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3 On the number of chord diagrams

In this section we treat some enumeration problems of certain kinds of chord diagrams. Recall, that a chord diagram
( a CD ) is an object like this,

i. e. an oriented circle with finitely many dashed chords in it and considered up to isotopy.

The essential difficulty of this enumeration is determining their linearized relatives, called LCD’s, fixed by a certain
cyclic permutation of the basepoints. This we achieve by introducing some new objects called generalized linearized
chord diagrams or short GLCD’s.

It should be mentioned, that similar enumeration problems have been treated in another way in several other papers,
e. g. [Be, S, NW, Bo, DP, HS].

3.1 Notations

For two numbersm,n ∈ N their g.c.d. is denoted(m,n) andm%n ism mod n.

If P is a finite set, by the symbol#P we will denote its cardinality and byP(P ) its power set (set of all subsets).

In the following we will need some number-theoretic functions.ϕ(n) will denote the EULER function, which can be
defined by

ϕ(n) := #{ 0 < n′ ≤ n ; (n, n′) = 1 } = n ·
∏
p prime

p|n

(
1− 1

p

)
.

A well-known property of these values is that for alln ∈ N+∑
d|n

ϕ(d) = n . (3.1)

Let

(n)d :=
n!

(n− d)!
denote the number ofd-fold ordered choices out ofn elements.

The bifactorialn!! of an integral numbern is defined by

n!! :=
bn−1

2 c∏
i=0

n− 2i

for n > 0 and by convention we set0!! := 1, (−1)!! := 1 andn!! = 0 for n ≤ −2.

[P (x)]d will denote the coefficient ofxd in the polynomial (or power series)P in the formal variablex.

By bnc we will mean the greatest integer not greater thann.

For two sequences of numbers(ai)∞i=1 and(bi)∞i=1, the expressionai � bi denoteslimn→∞ ai/bi = 1, or, in words,
that(ai) and(bi) are asymptotically equivalent.

3.2 Linearized chord diagrams

One can obtain a linearized chord diagram ( an LCD ) from a usual chord diagram by “cutting” the solid line
somewhere. Then one has something like this

↑
cut here

−→ .
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Both chord diagrams and LCD’s are graded by the number of their chords3, so the picture above is of degree 4.

Let us use the following notations.

CD :=
{

CD’s of degD
}

σD := #CD
LD :=

{
LCD’s of degD

}
λD := #LD

A generalization of the LCD’s with more than one solid line are the so calledstring link diagrams (for pictures look
e. g. in [BN4]). Let

LD,k :=
{

string link diagrams withk strands of degD
}

λD,k := #LD,k

The motivation to start these considerations was for me the fact, that the numberλD of LCD’s of degD can be
computed very easily. In fact, it is a simple exercise to show the following

Lemma 3.1
λD = (2D − 1)!!

As a generalization of this fact, one can prove the following statement aboutλD,k.

Lemma 3.2

λD,k =
(

2D + k − 1
2D

)
(2D − 1)!!

Hint: Glue all strands into one and place a mark on the point of each gluing.

The symmertric groupS2D acts onLD by permuting the order of the base points of theD chords, and in this sense
CD is isomorphic to the orbit space of the cyclic subgroupZ2D ⊂ S2D generated by the cyclezD := (1 2 3 . . . 2D)
onLD. So, we shall consider the behaviour of LCD’s under this action.

Let for σ ∈ S2D

Rσ :=
{

LCD’s Y of degD with σ(Y ) = Y
}

rσ := #Rσ

3.3 Cyclic CD’s and GLCD’s

Definition 3.3 A generalized linearized chord diagram ( GLCD ) is a pair of the following form(
4 2

, n

)
wheren ∈ N+ and the first component is something like an LCD, but has the following 2 additional features

• If n is even, it may contain self-loops , i. e. chords starting and ending onto the same basepoint

• Each real chord ( a chord which is not a self-loop ) is equipped with a number between 0 ( in this case we drop
the number for convenience ) andn− 1. We will say that it’scolouredor labeledby this number.

