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Abstract 

High-temperature-deposited rotated graphene (Gr) on Ni(111) has been investigated by in-situ 

scanning tunneling microscopy and spectroscopy at room temperature. The rotated Gr exhibits 

weak bonding to the Ni(111) surface, which facilitates formation of Ni2C or a second Gr layer 

underneath via bulk carbon segregation. Areas of rotated Gr present a bias voltage dependence of 

the apparent amplitude of Gr superlattice corrugations. We find that Ni2C underneath rotated Gr 

introduces additional electronic features that vary with the gap resistance, which could be related 

to an orientation-dependent interaction between Ni2C and Gr. Furthermore, the exposure to 

oxygen has a significant influence on the local density of states of Gr/Ni2C, other than on Ni(111) 

covered with nonrotated Gr.  
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1. Introduction 

Low-dimensional materials exhibit unique properties influenced by quantum size effects. One 

prominent example is the 2D carbon crystal with honey-comb lattice, graphene (Gr).1 In the past 

decade, Gr has attracted great attention because of its extraordinary properties such as high 

mechanical strength,2 excellent heat and electrical conductance,3  and very high transmittance.4 

Gr has extremely small spin-orbit interaction and almost zero nuclear magnetic moment, 

facilitating room-temperature spin current injection and detection, and therefore, it is an excellent 

candidate for spin qubits in quantum computing.5 Gr-based spintronics has a great potential in 

spintronic device applications and is becoming more and more attractive.6,7 Spin filtering at the 

interface between graphite and close-packed fcc Ni(111) or hcp Co(0001) has been predicted by 

Karpan et al.7,8 The spin-valve effect for a ferromagnetic (FM) transition metal in contact with Gr 

has also been reported.9–11 Moreover, besides the 2D sheet, Gr can be wrapped up into 0D 

buckyballs, rolled into 2D nanotubes, or stacked into 3D graphite.12 Each different form 

outstretches diverse properties and thus applications. 

There are several ways for the preparation of Gr. Besides the exfoliation technique, chemical 

vapor deposition (CVD) is an important method, in which a substrate is necessary. When Gr is 

epitaxially grown on a crystalline substrate, there is a registry between the two. Depending on the 

substrate, the properties of Gr are modified compared to ideal free-standing Gr. For transition 

metal substrates, a strong hybridization between the Gr π band and the metal d bands can 

introduce charge transfer from the substrate and modify the electronic properties of Gr greatly.13–

15 Under this circumstance, the Fermi energy may not be necessarily at the Dirac point and can be 
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tuned by intercalation of other atoms16–18 or small molecules.19,20 Moreover, different adsorption 

geometries for Gr on the metal substrate can coexist.21,22 Nickel, due to its catalytic property in 

CVD, has been utilized as substrate for the growth of Gr in recent years. Because of the almost 

perfect match of Ni(111) and graphite lattice parameters, Gr/Ni(111) is attracting more and more 

attention.23 Although compared to other substrates,24–29 Ni(111) matches Gr best, the preparation 

conditions, such as temperature,30,31 carbon concentration at the growth front,31 purity of the 

substrate,31 or cooling rate,32,33 can influence the quality of the Gr sheets on the nickel substrate, 

such that the structure formed on the sample surface could be far more complicated than 

expected.31 Besides the (1×1)-restricted Gr, rotations, extra carbon structures underneath, or 

surface defects may also exist and influence the Gr interaction with the substrate. These 

unexpected structures exhibit unique structural and electronic properties which may be interesting 

for Gr-based electronic and spintronic applications.  

To understand the growth mechanism of Gr on bulk Ni(111) at high temperatures (≥ 900 K), 

high-resolution scanning tunneling microscopy (STM) provides a direct way of in-situ 

characterization of the ultrahigh-vacuum-grown Gr in real space and facilitates understanding of 

Gr electronic properties near the Fermi energy. STM studies of Gr deposition on Ni(111) have 

been reported by several researchers. One debating theme among these studies is the formation of 

nickel carbide (Ni2C). Lahiri et al. suggest that Gr grows via an in-plane transformation of 

Ni2C.34 By fast-Fourier-transform (FFT) analysis, Jacobson et al. proposed that areas similar to 

those observed in Ref. [34] should be Gr-covered Ni2C rather than exposed Ni2C as identified in 

