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Preamble 

This cumulative thesis is the sum of my research work in which a novel machine learning 

library has been created and used for various biological prediction tasks. This thesis is based 

on the following four peer-reviewed journal publications:  

Demir-Kavuk, O., Bentzien, J., Muegge, I., Knapp, E.W., 

Predicting human volume of distribution and clearance of drugs using automated feature se-

lection 

J Comput Aided Mol Des., 25 (2011), Nr. 12, p.1121-1133, 

http://dx.doi.org/DOI:10.1007/s10822-011-9496-z 

 

Demir-Kavuk, O., Kamada, M., Akutsu, T., Knapp, E.W., 

Prediction using step-wise L1, L2 regularization and feature selection for small data sets with 

large number of features 

BMC Bioinformatics, 12 (2011), p. 412, http://dx.doi.org/DOI:10.1186/1471-2105-12-412 

 

Demir-Kavuk, O., Riedesel, H., and Knapp, E. W.,  

Exploring classification strategies with the CoEPrA 2006 contest 

Bioinformatics, 26 (2010), Nr. 5, p. 603-609, 

http://dx.doi.org/DOI:10.1093/bioinformatics/btq021 

 

Demir-Kavuk, O., Krull, F., Chae, M. H., and Knapp, E. W.,  

Predicting Protein Complex Geometries with Linear Scoring Functions 

Genome Informatics, 24 (2010), p. 21-30 

 

During my PhD research, additionally the following paper has been published, which makes 

use of the DemPred library for empirical prediction of Pka values:  

Gamiz-Hernandez, A. P., Kieseritzky, G., Galstyan, A. S., Demir-Kavuk, O., and Knapp, E. 

W., Understanding properties of cofactors in proteins:redox potentials of synthetic cytoch-

romes b 

Chemphyschem., 11 (2010), Nr. 6, p. 1196-206 
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1 Introduction 

Biological systems are very complex. It is therefore often not possible to predict a certain mo-

lecular property such as binding affinity just by examining the single relevant molecular sys-

tem. Predicting properties of such a system in a wet lab on the other hand can be a very time 

consuming and laborious task. Hence, in order to save time and money machine learning me-

thods can help to predict these molecular properties in silico. Nowadays, empirical methods 

of machine learning are widely used in life sciences and related sciences such as chemistry, 

biochemistry, pharmacy, and medicinal diagnostics. The advantages are many fold as compu-

tational methods are fast, cheap and therefore applicable as a large throughput method. At the 

moment of writing, most of the computational predictors available are not as accurate as di-

rect measurements in a wet lab. Nevertheless, even if computational predictions are not of 

perfect quality they still can be very helpful. If for example an activity prediction is biased in 

some way it still can help to discriminate molecules with large from those with small activi-

ties. For such problems the computational predictor can serve as a pre-filter to reduce the 

number of candidate compounds to be tested in a wet lab. Machine learning methods may also 

be used as a reverse engineering approach. In order to do so, an initial model for a certain 

target property in focus is automatically generated. Most machine learning methods will au-

tomatically focus only on relevant aspects of the problem. Hence, examining the structure of 

the resulting computational model may give a detailed insight into the underlying biochemical 

process. With this advanced knowledge molecule structures may directly be modified in order 

to amplify or weaken a certain molecular property.  

Developing computational prediction models from scratch requires good programming skills 

and may be a time consuming task. Hence, there is a demand for powerful yet easy to use 

libraries, which users can employ and extend to build their own models given a particular 

classification/regression task. During my PhD I developed such a library called DemPRED. 

DemPRED is a platform independent JAVA library which includes many routines which can 

be freely combined in order to generate prediction models.  

I used the DemPRED library for various classification and regression tasks such as predicting 

major histocompatibility complex II (MHC II) epitopes, prediction of human volume of dis-

tribution and clearance as well as detecting protein interface regions. The predictive power of 
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all generated models was as good as or even better than other state of the art classification and 

regression techniques.  

The following last part of the introduction briefly describes the core techniques of DemPRED. 