Let the GLCD’s be graded by the number of the basepoints ( not chords !) and the cyclicity of a GLCD be its second
component. So the LCD’s are exactly GLCD’s with cyclicity 1. Then the above picture has degree 10 and cyclicity
n.

It will be sometimes convenient to drop the cyclicity and take only the first part (what is meant will be clear from the
context).

Let
Γd,c :=

{
GLCD’s of degd and cyclicityc

}
and γd,c := #Γd,c .

Furthermore, we introduce an action ofZd onΓd,c by letting1 ∈ Zd act on a GLCD in the following manner.

3From the point of view of the following considerations it might appear more natural to take the number of basepoints ( i. e. the double number
of chords ) as graduation but I preferred to keep the original definition of this notion from knot theory.
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• It flips self-loops and real chord ends from the right-most position to the left-most

• Each time it flips one of the ends of a real chord, its number changes fromk to n− 1− k, e. g.
 2

, 7


 ←−


 4

, 7




It will turn out as useful to know the cardinalityγd,c of Γd,c. This is an easy combinatorial task.

If c is odd, then self-loops don’t exist and the only non-vanishing case is ifd is even. Then we are left with counting
LCD’s with numbered chords.
If c is even then sum over all possible numbers of and over the choices to put them between the real chords.
Then

γd,c =




0 2 6 |c, d
c

d
2 (d− 1)!! 2 6 |c, 2|d
bd2c∑
i=0

(
d

2i

)
· ci · (2i− 1)!! 2|c

. (3.2)

Let
LD,c :=

{
LCD’s Y of degD with Zc ⊂ stabZ2D (Y ) ⊂ Z2D

}
CD,c :=

{
CD’s Y of degD with Zc ⊂ stabZ2D (Y ) ⊂ Z2D

}
,

whereCD,c counts the chord diagrams obtained by closing up the LCD’s counted byLD,c. In other words

LD,c = R
z
2D/c
D

and CD,c = R
z
2D/c
D

/
Zc .

A relation between GLCD’s and CD’s is given by the following

Theorem 3.4 There is a bijection

CD,c
ΦD,c←→ Γ 2D

c ,c

/
Z 2D

c

.

Proof. We should best use an example to demonstrate what we are going to do. Given a GLCD, say
(

3 1 , n
)

construct the corresponding chord diagram inC 7
2n,n

followingly :

1. Separate an oriented circle inton arcs and mark on each arc7 basepoints. Number the arcs from 0 ton − 1
and the basepoints on each arc from 1 to 7.

2. For each real chord in your GLCD and0 ≤ m ≤ n − 1 connect the left end basepoint on the arcm with the
right end basepoint on the arc(m+ µ) mod n, whereµ is the number of the chord, e. g. forn = 8 in the case
of arc 0 and the chord numbered by 3 in the example we use we get the right chord in the following picture

2

34

5

6

7 0

1

3. For a self-loop, connect the basepoint in arcm with the same basepoint in arc(m+ n
2 ) mod n, e. g. for arc 0

we get the left chord in the picture above.

4. Glue all the arcs together and remove all markings on them.

Now it is easy to see how to construct the inverse ofΦ – separate for a cyclic chord diagram inCD,c the circle into
c pieces with2D

c basepoints and assign the unique numbers to the chords in your GLCD, counting the difference
between the arc numbers. If chords in your chord diagram start and end on the same position in different arcs (i. e.
you obtain a self-loop), thencmust be even and the arcs opposite in order the chord diagram to be cyclic. Now check
that the action ofZ 2D

c
factors out exactly the arbitrarity how to choose the splitting of the baseline into arcs.2
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3.4 Counting all chord diagrams

Using theorem 3.4 we see that LCD’s invariant underd ∈ Z2D bijectively correspond to GLCD’s with cyclicity
c = 2D/d. Noticing that an LCD is invariant underd ∈ Z2D exactly if it is underd · l where(l, 2D/d) = 1, we have

rzc
D

= γ(2D,c), 2D
(2D,c)

and by BURNSIDE’s lemma on counting orbits of a finite group action we get the following combinatorial expression
for σD.