Ref [34].35  Jacobson et al. found that Ni2C only exists underneath rotated-Gr areas and suggest 
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the earlier formed Ni2C causes the grain rotation of the later-on-formed Gr.35 Very soon 

afterwards, an in-situ STM observation of Gr growth on Ni(111) reported by Patera et al. 

proposed an opposite mechanism, namely that in Gr/Ni2C areas, the formation of Ni2C via bulk 

carbon segregation happens after the formation of rotated Gr on Ni(111).31 It means that the later-

on-formed Ni2C does not influence the grain orientation of the topmost Gr layer. Nevertheless, in 

both, Refs. [35] and [31], Gr/Ni2C areas only exist when the top Gr exhibits some degrees of 

rotation with respect to the Ni(111) substrate. No further carbon structure could be found 

underneath (1×1) epitaxial Gr. On Ni(111), (1×1) epitaxial Gr can be tightly chemisorbed to the 

metal substrate, while some degrees of rotation can weaken the bonding between Gr and the 

substrate. Rotated Gr exhibits diverse structural and electronic properties when grown on a bulk 

Ni(111) single crystal, which is the main focus of this paper. Here, we present a detailed STM 

investigation into Gr on Ni(111) grown by CVD at high temperature. We find that Gr/Ni2C can 

be present also rotated by different angles than those reported before. We observe that the 

apparent corrugation of rotated Gr depends not only on the rotation angle, but also on the bias 

voltage. The electronic properties of Gr-covered Ni2C are furthermore influenced by the 

tunneling gap and the Gr orientation. Finally we address the oxygen-induced tuning of the 

electronic properties of rotated graphene on Ni2C. 

2. Experimental details 

The experiment was performed in an ultrahigh vacuum (UHV) chamber with a base pressure of 

1×10-10 mbar. A disk-shaped Ni(111) single crystal with a diameter of 10 mm was used as 

substrate. To achieve well-defined surfaces, the Ni(111) substrate was cleaned by cycles of Ar+ 
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sputtering with ion energy of 1 keV at 700~750 K, followed by subsequent annealing at 950 K 

for 20~30 minutes. The cleanliness and smoothness of the crystal surface was examined by 

Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and STM. The Gr 

growth was performed in UHV by CVD, employing propylene with 99.95% purity as the carbon 

source. We studied two different preparation recipes:36 

Recipe (1): Dosing propylene at 900 K, 1×10-5 mbar for 5 min [3000 L (Langmuir, 1 L=10-6 

mbar·s)], followed by 20 min annealing at 920 K;  

Recipe (2): Dosing propylene at 900 K, 2.5×10-6 mbar for 10−20 min (1500−3000 L), no 

subsequent annealing.  

In both recipes, the sample is cooled naturally in UHV [roughly 60 min from 920 K to 300 K]. A 

room-temperature STM (Omicron 1) was used for the STM measurements. A lock-in amplifier 

(modulation voltage and frequency: 20 mV, 2.38 kHz) facilitates extracting the dI/dV signal and 

scanning tunneling spectroscopy (STS) is obtained simultaneously with the constant-current 

topography during the scanning process.  

3. Results and discussion 

3.1 Structures formed on the Ni(111) surface 
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Figure 1 Constant-current STM images for the sample prepared by recipe (1). (a), (b) Mostly 

observed (1×1) Gr on the sample surface. The inset of (a) is a LEED pattern obtained from the 

same sample at 149 eV. (c), (d) Occasionally observed rotated Gr. Feedback parameters: (a) 

+1.00 V, 2.40 nA; (b) +0.81 V, 2.13 nA; (c) +1.00 V, 2.61 nA; (d) +0.99 V, 2.35 nA. 

We will first give a short overview of the structures formed on the Ni(111) surface after growth 

according to the two recipes. Figure 1 shows STM topography images of Gr prepared by recipe 

(1). A similar morphology as shown in Figure 1a and b is also observed in most of the other areas 
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on the sample surface. These areas only exhibit smooth and flat (1×1) Gr on Ni(111), consistent 

with the LEED pattern shown in the inset of Figure 1a. However, there are still some small 

exceptional areas that exhibit a different morphology, as shown in Figure 1c and d. In panel c, 

rotated Gr on Ni(111) is observed, as the hexagonal superlattice on part of the terraces illustrates. 