These techniques were used to build all of the above mentioned prediction models and are 

common for many other prediction tasks.   

1.1 Datasets  

In order to build computational models for objects (molecules) with a certain target property, 

training datasets of molecules with experimentally measured target values are needed. For a 

two class classification problem, e.g. discriminate between molecules that are binders or non-

binders, the target values are set to +1 or -1, respectively. Ideally, the number of positive and 

negative training data should be of similar size, but in case they are not a suitable correction 

to balance the data can be applied (see “Classification of Unbalanced Data” on page 14). If 

the measured target values are continuous the correlation between the molecules and their 

target values are established by regression analysis [4]. In such a case the training set should 

ideally cover the whole range of possible target values. It is obvious that an ideal training set 

should not contain any measurement errors. However, due to the non-availability of pre-

compiled training sets many published models are learned on self-compiled data sets ex-

tracted from the literature. Since experimental conditions and the laboratories, where target 

values were measured, vary for different publications, the resulting data sets may be biased 

and therefore yield biased prediction models. 

1.2 Feature Extraction  

The second step in machine learning consists of transforming the considered real world ob-

jects of the training set into a multidimensional computer-readable representation. This is 

done by extracting so-called feature vectors. A feature vector is a d-dimensional vector whose 

components contain numerical values of specific features (descriptors) of the considered ob-

jects (molecules). For an image for example the feature values might correspond to the RGB 

values of that image. For a molecule topological or physicochemical descriptors may be used. 

Thus, each molecule in the regarded dataset can be expressed by a point in a -dimensional 

space called feature space. 

d

The descriptors (feature vectors) are the eyes with which the machine learning approach ob-

serves the objects. Practically all machine learning methods will achieve good prediction re-
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sults, if the extracted features strongly correlate with the target property in focus. If on the 

other hand the features do not contain any information on the target property (e.g. numerical 

representation of the compound trade names) even the best machine learning technique will 

fail. The feature generation step is thus the most important part of model building and has the 

largest influence on the predictive power. In most cases, neither ideal nor totally irrelevant 

descriptors will be chosen. In such a case, the machine learning method has to detect only 

those descriptors, which are relevant for the predicted property and disregard the remaining 

ones. The choice of the machine learning approach may therefore also have a large influence 

on the resulting model.  

1.3 Linear Scoring Function  

Describing molecules by real valued descriptors collected in vectors d
ix ∈
G

\  allows their re-

presentation as points in a -dimensional feature space. In a general two-class classification 

approach, a hypersurface is defined that separates the data points into two half-spaces such 

that all positive data points (target value +1) are located on one side of the hypersurface whe-

reas all negative data points (target value −1) are located on the other side. New data points 

are then classified according to the half-space they belong to (see Figure 1). In the simplest 

case the separating hypersurface is a hyperplane in the -dimensional feature space. In a re-

gression task a hyperplane is constructed where the distances of the data points to the hyper-

plane are proportional to their target property values. The target property of a new molecule 

can then be predicted by computing its proportional distance to the hyperplane (see Figure 1).  

d

d

To determine such a hyperplane with normal vector  and offset b from the origin we set up 

an objective function L that is minimal for the optimal hyperplane:  

wG

 ( ) ( )( )
1

1
;, , ,pp

N
p

i i i p p
i

N
regularization terms

model terms

L w b g f x w b m w
λ

μ
=

−
⎡ ⎤= ⎣ ⎦

∑ ∑ || ||λ+
G G G G

����	���
���������������	��������������

, (1) 

where mi are the target properties and  is a loss function that determines the stiffness 

of the correlation between the property values mi and the linear scoring function

( , )ig f m

;( , )if x w bG G

i

:  

 ( ; , ) t
if x w b w x b= +
G G G

i
G . (2) 

The linear scoring function is also used to predict the target values of new unseen data points 

once a hyperplane is defined. In a classification scenario, a data point is classified as positive 
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if the result of eq. (2) is larger than 0 otherwise it is classified as negative. In a regression task 

the result of eq. (2) directly represents the desired target value. The additional parameters μi in 

the objective function, eq. (1), can be used to weight the more reliable data points higher than 

others.  