Theorem 3.5 With (3.2) one has

σD =
1

2D

∑
d·c=2D

ϕ(c) γd,c . (3.3)

This formula is probably originally due to JEAN BÉTRÉMA [Sl].

3.5 Symmetric chord diagrams

A variation of the enumeration problem is to count chord diagrams up to mirror images (or equivalently, up to change
of orientation of the solid line). Let

σ̂D := # { CD’s of degreeD }
/

symmetry

and
σsym
D := # { symm. CD’s s of degreeD } .

Then clearly,

σ̂D =
σD + σ

sym
D

2
. (3.4)

σ̂D can also be computed using Burnside’s lemma. In view of (3.4) it is more convenient to giveσ̂D in terms ofσsym
D ,

since the resulting formula forσsym
D turns out to be surprisingly simple.

Theorem 3.6 For D > 0 we have

σsym
D =

bD2c∑
i=0

(D − 1)2i
i!

(D − 2i) .

The resulting formula for̂σD is originally due to V. Liskovets [Li]. See [S,§4] for discussion of symmetric LCD’s.

Proof. We are looking for the orbits of the dihedral group4

D2D := 〈ωD, zD〉 ⊂ S2D ,

whereωD(i) := 2D + 1− i, i ≤ i ≤ 2D. We have

#D2D =
{

4D D > 1
2 D = 1

ForD > 1 we have by Burnside’s lemma

σ̂D =
1

4D

2D−1∑
i=0

rzi
D

+ rωD ·zi
D
.

This is however also true forD = 1 (since we count both elements twice and divide by twice the group order).

Then

σsym
D = 2σ̂D − σD =

1
2D

2D−1∑
i=0

rωD ·zi
D

4This definition of the dihedral group is in fact orrect only forD > 1.
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Lemma 3.7 There is a bijection fromRωD·zi
D

to ΓD−i%2,2.

Using this lemma we get

σsym
D =

1
2
{
γD,2 + γD−1,2

}
from which the formula follows by an easy transformation. 2

Proof of lemma. The bijection fromΓD−i%2,2 toRωD·zi
D

can be described as follows. Note thatωD · ziD acts as a
transposition on{1, . . . , i} and{i+ 1, . . . , 2D}.
Define a mapmi : {1, . . . , D − i%2} → P({1, . . . , 2D}) by

mi(j) :=

{
{j, 1 + i− j} j ≤ ⌊ i2⌋
{⌊ i+1

2

⌋
+ j, 1 + 2D +

⌊
i
2

⌋− j} D − i%2 ≥ j > ⌊ i2⌋
}
.

For a self-loop at basepointj make a chord between the two points inmi(j). For a chord between basepointsj1
andj2 connect the four basepoints ofmi({j1, j2}) in two pairs by connectingmin(mi(j1)) with min(mi(j2)) for a
chord labeled by1 and tomax(mi(j2)) if the label is2. Finally, if i is odd, connect basepoints

⌊
i+1
2

⌋
and

⌊
i+1
2

⌋
+D.

One can check that this procedure indeed describes a bijection. 2

3.6 Degenerate CD’s and LCD’s

Definition 3.8 Let a chord diagram ( or linearized chord diagram ) bedegenerate, if it has anisolatedchord, i. e.
one not crossed by any other, e. g. like in the following diagrams

or

The count ofFI relations is the same as the count of degenerate CD’s or LCD’s. Let

ωD := # { degenerate CD’s of degD } , ψD :=# { degenerate LCD’s of degD }
andω̄D andψ̄D the corresponding counts of non-degenerate CD’s and LCD’s.

For the explanation of our approach it will be helpful to introduce the following appealing notions.

Definition 3.9 We will say that a chordA of an LCD (or GLCD)enclosesanother chord (or a self-loop)B (or B is
enclosedbyA, orB is insideofA), if the endpoints ofB are between the endpoints ofA.