In contrast, panel d shows Gr on different structures underneath. There are mainly two types of 

structures underneath the Gr layer, i.e., Ni(111) and Ni2C. Similar topographies have also been 

observed before, i.e., the Gr/Ni2C area exhibits stripe features and the Gr/Ni(111) area exhibits 

superlattices.31,35 The carbon concentration is an important factor for the Gr growth at high 

temperatures. If the concentration is not high enough to form another Gr layer, carbides will grow 

instead,23,31,37 as shown in Figure 1d.  

The LEED pattern of Gr prepared by recipe (2) does not differ from that shown in Figure 1a, 

indicating a dominating (1×1) Gr surface. However, on this sample surface, some unique areas 

have been observed, as shown in Figure 2. Compared with the ML Gr on Ni2C, the STM images 

in Figure 2 show not only a ML Gr on Ni2C/Ni(111), but also BL Gr on Ni(111). This is seen 

from the areas marked with “B”. Here the 2D FFT in Figure 2e demonstrates two sets of 

hexagonal patterns, as the red and blue circles illustrate. The inset of Figure 2d is the 2D-FFT 

filtered [using the two sets of hexagonal superlattices marked by red and blue circles in Figure 

2e] image for area “B”. There are two superlattices with six-fold symmetry and different 

periodicities, as the blue and red hexagons show. The blue and red hexagons correspond to two 

sets of patterns marked by the same colors in Figure 2e. The real-space periodicities are 0.75 nm 

and 3.55 nm, respectively. These two superlattices are due to the non-Bernal stacking38,39 of two 
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Gr layers with rotation angles of 18.9° and 4°, respectively, with respect to the [1-10] direction of 

the Ni(111) substrate. The calculated angles are consistent with the rotation angles for the two 

sets of patterns in Figure 2e, that indicate a misorientation angle of 22.9° between the two Gr 

sheets.  
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Figure 2 (a), (b), (d) Constant-current STM images of a sample prepared by recipe (2). Feedback 

parameters: +1.1 V, 0.49 nA. Part of (b) shows the zoomed-in image of the area marked by the 

dashed rectangle in (a). (c) Line profile along the black line in (b). (d) illustrates the same area as 

(b) but with enhanced image contrast on one terrace. Areas marked with “B” and “C” represent 

BL Gr/Ni(111) and ML Gr/Ni2C/Ni(111), respectively. The inset is the 2D FFT-filtered [filtered 

by the selected hexagonal spots marked by red and blue circles in (e)] area for the BL Gr/Ni(111) 

marked by the black square in (d). The red and blue hexagons correspond to two sets of patterns 

marked by the same colors in (e). (e) 2D FFT of area “B” in (d). The inset of (e) is the 2D FFT of 

the clean Ni(111) surface imaged with atomic resolution. The dashed black line demonstrates the 

[1-10] direction of the Ni(111) substrate. Red and blue circles mark the two superlattices caused 

by the misorientation of the two non-Bernal-stacked Gr layers. 
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The main difference between preparation according to recipes (1) and (2) is the formation of BL 

Gr in the latter.  The presence of a minority amount of rotated Gr, both on Ni(111) as well as on 

Ni2C/Ni(111), is confirmed for both preparation recipes. 

3.2 Dependence of apparent corrugation of rotated Gr on orientation angle and bias voltage 

 

Figure 3 (a) Constant-current STM image of a ML of rotated Gr/Ni(111) (+0.2 V, 2.6 nA). Areas 

marked by “C” illustrate Gr on Ni2C. (b) Line scans along lines marked with the same numbers in 

(a). 

In the following, since rotated Gr exhibits diverse structures, we will discuss the structure-related 

electronic properties of rotated Gr. The rotated Gr monolayer (ML) has a relatively weak bonding 

to the supporting Ni(111) surface compared to epitaxial Gr/Ni(111).40,41 A Gr-covered surface 

with superlattices of different periodicities, prepared by recipe (1), is shown in Figure 3a. The 

origin of the observed superlattices has been discussed by several researchers42–47 and the most 

widely accepted explanation is the Moiré assumption.48,49 The Moiré pattern originates from the 
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misalignment of two periodic layers,50,51 which, by electronic interference, leads to a 

superstructure of the local density of states (LDOS) on the surface and thus of the tunneling 

current. In Gr on the Ni(111) surface, Moiré patterns have been already observed by several 

researchers23,31,33–35,38,52. The relation between the Moiré superlattice periodicity D, the atomic 

spacing d of graphite, and the Gr misorientation angle θ is expressed by D = d/[2 sin(θ/2)].48 