 

Figure 1: Hyperplane with normal vector  and offset . The hyperplane separates the fea-

ture space into two half spaces  and  . Each half space represents a class. The dis-

tance from the hyperplane to the origin is given by 

wG

2
d\

b

1
d\

b w
G

. In a regression analysis the dis-

tance from a sample vector ixG  to the hyper plane is given by ( ; , )if x w b w
G G G
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The objective function L, eq.(1), consists of two parts that compete with each other. The first 

part involves the so called ‘model terms’. These terms optimize the prediction performance on 

the training set called recall performance: whenever the considered model returns a poor pre-

diction on the training set the loss-function  invokes a penalty that depends on the 

error margin. Hence, during learning the hyperplane parameters ( ) will be chosen such 

that predictions on the training set are as close as possible to their experimentally measured 

property values.  

( , )i ig f m

,w b
G

For most prediction tasks there is little knowledge of the underlying biochemical process 

available. Hence, it is not clear which features to include into the model building process. 
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With no further knowledge, generally all available descriptors are considered. This results in a 

high-dimensional feature space. On the other hand, for many problems, where molecular tar-

get values need to be predicted by empirical machine learning methods, the amount of data 

(number of compounds) is often scarce. Hence, in a typical prediction scenario the number of 

compounds with known target values can be very small (e.g. 100 or even smaller). The num-

ber of potentially relevant features on the contrary is often large (e.g. 1000 or even larger). 

Machine learning methods tend to over-fit the training data in such situations, i.e. the method 

adjusts to very specific features of the training data, which are not characteristic for the consi-

dered property. To control this effect, the objective function, eq.(1), is usually extended by a 

so called regularization term of positive weight:  

 ( )1/

1|| ||
pN p

p p p iiw wλ λ
=

= ∑G . (3) 

This regularization term adopts its minimum value, if all components of the parameter vector 

wG  vanish. This is in conflict with the ‘model terms’ of the objective function, which requires 

specific non-vanishing model parameters. The trade-off is that the model parameters govern-

ing the less important features are set to small or ideally vanishing values, while model para-

meters referring to features that exhibit strong correlations with the target values are kept. 

Hence, the regularization term penalizes model details of unnecessary complexity, focuses on 

the most relevant features, and thus avoids over-fitting of the data used for training [5]. The 

most commonly used regularization methods are L1 regularization (p = 1), also known as 

Lasso [6] and L2 regularization (p = 2) also known as ridge regression [7].  

1.4 Feature Selection  

Due to the form of the objective function, eq.(1), features whose corresponding model para-

meters vanish are completely ignored. The quadratic form of the L2 regularization term will 

not lead to model weights set exactly to zero during learning. On the other hand, L1 regulari-

zation leads to sparse models due to its linear form where the weights of many features are set 

to zero rigorously. L1 regularization therefore combines feature selection and model building 

into a single training round. Nevertheless, the quadratic L2 regularization can also be used for 

explicit feature selection. Assuming unimportant features will get smaller parameter weights 

than important ones, a backward selection can be performed by removing features with small 

weights after each training round. This approach is called RFE (recursive feature elimination) 

[8]. In spite of its simplicity, the RFE algorithm yields excellent results and has been success-
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fully used in many classification and regression tasks [8-11]. Additional feature selection 

strategies include simple filters, e.g. correlation between target value and single features, and 

more complex strategies such as the sequential floating search method [12], genetic algo-

rithms [13], and swarm intelligence algorithms such as ant colony optimization [14, 15]. 