A

B

Conversely, we will say thatB is appearingoutsideof A if A does not encloseB (which doesnot mean thatB
enclosesA !). A chord (with a certain property) will be calledminimal (with this property) if it does not enclose
another chord (with the same property). In the same way it will be calledmaximalif there is no other chord enclosing
it.

Another definition we will need later is the following one.

Definition 3.10 The lengthof a chordA in an LCD is the by1 augumented number of basepoints of other chords
between the two basepoints ofA. The length of a chord in a chord diagram will be the minimum of its lengths counted
on both circle segments between its endpoints. E.g., the chord diagram in definition 3.8 has 4 chords of length 2 and
one of length 5.

We will start by counting degenerate LCD’s of degreeD. Applying the inclusion-exclusion principle [Ai,§2.4] and
grouping by the number of minimal isolated chords on LCD’s we get a recursive formula forψD.

ψD =
D∑
i=1

(−1)i−1
∑

(j1, . . . , ji, k)

jl, k ≥ 0
P
jl + k = D − i

λk,i+1

i∏
l=1

(λjl − ψjl) (3.5)
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andψ0 = 0. Hereλk,i’s are the numbers of string link diagrams, introduced in lemma 3.2,i is the number of choices
of minimal isolated chords,j1, . . . , ji are the degrees of the LCD’s enclosed by thei chords, andk is the degree of
the remaining string link diagram.

Using the characteristic seriesPψ̄ andPλ defined by

Pψ̄(x) :=
∞∑
i=0

ψ̄i x
i

and

Pλ(x, y) :=
∞∑
i,l=0

xiyl λi,l+1 ,

(3.5) can be rewritten more nicely as
Pψ̄(x) = Pλ(x,−xPψ̄(x)) .

For determiningωD we have to work a little harder. We will calculate the numberγ̃d,c of GLCD’s of degreed and
cyclicity c, which produce5 degenerate chord diagrams.

In the casec = 1 we have

γ̃d,1 :=
{
ψd/2 if 2|d

0 else

}
.

So, from now on letc ≥ 2. We will distinguish 2 cases.

Case 1. All isolated chords in the CD come from a self-loop in the GLCD.

In this case we must havec = 2 and exactly one . If we cut the chord diagram just before the chord coming from
the self-loop, we get (applyingΦ−1

D,2 of theorem 3.4) a GLCD which looks like

A
,

whereA is a non-degenerate LCD6. We see that such a GLCD is of odd degree. All other GLCD’s producing the
same GLCD are generated by the action ofZd (described in§3.3) from our special one above. They can be described
as follows: Put between the basepoints of a non-degenerate LCD aand colour the chords by1 if they enclose
the self-loop and by0 otherwise, e. g.

1
.

So for oddd there ared · ψ̄(d−1)/2 such GLCD’s.

Case 2. There is an isolated chord in the chord diagram coming from a chord in the GLCD.

Let ηc,d be the number of such GLCD’s. Take a minimal chordC in the GLCD producing an isolated chord. Then it
must be coloured by0 or c− 1 (else itsc copies would mutually intersect in the chord diagram). If it has label0 then
it only encloses0-labeled chords, which have to build up a non-degenerate LCD.

0

If it is labeledc− 1, we can use theZd action to transform it into a0-labeled chord. This way we see that outside of
a c − 1-labeled chord there are no self-loops and the chords have a unique labelling:c − 1 if they encloseC, and0
otherwise. Furthermore, by forgetting the labels they build up a non-degenerate LCD.

c − 1

5From now on we will always mean this in the sense described in the proof of theorem 3.4.
6From now on a gray filled part in a diagram stands for anarbitrary LCD and a shaded part for anon-degenerateLCD.
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We will count GLCD’s of both types by the inclusion-exclusion principle over minimal chords producing isolated
chords, that is, we have to count a GLCD with≥ k such chords, so that each GLCD with exactlyn chords is counted(n
k

)
times.