In Figure 3a, there are mainly four types of Moiré patterns. Line scans 1, 2, 3, 4 illustrate 

periodicities of 1.45 nm, 2.6 nm, 3.04 nm, 3.54 nm, which correspond to rotation angles of 9.8°, 

5.4°, 4.6°, 4°, respectively. Between two adjacent grains of dissimilar Moiré periodicities, no 

distinct boundaries can be found, which differs from the STM observation of beads-like 

boundaries53–60 between AB-stacked Moiré regions and AA-stacked non-Moiré regions on 

graphite. The beads-like boundary is due to chiral edge states of twisted bilayer (BL) graphite 

sheets in AB-stacked regions,60 which hence should not be the present here in Figure 3a. Once Gr 

starts to nucleate on Ni(111), the subsequent growth will follow the initial stacking sequence. In 

the STM image, the multiperiodic Moiré patterns are probably due to different rotation angles for 

different Gr nucleation centers at the very beginning of the growth, such that after small 

fragments of Gr get bonded to each other and form a whole sheet, the as-grown patterns are 

formed. Accordingly, due to the misorientation of the adjacent Gr patches, at the boundary 

positions, defects or dislocations are likely to exist.61–63  

The amplitudes of the observed Moiré patterns show significant differences depending on their 

periodicity. Smaller periodicity, as profile 1 shows, corresponds to larger rotation angle and 

demonstrates a much smaller amplitude of 40 pm compared to that of 114 pm for profile 4. This 
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rotation-angle-dependent Moiré pattern corrugation indicates a periodic electronic-interaction 

tuning by modulating the Gr orientation with respect to the supporting substrate and might be of 

interest for applications in molecule or cluster self-assembly. 

The areas marked by “C” are similar to those reported in Ref. [34], which have been interpreted 

as pure Ni2C that could be further converted into Gr. However, this interpretation proves to be a 

misidentification of Gr/Ni2C in the supplementary material of Ref. [35]. The morphology of 

Gr/Ni2C does not exhibit any Moiré pattern with hexagonal symmetry. It is formed from a 

honeycomb lattice on a quasi-square lattice.35 Accordingly, here the areas marked with “C” are 

supposed to be Gr-covered Ni2C, which originates from bulk carbon segregation.  

 

Figure 4 (a) Constant-current STM image for a ML Gr/Ni(111) (+1.0 V, 0.5 nA). (b) Moiré 

corrugation of the rotated Gr shown in (a) at different bias voltages. 
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The Moiré corrugation does not only vary with the Gr rotation angle as discussed above, it can 

also be tuned by the bias voltage applied between tip and sample. Figure 4a shows an STM 

topography image of a ML of rotated Gr/Ni(111) with a Moiré periodicity of about 3.53 nm, 

prepared by recipe (1). By varying the bias voltage from –1.5 V to +1.5 V, the amplitude of the 

apparent Moiré corrugation decreases from 125 pm to 48 pm. A similar phenomenon has been 

reported in Gr/Ru(0001).64,65 The electronic effect plays an important role for compensating the 

surface Moiré corrugation by 0.16 nm66,67 for Gr/Ru(0001). Atomically-resolved STM imaging 

and DFT calculations for the same system revealed that STM images at low bias voltages mainly 

reflect the geometrical corrugation while at higher voltages, an electronic resonance state has 

significant influence on the periodic distribution of the LDOS and local work function of Gr.68 

An angle-resolved photoemission spectroscopy (ARPES) study on epitaxial Gr on Ni(111) 

revealed that the Dirac cone is shifted downward by 2.84 eV to higher binding energy with 

respect to a freestanding Gr sheet because of hybridization of the Gr π orbital with nickel 3d 

states.69 Although shifted, the Dirac cone remains intact and no gap opening is found at the Dirac 

energy.69 A down shift of the Dirac cone of about 2.0 eV compared to a quasi-freestanding Gr 

layer was also discovered elsewhere.17 This shift indicates a strong n-type doping of Gr by 

dynamical hybridization of Gr on the Ni(111) surface,69 which influences the charge transfer 

from nickel to Gr. As to the rotated Gr on Ni(111), a hybridization of the Gr π band and the 

nickel 3d band could also occur and thus modify the electronic properties of Gr.40 The dynamic 

hybridization between nickel 3d and Gr exhibits an energy dependence which might lead to 

different doping levels of Gr at different energies69 and has an impact on the charge transfer from 

metal to Gr.70 Accordingly, in Figure 4b, the observed reduction of the Moiré corrugation at 
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higher bias voltages could be due to an electronic effect which might be caused by the varying 

charge transfer from the metal substrate. 

