths counted

on both circle segments between its endpoints. E.g., the chord diagram in definition 3.8 has 4 chords of length 2 and
one of length 5.

We will start by counting degenerate LCD'’s of degiee Applying the inclusion-exclusion principle [A§2.4] and
grouping by the number of minimal isolated chords on LCD’s we get a recursive formujafor

D [
Yp = Z (_1)2.71 Z )‘k’ﬂ?-i-l H()‘jz - 1/’]’1) (35)
i=1 . . =1
(J1s-- 5 dir k)
Ji, k>0

Sa+k=D-—1
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andyo = 0. Here) ;'s are the numbers of string link diagrams, introduced in lemmai3s2he number of choices
of minimal isolated chordgj, ..., j; are the degrees of the LCD’s enclosed byilthords, and is the degree of
the remaining string link diagram.

Using the characteristic seri¢y and P, defined by

Pzz(x) = Z P
i=0

and

(o)
Py(z,y) == Y @'y Nigga s
i1=0

(3.5) can be rewritten more nicely as
Py(z) = Pa(z, —z Pg(x)).

For determiningup we have to work a little harder. We will calculate the numbgr of GLCD’s of degreel and
cyclicity ¢, which produce degenerate chord diagrams.

. wd/g if 2|d
a1 '_{ 0 else [ -

So, from now on let > 2. We will distinguish 2 cases.

In the case: = 1 we have

Case 1. All isolated chords in the CD come from a self-loop in the GLCD.

In this case we must have= 2 and exactly one _ . If we cut the chord diagram just before the chord coming from
the self-loop, we get (applyir‘wg,g}2 of theorem 3.4) a GLCD which looks like

N - A
\V/ Ié /_//\/\ )

whereA is a non-degenerate LEDWe see that such a GLCD is of odd degree. All other GLCD’s producing the
same GLCD are generated by the actioZgfdescribed ir§3.3) from our special one above. They can be described
as follows: Put between the basepoints of a non-degenerate LED and colour the chords by if they enclose

the self-loop and by otherwise, e. g.

So for oddd there aref - ﬁ(dfl)/2 such GLCD's.
Case 2. There is an isolated chord in the chord diagram coming from a chord in the GLCD.

Letn. 4 be the number of such GLCD’s. Take a minimal chéréh the GLCD producing an isolated chord. Then it
must be coloured b or ¢ — 1 (else itsc copies would mutually intersect in the chord diagram). If it has laliken
it only enclose®-labeled chords, which have to build up a non-degenerate LCD.

If it is labeledc — 1, we can use th&, action to transform it into &-labeled chord. This way we see that outside of
ac — 1-labeled chord there are no self-loops and the chords have a unique labeHirgif they enclose”, and0
otherwise. Furthermore, by forgetting the labels they build up a non-degenerate LCD.

&?‘3‘\\
t<\’\ :/ ‘ N \v

5From now on we will always mean this in the sense described in the proof of theorem 3.4.
5From now on a gray filled part in a diagram stands fomdritrary LCD and a shaded part fomeon-degenerat&CD.
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We will count GLCD'’s of both types by the inclusion-exclusion principle over minimal chords producing isolated
chords, that is, we have to count a GLCD withk such chords, so that each GLCD with exaetlghords is counted

(n) times
A .
There are two cases.

Case 2.1. All k chosen minimal chords are labeled lyLet §(’j’7d be the resulting number. We can calculate it by
contracting the chords and taking into account the LCD’s they enclose. So we have

k
c,d T €; d—2k—23 ej,k+1

(e1,mer)>0 j=1

- [(Pi(ﬁ))’“ Py (x)}Hk for 0 < 2k < d,

k1

. e+d—1
e, d = e © Ye,c

is the number of generalized string link diagramsidtrands, cyclicitye and degree (with the obvious definition
and counted by the same idea as in lemma 3.2)/and (x) is the characteristic series inof \j , over the degree
y . ;

where

o
Pye (z) = Z xd)\(ch,.
d=0

Case 2.2. There arék — 1 chords with coloud and one chord with colour — 1. Let£* ; be this number. Such

a GLCD we can describe by the GLCD outside of the 1-coloured chord (whose degree we will ca)lwith a
position marked between its basepoints (where:the -coloured chord and what it encloses is attached) and by the
GLCD enclosed by the chord, whelte- 1 chords of colouf) remain, and which has to be counted as in case 2.1. So

_f,d = 2(26"'1)1/_’6 ‘ gf,;i(2e+2)

e>0

[5% (x . P@(xQ)) . ng;l(x)

d—2
Let
id = ff,d + ff,d . (3.6)
Now by the inclusion-exclusion principle we get
ld/2] o
nea = Y (=1)"'¢ky (3.7)
k=1
Putting it all together, we find that
. dpg_ if 2 Jd
Yd,2 = M2,d+ { w(do /2 elsi }

:7(170 = Ne,d fore> 2.