There are two cases.

Case 2.1. All k chosen minimal chords are labeled by0. Let ξkc,d be the resulting number. We can calculate it by
contracting the chords and taking into account the LCD’s they enclose. So we have

ξkc,d =
∑

(e1,...,ek)≥0

k∏
j=1

ψ̄ej · λcd−2k−2
P
ej ,k+1

=
[(
Pψ̄(x2)

)k
Pλc

∗,k+1
(x)
]
d−2k

for 0 ≤ 2k ≤ d ,

where

λce,d :=
(
e+ d− 1

e

)
· γe,c

is the number of generalized string link diagrams ofd strands, cyclicityc and degreee (with the obvious definition
and counted by the same idea as in lemma 3.2) andPλc

∗,k
(x) is the characteristic series inx of λcd,k over the degree7

d

Pλc
∗,k

(x) :=
∞∑
d=0

xdλcd,k .

Case 2.2. There arek − 1 chords with colour0 and one chord with colourc − 1. Let ξ̄kc,d be this number. Such
a GLCD we can describe by the GLCD outside of thec − 1-coloured chord (whose degree we will calle) with a
position marked between its basepoints (where thec− 1-coloured chord and what it encloses is attached) and by the
GLCD enclosed by the chord, wherek− 1 chords of colour0 remain, and which has to be counted as in case 2.1. So

ξ̄kc,d =
∑
e≥0

(2e+ 1) ψ̄e · ξk−1
c,d−(2e+2)

=
[
∂

∂x

(
x · Pψ̄(x2)

) · Pξk−1
c,∗

(x)
]
d−2

.

Let

ζkc,d := ξkc,d + ξ̄kc,d . (3.6)

Now by the inclusion-exclusion principle we get

ηc,d =
bd/2c∑
k=1

(−1)k−1
ζkc,d (3.7)

Putting it all together, we find that

γ̃d,2 = η2,d +
{
d ψ̄(d−1)/2 if 2 6 |d

0 else

}
γ̃d,c = ηc,d for c > 2 .

Having obtained̃γd,c, we can now apply Burnside’s lemma [HC, lemma 14.3 on p. 1058] and get

ωD =
1

2D

∑
d·c=2D

ϕ(c) γ̃d,c . (3.8)

7By P with a subscript containing a ‘∗’ we will always denote the characteristic series of the expression in the subscript over the variable
replacing the ‘∗’.
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3.7 Chord diagrams with chords of length 1

Letω1
D be this number8. Determining it is nothing but a slight modification of what we did above.

Following the same strategy, first we computeψ̄1
D.

We look at an LCD whose closure produces a chord diagram with an isolated minimal chord of length 1. Such an
LCD either has such a chord or it has a maximal chord, which is isolated9. Once again we apply the inclusion-
exclusion principle. For a fixed numberk of chords we have again as in subsection 3.6 two cases.

Case 1. All k chosen chords are minimal. By removing them we are left with a string link count.

Case 2. There arek − 1 minimal chords and one maximal chord. By removing the maximal chord we get back to
case 1.

So we get

ψ̄1
D =

D∑
k=0

(−1)k(λD−k,k+1 + λD−k,k) . (3.9)

ForD = 1 the formula givesψ1
0 = −1, since in

the chord is both of length 1 and maximal and is counted twice. So setψ1
1 := 0.

For the computation of̃γ1
d,c for c ≥ 2 we make the same case distinction as above.

Case 1. There is an isolated chord on the chord diagram coming from a self-loop in the GLCD. This is possible in
only one case –c = 2, d = 1 and the GLCD is(

, 2
)
.

Case 2. All isolated chords in the chord diagram come from chords in the GLCD.

This enumeration process is as in subsection 3.6, but here we have no enclosed or enclosing LCD’s of minimal or
maximal chords. The GLCD’s look like

0
and

c− 1
.