 

Figure 5 (a), (b), (c) Constant-current STM images for rotated ML Gr at +1V, +128 mV, +76 mV, 

respectively. Feedback current: 2.35 nA. This area is from a smaller part of the area shown in 

Figure 1d. (d) Line scans along lines in (a), (b), (c). (e) Histograms for (a), (b), (c). 
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STM does not only image the structures on the surface, but also screens the underlying structures 

that also contribute to the surface electron distribution.49 When Ni2C is formed between rotated 

Gr and the Ni(111) surface, the Gr Moiré pattern disappears. The upper part of the STM images 

in Figure 5 shows Gr-covered Ni2C, while the lower part consists of rotated Gr/Ni(111) with a 

Moiré periodicity of about 1.22 nm. The sample was prepared according to recipe (1). At 

different bias voltages, the two areas demonstrate distinct corrugation behaviors and in general, 

the Gr in contact with Ni2C exhibits a larger corrugation with a periodicity of 1.95 nm, which is 

close to the value reported for Gr/Ni2C.35 For a low bias voltage of +76 mV, both upper and 

lower areas show high corrugations of 175 pm and 90 pm, respectively, while at +1 V, the 

corrugation is reduced by 78 pm and 37 pm, see Figure 5d. Moreover, at +128 mV Gr/Ni(111) 

turns out to have a similar corrugation as at +1 V, but Gr/Ni2C still maintains a similar amplitude 

compared to the lower bias voltage of +76 mV. Histograms for the two different regions in 

Figure 5e show that there is an apparent step height of about 415 pm between Gr/Ni(111) and 

Gr/Ni2C at the bias voltage of +1 V, while this step vanishes close to the Fermi energy. This 

phenomenon clearly shows that there is an electronic charge inhomogeneity between the two 

regions. In the areas with Ni2C underneath Gr, nickel d orbitals bind to carbon 2p orbitals, which 

could drastically modify the electronic environment of the Gr sheet and the corresponding doping. 

Compared to the quasi-freestanding topmost layer of a bilayer (BL) Gr or graphite, Gr/Ni2C 

might also possess some degree of “free-standing” property with less influence of the 3d metal, 

and the interacting force between Gr and Ni2C might not necessarily be as weak as van der Waals 

interaction between Gr layers. Compared to the decoupling of Gr via intercalation of metal16–18,71–
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86 or nonmetal19,20,87–90 clusters, the Ni2C-introduced decoupling of Gr from the contacting 

surface might be another topic of interest for future studies.  

3.3 Influence of the tunneling gap and the Gr orientation on the electronic properties of Gr-

covered Ni2C 

 

Figure 6 STS curves of Gr/Ni(111) (dashed line) and Gr/Ni2C/Ni(111) (solid line) taken from the 

respective areas in Figure 5. Feedback parameters: +0.5 V, 2.35 nA. 

When Ni2C is formed between the nickel surface and the rotated Gr layer, the LDOS of Gr is 

completely changed, as the STS curves in Figure 6 show. Below the Fermi energy, the occupied 

LDOS is reduced compared to that without Ni2C. At a bias voltage of about +0.2 V, the STS 

curve of Gr/Ni2C exhibits a small peak. Around this energy the density of unoccupied states is 

slightly higher than that in Gr/Ni(111). Since the carbon 2p orbitals in Ni2C bind to the nickel 3d 
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orbitals, the hybridization between nickel 3d and Gr π orbitals might be weakened, which could 

be one possible reason for the higher density of unoccupied states at energies near 0.2 eV and the 

lower density of occupied states of Gr/Ni2C. 
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Figure 7 (a), (b) Constant-current STM images of a rotated Gr ML. Feedback parameters: (a) 

+1.2 V, 0.49 nA; (b) +1.0 V, 2.2 nA. Areas marked with “A” and “C” represent Gr/Ni(111) and 

Gr/Ni2C/Ni(111), respectively. (c) 2D FFT of part of area A as marked by the dashed square in (a) 

and the corresponding 2D-FFT-filtered [filtered by the selected hexagonal spots marked by red 

circles in (c)] image (d). (e), (f) histograms for areas marked with blue and red rectangles in (a) 

and (b). 