1.5 Loss Functions  

The loss function  determines the stiffness of the correlation between the measured 

and predicted target values. Figure 2 gives an overview of possible loss functions. For regres-

sion analysis the ideal model should predict the training data as accurate as possible. Hence, 

loss functions which punish deviations from the property value in both directions evenly are 

preferred. Possible loss functions include the squared and Lorentzian loss function (see Figure 

2). Due to its quadratic form the squared loss function is best suited for datasets with unbiased 

measurements. Datasets, which may contain outliers, should be trained using a Lorentzian 

loss function as the impact of outliers is reduced. Both squared error and Lorentzian loss func-

tion can also be used for classification tasks. However, for classification, the exact result of 

the scoring function is not of relevance. It is only of interest that the result is above or below 

( , )i ig f m

Figure 2: Different loss functions ( , )g f m as a function of the difference f m−  between the 

value of the scoring function f estimating the property value and the corresponding true 

property value m. Left side: one-sided loss functions, which can be used for two-class classifi-

cation tasks. Right side: symmetric loss functions, which can be used for classification and 

regression tasks.  
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the threshold at zero. Data with positive target values classified as strongly positive and data 

with negative target values classified as strongly negative do not have to be punished. Hence, 

better results may be achieved with loss functions, which only punish deviations in one direc-

tion. For that purpose loss functions such as the Smooth Hinge, Sigmodial, Binomial Log 

Likelihood (BNLL) and Weighted Biased Regression (WBR) loss functions may be used, 

which mostly differ in the way they treat outliers (see Figure 2).  

1.6 Non-linear Models  

For most biochemical prediction tasks there are many more descriptors available than there 

are data points. Hence, a linear model will most often be the best choice. However, there may 

be problems where a linear model is not sufficiently flexible to describe the studied data. In 

such a case, a non-linear transformation of the original model data into a feature space of 

higher dimension may render the dataset more suitable for a linear separation. This corres-

ponds to a non-linear separation in the original feature space using a more general hypersur-

face instead of a hyperplane. Nevertheless, an explicit transformation of the dataset of com-

pounds may computationally be too expensive or even intractable. Instead of transforming the 

compound data explicitly. the kernel trick [16] transforms the data implicitly. For that pur-

pose, the objective function L, eq.(1), is rewritten such that the parameter vector  can be 

expressed as a weighted sum of the training feature vectors 

wG

t
ixG . 

 
1

N
t

i i
i

w xα
=

= ∑G G , (4) 

with  

 2

2

(1 ) ( ( , ; ), )
2

i i
i

g f w b x m
N f

λ μα
λ

− ∂
= −

∂
i

G G
.  (5) 

Hence, the linear scoring function, eq. (2), can be rewritten as  

 .  (6) ( ) ( ) ( )( )
1 1

,, ;
N N

t t
i i i i

i i
f w b x x x xKb xα α

= =

= + =∑ ∑G G G G G G
i b+

t
i

Now, instead of finding the hyperplane normal , we determine the scalar multipliers αi, eq. wG

(5). Note that determining the multipliers as well as predicting new data points can be done 

solely using values of the dot products x
G

x
G
i . These dot products may be replaced by a kernel 
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function ( , )t
iK x
G

x
G

( , )t t
i ilinearK. The simplest kernel function consists of the dot product x
G

x x x=
G G G

i

i

. However, using higher order kernels transforms the linear model into a non-linear model 

[17, 18]. The choice of kernel function strongly depends on the prediction task. There are nu-

merous specialized kernel functions available, such as graph kernels, which are well suited for 

graph based problems (e.g. topological compound structures) [19] or String kernels which 

may be used for DNA or amino acid sequences [20]. Other widely used kernel functions in-

clude polynomial kernel, radial basis function (RBF), and sigmodial kernel [17, 18].  

1.7 Classification of Unbalanced Data  

For a classification task problems can arise if the sizes of the two classes available for learn-

ing are very different. To avoid false positives for the majority class, it can be advantageous 

to split the N+ positive x +G  from the N− negative −x j
G

 data (N = N+ + N−) leading to the ba-

lanced objective function:  

( ) ( ) )
1,

1 , , ||
N

i i pp
i

s s
s s

s
s

g f x w b
N
δλ μ

==+ −

⎡ ⎤
= − +⎢

⎣ ⎦
∑ ∑ ∑ ( ;i ||p

pm wλ⎥balancedL
G G G

, (7) 

where N is the size of the data set and w+ and w− (w+ + w− = 1) are the weights for the positive 

and negative data, respectively.  
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2 Publications 
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2.1 Predicting human volume of distribution and clearance of drugs using au-

tomated feature selection 

Authors  Demir-Kavuk, O., Bentzien, J., Muegge, I., Knapp, E.W., 

 