Having obtainedy, ., we can now apply Burnside’s lemma [HC, lemma 14.3 on p. 1058] and get

wp = 5D Z p(c) Ve - (3.8)
d-¢c=2D

"By P with a subscript containing a* we will always denote the characteristic series of the expression in the subscript over the variable
replacing the#'.
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3.7 Chord diagrams with chords of length 1

Letw}, be this numbél. Determining it is nothing but a slight modification of what we did above.
Following the same strategy, first we computg.

We look at an LCD whose closure produces a chord diagram with an isolated minimal chord of length 1. Such an
LCD either has such a chord or it has a maximal chord, which is isdlatmce again we apply the inclusion-
exclusion principle. For a fixed numbgrof chords we have again as in subsection 3.6 two cases.

Case 1. All k chosen chords are minimal. By removing them we are left with a string link count.

Case 2. There arék — 1 minimal chords and one maximal chord. By removing the maximal chord we get back to
case 1.

So we get

D

Yp = Z (_1)k(>\D7k,k+1 + AD—k k) - (3.9)
k=0

For D = 1 the formula gives)} = —1, since in

the chord is both of length 1 and maximal and is counted twice. Spjset 0.
For the computation of; , for ¢ > 2 we make the same case distinction as above.

Case 1. There is an isolated chord on the chord diagram coming from a self-loop in the GLCD. This is possible in
only one case ¢ = 2,d = 1 andthe GLCD is

( 9 72>.

Case 2. All isolated chords in the chord diagram come from chords in the GLCD.

This enumeration process is as in subsection 3.6, but here we have no enclosed or enclosing LCD’s of minimal or
maximal chords. The GLCD’s look like

- ~<

- and - ~

We obtain
) = Mg foro<2k<d
k,1 k—1,1 c
5c,d = fc,d—z = Ad—2k,k
and
- .
1 Vg 2|d
Ta.1 { 0 else
~1 _ 1 + 1 If d =1
Yd,2 = T4 0 else
Fie = ni’d forc > 2

with the analogous formulas as (3.6) and (3.7)Q1f§;j andnéd. The formula forw}, is then the same as (3.8).

Remark 3.1 The sequence}, (and probably alsep, ) was first calculated fob < 9 without a formula by direct
enumeration by D. BR-NATAN [BN2]. It appeared in the algorithm he uses to compute the dimension of the space
of weight systems (see therein the table in section 6.1, 2nd last row).

8We will henceforth denote the equivalents of the symbols in subsection 3.6 by an additional superscript.
9i.e., not enclosed bginy chord, not only by non-isolated chords!
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3.8 Chord diagrams with isolated chords only

We will call such chord diagrams al$olly-degeneratand will denote their number hy?,.

This enumeration problem and the formula for it are classical. However, | include it here, because we will just see
how easily it can be reproduced using our approach.

Let’s start once again with the linear case.

It is a classical combinatorial fact, that the number of LCD’s of dedpeeith isolated chords only is the Catalan

number
(2D)!

2 _ —
vp = Cp = DI(D+1)"

This number is the number of ways to parenthe&ize1 factors in a non-associative algebra or the number of binary
planar trees with a basepoint ahd+- 1 leaves, as considered in [LoR2.1]C.

To see this, group such LCD’s by maximal chords and prove for the generating (or characteristidyseries

1

Fe@ = R

For calculatingy; . for ¢ > 2 make the following case distinction.

Case 1. There is a self-loop in the GLCD. The argument is analogous to the one in subsection 3.6. We-have

andd odd, and the count ig - w(qu)/z-

Case 2. There is no self-loop in the GLCD.

This means that is even. By the same argument as in subsection 3.6 all chords must be labeled eiiteerkyy
¢ — 1. Furthermore, the GLCD has the following two properties

e a chord of colouf) encloses only chords of coloQr

e for each 2 chords of colour— 1 one encloses the other, i. e. we never have something like this

c—1 c—1

Then distinguish once again 2 cases.
Case 2.1. All chords are coloured b§. There ara/;ﬁ/2 such GLCD’s.
Case 2.2. There is a chord coloured lay— 1.