The electronic environment of rotated Gr in direct contact with Ni(111) differs from that in 

contact with Ni2C, as the discussion about the bias-dependence in section 3.2 illustrates. In the 
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STM experiment, the tunneling gap also plays an important role in tuning the electronic 

properties of the surface. The STM images in Figure 7a and b are from almost the same area of a 

sample prepared according to recipe (1) at similar bias voltages, but the tunneling gap resistance 

is different [2449 MΩ for a and 455 MΩ for b]. Three terraces are exposed and on each terrace 

there are two different areas which are identified as Gr/Ni(111) (areas marked with “A”) and 

Gr/Ni2C (areas marked with “C”). The 2D FFT of area A is shown in Figure 7c and the 

corresponding filtered image exhibits a Moiré superlattice with a period of about 0.72 nm, which 

corresponds to a rotation angle of 19.7° of the Gr sheet. Histograms shown in Figure 7e and f 

illustrate that when there is a larger tunneling-gap resistance (2449 MΩ), area C appears to be 85 

pm higher than area A, while the apparent height difference vanishes when the tunneling-gap 

resistance is reduced to 455 MΩ. On the other hand, the tunneling-gap resistance has a much 

smaller influence on the apparent height difference between adjacent terraces with only 

Gr/Ni(111), which is close to the interlayer distance of the fcc Ni(111) single crystal. The 

disappearance of the height difference between areas A and C caused by the change in tunneling-

gap resistance further indicates that the interaction between Gr and Ni2C can be drastically tuned 

electrically by the tunneling electrodes. With a smaller gap resistance, the tunneling electrons 

mainly reflect the geometrical structure of the surface and Gr/Ni(111) and Gr/Ni2C/Ni(111) have 

the same height, while with a larger gap resistance the electronic structure is dominating, leading 

to a higher conductivity of the Gr/Ni2C/Ni(111) region. When comparing Figure 7b and Figure 5a, 

in contrast, where the tunneling-gap resistance is similar, in Figure 5a, a large height difference 

of 415 pm is measured between areas of Gr/Ni(111) and of Gr/Ni2C, while in Figure 7b there is 

no height difference. This can be explained when considering the different rotation angle of the 
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two Gr sheets. As already mentioned, the Moiré periodicity for Gr/Ni(111) in Figure 5a is 1.22 

nm, which corresponds to a rotation angle of 11.6°, while the rotation angle in Figure 7b is 19.7°. 

After the formation of a rotated single Gr layer, the subsequently formed Ni2C underneath31 

should not change the original orientation of the Gr. Therefore, with similar gap resistance, the 

reason for the difference between Figure 5a and Figure 7b has to be the different orientation 

angle of Gr with respect to the Ni(111) substrate.  

3.4 Tuning the electronic properties of rotated Gr on Ni2C by oxygen 
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Figure 8 (a), (b) Constant-current STM differential conductance maps for pristine Gr and Gr 

exposed to 1050 L oxygen, respectively. (c), (d) Simultaneously recorded topographies for (a), 

(b). The scanning area is from the same position as shown in Figure 2d. Feedback parameters: 

+1.0 V, 0.5 nA. Areas marked with “B” and “C” represent BL Gr/Ni(111) and ML 

Gr/Ni2C/Ni(111), respectively, consistent with Figure 2d. (e) Top and bottom are histograms for 

the areas marked by blue and green squares in (a) and (b). (f) Histograms for areas marked with 

black and pink rectangles in (c) and (d). Red lines in (a) and (b) illustrate terrace borders. Vertical 

dashed lines in (e) represent averaged values and in (f) maximum values for the respective areas. 

It has already been shown that a Gr-covered Ni(111) surface is protected from oxidation.91,92 If 

Ni2C is formed underneath rotated Gr, will the top Gr still be able to protect the material 

underneath from oxygen? The STM images shown in Figure 8 are from a similar area as those 

shown in Figure 2b and display the coexistence of BL Gr/Ni(111) (“B”) and ML Gr/Ni2C (“C”). 