Bibliography  J Comput Aided Mol Des., 25 (2011), Nr. 12, p. 1121-1133 
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Contribution 
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In this paper, a specialized standalone version of DemPRED called DemQSAR has been pub-

lished. DemQSAR combines feature generation, feature selection and model building into one 

platform independent JAVA application. In contrast to the DemPRED library, no additional 

programming is needed. The user just has to provide 2-D structures of compounds together 

with an experimentally measured target property in order to generate prediction models. The 

DemQSAR application has been developed in cooperation with Boehringer Ingelheim phar-

maceuticals. Our cooperation partners as well as other pharmaceutical companies have the 

demand to build interpretable models using several thousand descriptors per compound. 

Hence, great focus has been led on easy to use feature selection. DemQSAR incorporates two 

state of the art feature selection strategies: embedded Lasso and RFE.  

The performance of DemQSAR has been tested by building models for the prediction of hu-

man Volume of distribution (VDss) and Clearance (CL). Volume of distribution is a measure 

of how a drug is distributed between plasma and tissues. Clearance is a measure of the rate at 

which a drug is removed from the body. Both values together determine the half-life of a drug 

and thus the appropriate dose and frequency of drug application. A drug should be adminis-

tered such that the free plasma concentration is large enough to obtain an effect throughout 

the dosing interval, while lessening the maximal concentration over time by clearance and 

thereby reducing the potential for side effects. The generated DemQSAR models are able to 

predict human VDss and CL of an independent test set with a geometric mean fold error 

(GMFE) of 2.0 and 2.4 respectively: 

 
exp

m1exp ln
m

pred

m
GMFE

N
⎛ ⎞
⎜⎜
⎝ ⎠

= ∑ ⎟⎟  (8) 

Both prediction models were generated using two sets of features each containing around 

4000 descriptors per compound. The first feature set was generated using commercial soft-

ware packages such as ACD/Labs, ClogP, Volsurf, MolConn-Z, Scitegic, MOE, Pipeline Pi-

lot. The second feature set was generated using the open-source Chemistry Development Kit 

(CDK) [21]. The implemented feature selection strategy was able to pick up 8 descriptors out 

of each feature set to build reliable models for the prediction of human VDss. Figure 3 illu-

strates these selected features ordered by their absolute parameter value. Relative parameter 

values reflect the importance of a particular feature. I.e., as larger the absolute value of a pa-

rameter is compared to others the more important is its influence. For the first feature set 

strong positive correlations were observed for: “fraction cationic at pH 7”, “pKa MB (mostly 
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basic)” and “VS-descriptor LgD 10/9/8 (logarithm of the partition coefficient between 1-

octanol and water)”. Strong negative correlations were observed for the following interpreta-

ble feature: “fraction anionic at pH 7”. Hence, the human VDss of a compound could be en-

hanced by increasing its cationic fraction at pH 7 and decreasing its anionic fraction at pH 7 

or by increasing its octanol-water distribution coefficient, logD (hydrophobic drugs). For the 

second open-source feature set, strong positive correlations were observed for various sub-

structures: 83 (Carboxylic ester), 22 (Primary aliph amine) and 25 (Quaternary aliph ammo-

nium), while strong negative correlations were observed for TopoPSA and Khs.do. TopoPSA 

computes the topological polar surface area based on fragment contributions. Khs.do counts 

the number of double bonded oxygen atoms: O=*.  