We obtain

ξk,1c,d = λcd−2k,k+1 for 0 ≤ 2k ≤ d
ξ̄k,1c,d = ξk−1,1

c,d−2 = λcd−2k,k

and

γ̃1
d,1 =

{
ψ̄1
d/2 if 2|d
0 else

}

γ̃1
d,2 = η1

2,d +
{

1 if d = 1
0 else

}
γ̃1
d,c = η1

c,d for c > 2

with the analogous formulas as (3.6) and (3.7) forζk,1c,d andη1
c,d. The formula forω1

D is then the same as (3.8).

Remark 3.1 The sequenceω1
D (and probably alsoσD ) was first calculated forD ≤ 9 without a formula by direct

enumeration by D. BAR-NATAN [BN2]. It appeared in the algorithm he uses to compute the dimension of the space
of weight systems (see therein the table in section 6.1, 2nd last row).

8We will henceforth denote the equivalents of the symbols in subsection 3.6 by an additional superscript.
9i.e., not enclosed byanychord, not only by non-isolated chords!
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3.8 Chord diagrams with isolated chords only

We will call such chord diagrams alsofully-degenerateand will denote their number byω2
D.

This enumeration problem and the formula for it are classical. However, I include it here, because we will just see
how easily it can be reproduced using our approach.

Let’s start once again with the linear case.

It is a classical combinatorial fact, that the number of LCD’s of degreeD with isolated chords only is the Catalan
number

ψ2
D = CD :=

(2D)!
D! (D + 1)!

.

This number is the number of ways to parenthesizeD+1 factors in a non-associative algebra or the number of binary
planar trees with a basepoint andD + 1 leaves, as considered in [Lo2,§2.1]10.

To see this, group such LCD’s by maximal chords and prove for the generating (or characteristic) seriesPC

PC(x) =
1

1− xPC(x)
.

For calculating̃γ2
d,c for c ≥ 2 make the following case distinction.

Case 1. There is a self-loop in the GLCD. The argument is analogous to the one in subsection 3.6. We havec = 2
andd odd, and the count isd · ψ2

(d−1)/2.

Case 2. There is no self-loop in the GLCD.

This means thatd is even. By the same argument as in subsection 3.6 all chords must be labeled either by0 or by
c− 1. Furthermore, the GLCD has the following two properties

• a chord of colour0 encloses only chords of colour0.

• for each 2 chords of colourc− 1 one encloses the other, i. e. we never have something like this

c− 1 c− 1
.

Then distinguish once again 2 cases.

Case 2.1. All chords are coloured by0. There areψ2
d/2 such GLCD’s.

Case 2.2. There is a chord coloured byc− 1.

Then by the above properties there exists auniqueminimal chord coloured byc−1 and once given this the colouring
of the others is uniquely determined. So such GLCD’s correspond to LCD’s with a distinguished chord, and their
number isd2 · ψ2

d/2.

So

η2
c,d =

{ (
d
2 + 1

)
ψ2
d/2 if 2|d

0 else

}
.

Hence we get

γ̃2
d,1 =

{
ψ2
d/2 if 2|d
0 else

}

γ̃2
d,2 = η2

2,d +
{
dψ2

(d−1)/2 if 2 6 |d
0 else

}
γ̃2
d,c = η2

c,d for c > 2

10These are planar trees with a root vertex of valence 2, internal vertices of valence 3 and leaves of valence 1 modulo isotopies in the plane,
which preserve a distinguished order of the 2 edges adjacent to the root vertex.
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and

ω2
D =

1
2D

∑
d·c=2D

ϕ(c) γ̃2
d,c (3.10)

=
1

2D

{ ∑
c · d = D

c ≥ 2

ϕ(c) (d + 1)Cd + CD

}
+

{ 1
2
C(D−1)/2 if 2 6 |D

0 else

}
,

which is the classical formula for the number of planar trees withD+1 nodes [Sl]. (If you like, find a direct bijection
between the latter set and the set of fully degenerate chord diagrams.)