In the bottom panel of Figure 8, (c) and (d) are topographies of the same area before and after 
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exposure to 1050 L oxygen at room temperature, respectively. In the top panel, (a) and (b) are the 

corresponding simultaneously recorded differential conductance maps. To analyze quantitatively, 

histograms in Figure 8e show the differential conductances before and after oxygen exposure for 

area “B” [BL Gr/Ni(111)] and area “C” [ML Gr/Ni2C/Ni(111)]. The differential conductance in 

area “B” is 0.07 nS higher than that in area “C” for the as-grown surface, while the contrast 

reverses after oxygen exposure when the differential conductance for Gr-covered Ni2C is 0.19 nS 

higher than before. The BL Gr/Ni(111) remains unaffected by the oxygen dosage, which is 

consistent to a previous study on the Gr passivation of the Ni(111) surface.91 The unchanged 

differential conductance in areas “B” implies similar tip conditions before and after oxygen 

exposure. Moreover, histograms for the corresponding topographies also demonstrate a relative 

height reduction of 46 pm between areas “B” and “C” by the oxygen influence, as seen in Figure 

8f. A slight shift of 10 pm between the two peaks marked with “B” in Figure 8f is due to the 

piezo drift between two separate scanning processes. 
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Figure 9 STS of pristine (solid line) and 160 L oxygen exposed (dashed line) Gr/Ni2C/Ni(111). 

Feedback parameters: +0.5 V, 1.8 nA.  

The STS curves for Gr/Ni2C (areas “C”) shown in Figure 9 indeed illustrate a distinguished 

electronic modification after a small amount of oxygen dosage. In the spectra here, a similar peak 

at +0.2 V as the one shown before in Figure 6 is reduced after dosing oxygen, indicating a 

decrease in the density of unoccupied states at that energy, whereas the valley at +0.5 V is higher 

than before. Considering also the less deep contrast level of the Gr/Ni2C regions in Figure 8b 

(bias voltage: +1.0 V), it seems that above the Fermi energy, there is a dI/dV contrast oscillation 

with energy before and after oxygen exposure, as seen in Figure 9. The STS curves also illustrate 

that oxygen mainly influences the unoccupied states but has little influence on the occupied states 

near the Fermi level. This electronic modification of Gr/Ni2C by oxygen suggests that due to the 

existence of Ni2C between Gr and the nickel substrate, the Gr passivation effect fails. One 
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possible scenario could be the intercalation of oxygen between Gr and Ni2C. Subsequent 

oxidation of Ni2C under the Gr layer could then change the electronic environment underneath 

the Gr layer. According to previous studies20,87,88,90,93,94 on oxygen intercalation between Gr and 

the metal surface, the intercalation normally occurs at temperatures higher than room temperature. 

Therefore, it seems that this scenario is not very likely here. But since the interaction between Gr 

and the Ni2C underneath is weak and driven only by van der Waals interaction,35  this possibility 

cannot be ruled out. Another scenario could be that due to the formation of Ni2C, some electronic 

defects are introduced in the topmost Gr layer, which locally modify the desorption energy 

barrier of the Gr surface and trap oxygen at these defect sites.92,95 Since Ni2C exhibits a periodic 

structure,31,35 if such Ni2C-introduced defects in the topmost Gr layer exist, the Gr layer will 

exhibit some periodic defects. These defects could act like a quantum dot array, which would be 

interesting for the application in Gr-based electronic devices. 

4. Conclusion 

Gr grown at 900 K on Ni(111) has been investigated by STM and STS. Mainly (1×1) epitaxial 

nonrotated Gr has been observed on the sample surface, but also a small fraction of rotated Gr is 

present. Due to the weakened bonding between rotated Gr and the Ni(111) surface,  further 

carbon-related structures are formed in between via bulk carbon segregation, namely Ni2C or a 

second layer of Gr. The Gr on Ni2C exhibits quite different electronic properties compared to 

Gr/Ni(111) and the segregated carbon atoms which form the Ni2C drastically modify the 

electronic environment of the Gr layer. The bias dependence of Moiré corrugations of Gr on both 

Ni2C and Ni(111) indicates a tuning of the doping level in Gr by the material contacting the Gr 
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from below. Gr/Ni2C exhibits rotation-angle-dependent electronic properties, reflecting an 

orientation-dependent interaction between Gr and Ni2C. Moreover, Gr on Ni2C proves not to 

protect the Ni2C underlayer from oxidation, which is probably due to Ni2C-introduced surface 

defects (either structurally or electronically). Such defects could act as quantum traps for 

adsorbed oxygen. 
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