The final models for the prediction of human VDss and human CL were made accessible 

through an easy to use web interface [22]. In addition to the predicted VDss and CL values, 2-

dimensional images, smiles codes, molecular formula and molecular weights are computed 

for the uploaded compounds. All results can be exported in pre-formatted Excel, text and 

XML files. At the moment of writing, the provided web server is to our knowledge the only 

publicly available resource to predict human VDss and CL.  
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Figure 3: Parameter weights for the human VDss prediction model where eight features were 

selected for each feature set. As larger the absolute values of the weights are, as more important 

are the corresponding features. Left side: 1st feature set generated using commercial software 

packages. Right side: 2nd feature set generated using open-source CDK package [21]. 
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2.2 Prediction using step-wise L1, L2 regularization and feature selection for 

small data sets with large number of features 
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In recent years, considerable advancements were made in high throughput techniques to 

measure particular molecular properties of large compound data bases. Nevertheless, for 

many problems, where molecular target values need to be predicted by empirical machine 

learning methods, the amount of data is often scarce. This leads to machine learning problems 

were the number of compounds with known target values can be very small compared to the 

number of potentially relevant features. Under such circumstances, overtraining would be 

unavoidable unless specific precautions are applied to control and reduce the number of fea-

tures. Various regularization and feature selection techniques have thus been presented in the 

past and successfully applied to numerous prediction tasks [23].  

This publication proposes a new two-step learning scheme which is especially well suited for 

a prediction task were few data are described by many features. In the first stage L1 regulari-

zation is used to filter out redundant and irrelevant features. The remaining features are used 

in a second stage of model building in conjunction with L2 regularization. The proposed me-

thod has been used for the regression tasks of CoEPrA (Comparative Evaluation of Prediction 

Algorithms) modeling competition of 2006 [24]. The data sets of CoEPrA 2006 contain octo- 

and nona-peptides relevant to MHC class I binding which play an important role in the im-

mune response of mammals. These data sets are characterized by few data (~80) described by 

a much larger number of features (~5000). The data sets of the CoEPrA contest are particular-

ly valuable, since they offer the possibility to compare the own approach with a larger number 

of alternative approaches from different groups on equal footing.  

The proposed two step learning scheme has been compared to the top performing participants 

of the CoEPrA contest. Table 1 shows the prediction results on the test sets for all four CoE-

PrA tasks in terms of coefficient of determination (q2): 

 
( )

( )

2

exp
2

2

exp exp

1
( )

pred
m

m

m m
q

m average m

−
= −

−

∑

∑
 (9) 

For all four regression tasks, the number of features could be reduced drastically to about one 

hundredth (~50) of the initial number of features or even less. Except for one task (IV) using 

the features selected with L1 regularization in a subsequent second training step with L2 regu-

larization shows better prediction performance. The prediction results of this study surpass the 

best performing participants of the CoEPrA contest adopting first rank for task I and second 

rank for task II and III. As one can see from the very low q2 values for task III and even lower 
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values for task IV, the prediction results are not significant. This is due to a lack of overlap 

between the target values of the training and the test set. This is an ill-defined task where ma-

chine learning methods are bound to fail. It is part of the dataset compilation step to avoid 

such extreme cases where training and test sets differ. These tasks therefore do not represent a 

real case scenario.  

Table 1: Prediction results of q2 values for all four CoEPrA regression tasks using a two-step 

optimization procedure. First three lines display the results of the three best predictions for 

the different CoEPrA tasks. Stage 1: only L1 regularization is used to filter irrelevant fea-

tures. Stage 2: L2 regularization is used with all features remaining after stage 1.  

Rank Task I Task II Task III Task IV a 

First 0.677 0.735 0.237 -2.578 
Second 0.627 0.612 0.201 -2.560 
Third 0.615 0.455 0.154 -2.561 
Stage 1    
Predict 0.667 0.642 0.205 -2.573 
Features b 50 43 56 41 
Stage 2     
Predict 0.691 0.668 0.131 -2.574 
b number of features after L1 regularization. 

 

Our proposed method achieved good prediction results for the four CoEPrA regression tasks. 