Then by the above properties there existmamueminimal chord coloured by— 1 and once given this the colouring
of the others is uniquely determined. So such GLCD'’s correspond to LCD’s with a distinguished chord, and their
number isg - ¢/7 5.

So

T =
Je,d 0 else

2 _{ ($+1)y3, fif 2|d}.
Hence we get

N )2 if 2|d
73,1 = { %/2 |

else
d? if 2 Jd
22— 2 (d-1)/2
Vd,2 12,4 + { 0 else
2. = nf’d fore> 2

10These are planar trees with a root vertex of valence 2, internal vertices of valence 3 and leaves of valence 1 modulo isotopies in the plane,
which preserve a distinguished order of the 2 edges adjacent to the root vertex.
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and
1 ~
wh = 55 > 97 (3.10)
d-c=2D
1
1 =Cp- if 2 /D
= = p(c)(d+1)Ca+ Cp ¢ + 4 2 (P72 :
2D{ .dZ:D } 0 else
c>2

which is the classical formula for the number of planar trees With 1 nodes [SI]. (If you like, find a direct bijection
between the latter set and the set of fully degenerate chord diagrams.)

Remark 3.2 Using similar arguments it should also be possible to count the various kinds of Gaul? diagrams (chord
diagrams with oriented chords) [Po]. There we have to orient each chord in the GLCD and we have no self-loops.

3.9 Some computations

With the previous formulas it is not hard to compute the beginning of the various integer sequences. ablose
first 10 values are given in the following table.

| D [[1[2[3] 4] 5] 6] 7] 8 | 9] 10 |
op | 1]2]|5] 18| 105|902 | 9,749 127,072| 1,915,951] 32,743,182
oY 1|2|5|16| 53|206| 817| 3620 16361 80,218
6p |1]2|5|17| 79| 554|5283| 65346| 966,156 16,411,700
wp | 1]1]3|11| 70|607|6,577| 857198| 1,276,563| 21,695,178
wh |[1]1|3|11| 69| 602|6531| 84,737| 1,271,143| 21,623,667
W 112 3] 6] 14| 34 95 280 854

(If you like, find the two mutually (but not self-) symmetric chord diagrams in degree 4. Which is the only degenerate
chord diagram of degreewith no chord of length 1?)

3.10 Asymptotics

A first fact to mention is the (not very surprising) observation

Lemma 3.11

(2D — 1)l

90 = 75D

This is, the contribution tep in (3.3) coming fromy:p 1 = Ap is the dominating one.

Proof. Using the bound
Yie < (14+VE)" (d— 1)1,
following directly from (3.2), and that the functiofy'1 + \/n is monotonously decseasing for> 0 we obtain

Z ©(€)Y2D/c,c (1+ \/E)D (2D —1) (2 EJ - 1) I

c|2D
1+\/§ D \/i D%2 DI
() () e

c>2
11 A MATHEMATICA ™ package doing this is available on my WWW page.

IN
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Therefore

Z SD(C) ’VQD/C,C D
c|2D, c>2 - (2+v2)" (2D -1) -

Y2D,1 - (25) {gJ | D — oo

Something more interesting happens in the casethe number of chord diagrams with chords of length 1. Looking
at (3.9) we see that we can write the ratio betwggrand thek™ term in the sum on the r.h.s.

AD_ k1 +AD_kk
AD T k!

~P(D).

whereP (D) is a polynomial fraction of degre®in D bounded above by and converging to 1 foD — oco. This
means that _
b !

)\D D—oco e
wheree is the Euler numbe2.71828 .. ., and together with lemma 3.11 we get the same result for chord diagrams:

Y

1
Wp

>\D D—oco g’

Lemma 3.12 Asymptotically1 of all chord diagrams and LCD’s have no isolated chord (or isolated chord of length
€
1).

In fact, it is an easy exercise to convince oneself that there are “very few” degenerate chord diagrams with no chord
of length 1, that is

wD—wD — 0.
oD D — oo

Unfortunately, computing more carefully the difference

1 vp

e )\D

we see that the dominating term is
1

22D — 1)’
so we cannot hope for a fast convergence.
Problem. At present | don’t know the asymptotics of)".

However, although unimportant for our context, one can obtain the following alternative expression for it.
del 5
A" = o (L 2) ) (0).

To see this, look at the nomalized generating serieg of

R

and prove thal5Wz is a solution of the differential equation

af'(z) = af(z) +22°f(z),  f(0)=1.

4 Connected and tree-connected chord diagrams

Using the methods of section 3, in this section we discuss the enumeration of two more classes of chord diagrams.