Remark 3.2 Using similar arguments it should also be possible to count the various kinds of Gauß diagrams (chord
diagrams with oriented chords) [Po]. There we have to orient each chord in the GLCD and we have no self-loops.

3.9 Some computations

With the previous formulas it is not hard to compute the beginning of the various integer sequences above11. The
first 10 values are given in the following table.

D 1 2 3 4 5 6 7 8 9 10

σD 1 2 5 18 105 902 9,749 127,072 1,915,951 32,743,182
σsym
D 1 2 5 16 53 206 817 3,620 16,361 80,218
σ̂D 1 2 5 17 79 554 5,283 65,346 966,156 16,411,700
ωD 1 1 3 11 70 607 6,577 85,198 1,276,563 21,695,178
ω1
D 1 1 3 11 69 602 6,531 84,737 1,271,143 21,623,667
ω2
D 1 1 2 3 6 14 34 95 280 854

(If you like, find the two mutually (but not self-) symmetric chord diagrams in degree 4. Which is the only degenerate
chord diagram of degree5 with no chord of length 1?)

3.10 Asymptotics

A first fact to mention is the (not very surprising) observation

Lemma 3.11

σD � (2D − 1)!!
2D

.

This is, the contribution toσD in (3.3) coming fromγ2D,1 = λD is the dominating one.

Proof. Using the bound

γd,c ≤
(
1 +
√
c
)d (d− 1)!! ,

following directly from (3.2), and that the functionn
√

1 +
√
n is monotonously decseasing forn > 0 we obtain

∑
c|2D
c ≥ 2

ϕ(c) γ2D/c,c ≤ (
1 +
√

2
)D (2D − 1)

(
2
⌊
D

2

⌋
− 1
)

!!

=

(
1 +
√

2√
2

)D (√
2
D

)D%2

(2D − 1)
D!⌊
D
2

⌋
!
.

11A MATHEMATICA TM package doing this is available on my WWW page.
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Therefore ∑
c|2D, c≥2

ϕ(c) γ2D/c,c

γ2D,1
≤
(
2 +
√

2
)D (2D − 1)(2D

D

)⌊D
2

⌋
!

−−−−−→
D →∞ 0 2

Something more interesting happens in the caseω1
D, the number of chord diagrams with chords of length 1. Looking

at (3.9) we see that we can write the ratio betweenλD and thekth term in the sum on the r.h.s.

λD−k,k+1 + λD−k,k
λD

=
1
k!
P (D) ,

whereP (D) is a polynomial fraction of degree0 in D bounded above by1 and converging to 1 forD → ∞. This
means that

ψ̄1
D

λD
−−−−−→
D →∞

1
e
,

wheree is the Euler number2.71828 . . . , and together with lemma 3.11 we get the same result for chord diagrams:

ω̄1
D

λD
−−−−−→
D →∞

1
e
.

Lemma 3.12 Asymptotically
1
e

of all chord diagrams and LCD’s have no isolated chord (or isolated chord of length

1).

In fact, it is an easy exercise to convince oneself that there are “very few” degenerate chord diagrams with no chord
of length 1, that is

ωD − ω1
D

σD
−−−−−→
D →∞ 0 .

Unfortunately, computing more carefully the difference

1
e
− ψ̄1

D

λD

we see that the dominating term is
1

2(2D − 1)
,

so we cannot hope for a fast convergence.

Problem. At present I don’t know the asymptotics ofσsym
D .

However, although unimportant for our context, one can obtain the following alternative expression for it.

σ
sym
D =

dD−1

dxD−1

(
(1 + x) ex+x

2
)
(0) .

To see this, look at the nomalized generating series ofγ∗,2

P̃γ∗,2(x) :=
∞∑
k=0

γk,2
k!

xk

and prove that̃Pγ∗,2 is a solution of the differential equation

xf ′(x) = xf(x) + 2x2f(x), f(0) = 1 .

4 Connected and tree-connected chord diagrams

Using the methods of section 3, in this section we discuss the enumeration of two more classes of chord diagrams.