Furthermore, the number of molecular descriptors has been reduced drastically for the final 

prediction models. The CoEPrA data sets are representative for many biological classification 

and regression problems where small data sets of less than hundred are described by thou-

sands of descriptors. Hence, we expect the proposed method to be applicable for many other 

machine learning tasks having similar conditions.  
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2.3 Exploring classification strategies with the CoEPrA 2006 contest 
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In silico methods to classify compounds as potential drugs that bind to a specific target be-

come increasingly important for drug design. To build classification devices, training sets of 

drugs with known activities are needed. For many such classification problems not only qua-

litative but also quantitative information of a specific property (e.g. binding affinity) is avail-

able. The latter can be used to build a regression scheme to predict this property for new com-

pounds. However, predicting a compound property explicitly is generally more difficult than 

classifying that the property lies below or above a given threshold value. Hence, the outcome 

of a prediction based on regression is expected to introduce larger uncertainties than solving 

the classification problem directly. In fact, initially researchers are only interested in classify-

ing compounds as potential drugs. The activities of these compounds are subsequently meas-

ured in wet lab. Nevertheless, the binding affinity contains additional information, which 

could be of use to solve the classification problem more reliably. In this paper, we thus pro-

posed a novel approach that uses available quantitative information directly for classification. 

In order to do this a new loss function called Weighted Biased Regression (WBR) loss func-

tion is introduced.  

This new classification scheme has been tested on the classification tasks of the Comparative 

Evaluation of Prediction Algorithms (CoEPrA) 2006 competition [25]. Table 2 shows the 

prediction results using the proposed WBR loss function together with the best CoEPrA com-

petitors. These results clearly show that the WBR classification method outperforms the best 

CoEPrA competitors in all three tasks. The results indicate that the proposed WBR loss func-

tion can outperform simple classification methods that do not make use of the additional 

quantitative information. Hence, whenever a classification is demanded, but additional quan-

titative information is available, we propose to use a classification scheme similar to WBR.  

Table 2: MCC prediction results of the CoEPrA classification tasks 1 to 3 using the pIC50 

values of the binding affinities in a classifier with Weighted Biased Regression (WBR) loss 

function. All values denote the MCC of the prediction set. Best results per task are printed in 

bold digits. The two best results of the CoEPrA contest are given in the last two columns.  

Task WBR classifier CoEPrA first CoEPrA second 

1 0.7759 0.7303 0.7273 
2 0.7410 0.7108 0.7108 
3 0.3985 0.3560 0.3188 
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2.4 Predicting protein complex geometries with linear scoring functions 
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It is widely known that protein-protein interactions play a crucial role in many cellular 

processes. To know how and if two given proteins interact is of great interest, as this informa-

tion may help to detect cellular networks or identify new drug targets. Currently, it is believed 

that a large number of protein complexes form only transiently. Experimental detection of the 

geometry of such an unstable complex is very demanding. Nevertheless, three dimensional 

structures of the unbound proteins are often available from crystallography or NMR experi-

ments. Hence, various computational methods have been proposed to predict protein interface 

regions in atomic detail given the structures of the participating proteins [26-28]. These so 

called docking algorithms consist of two consecutive steps. In the first step, random complex 

geometries (decoys) are generated considering primarily shape complementarity of the two 

individual proteins [29-31]. These decoys are then evaluated by a scoring function, which 

discriminates approximately near-native decoys from decoys, which are far from the native 

complex geometry. Ideally the structures of decoys with high scores are similar to the native 

three dimensional structure of the formed complex.  

In this publication the DemPRED library has been used to build such a protein interface scor-

ing function. In order to do so, a training set consisting of 191 protein complex structures has 

been compiled from literature (48 from Benchmark 3.0 [32] and 143 from Huang et. al. [33]). 

The test set consisted of 65 protein complexes, which all were taken from literature as well 

(Benchmark 3.0 [32]). For all protein complexes of the training set we generated near-native 

decoys with a maximum interface RMSD (iRMSD) of dmax =  6.0 Å, by applying random 

translations and rotations to one of the two proteins in the complex. Decoys of the test set 

were generated in a similar manner but without any iRMSD limitation.  

Features were generated using atom-pair distance distributions, i.e. each position of the fea-

ture vector quantifies a particular atom-pair interaction within a given distance. A total of 20 

different heavy-atom types [33] and two polar hydrogen atom types (hydrogen atoms making 

H-bonds with sulfur and oxygen or alternatively with nitrogen) have been defined [3]. Non-

polar hydrogen atoms were ignored. This resulted in a total of 253 = (22*23)/2 different types 

of atom-pairs (features).  

The predictive power of the linear scoring function approach has been compared to ZRANK 

[2], ZDOCK 3.0 [1] and a previously developed neural network scoring function [3]. Plots of 

the success rates (fraction of protein complexes with at least one HIT within the given number 

of predictions) averaged over all 65 complexes of the prediction set are shown in Figure 4. A 
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HIT is thereby defined as a predicted near native decoy with an iRMSD ≤ 2.5 Å relative to the 

corresponding native complex geometry. That is, the higher the line in Figure 4, the better is 

the result. The success rate of the linear scoring function is comparable to the three other me-

thods. For up to ten predicted protein complexes the linear scoring function is slightly better 

than ZDOCK 3.0 and ZRANK but worse than the neural network. If more than 200 predic-

tions are considered, the linear scoring function of the present study and ZRANK are the best 

performing models. These results indicate that the linear scoring function is comparable to 

other state of the art protein decoy scoring methods.  

 

Figure 4: Comparison of the success rate versus the number of highest ranked decoys (num-

ber of predictions per protein complex) for all 65 protein complexes of the prediction set (the 

higher the line the better). We compare ZDOCK 3.0 [1], ZRANK [2], a neural network [3] 

and the linear scoring function of the present study.  
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3 Discussion  

During my PhD I developed a classification and regression library called DemPRED. Dem-

PRED includes numerous routines needed for model building of any prediction problem. 

These include various feature generation methods for amino acid sequences such as Sparse, 

BLOSUM, Physicochemical and BLAST Profiles. Generation of various fingerprints as well 

as topological and molecular descriptors for compounds using the open source CDK software.  

At the heart is a linear classification scheme, which can be combined with various loss func-

tions and transformed into a non-linear model using kernels. Various optimization techniques 

have been implemented in order to detect the minimum of the objective function: IRprop +/- 

and Rprop +/-, LBFGS and OWLQN.  

DemPRED furthermore incorporates various state of the art feature selection strategies such 

as embedded Lasso, RFE, simple filters like PCC, Sequential floating forward selection, a 

newly developed combinatorial approach and a newly developed RFE632+ selection method.  

In order to interpret predictions, various quality measurements may be generated such as: Ma-

thews Correlation Coefficient (MCC), Area under Receiver Operating Characteristic (Au-

ROC), RMSD, linear correlation coefficient (R), the coefficient of determination (R2) and the 

geometric mean fold error (GMFE). Plotting routines will automatically generate ROC curves 

and correlation plots of the predictions made as well as bar plots of the model coefficients.  

In order to optimize model parameters and score individual feature subsets various re-

sampling techniques are included such as Cross Validation, Bootstrapping, Bootstrapping 632 

and Bootstrapping 632+.  

Last but not least, many helper functions for splitting, merging, filtering, reading, writing and 

normalizing data sets as well as loading and saving generated prediction models are available.  

The above mentioned routines have been successfully used on various prediction tasks such 

as to predict major histocompatibility complex II (MHC II) epitopes, human volume of distri-

bution and clearance as well as to detect protein interface regions. The achieved results were 

as good as or comparable to other state of the art prediction methods. The proposed Dem-

PRED library may therefore be useful for many other biological prediction tasks.  
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4 Summary 

In silico predictions of particular properties of biological active molecules can dramatically 

reduce time and costs needed to measure these properties in a wet lab. Nevertheless, the im-

plementation of state of the art prediction techniques needs expert knowledge of machine 

learning methods and distinctive programming skills if starting from scratch. Hence, there is a 

demand for powerful yet easy to use libraries, which users can employ and extend to build 

their own models given a particular prediction task. During my PhD I developed such a li-

brary called DemPRED. The core of DemPRED consists of a linear scoring function. This 

scoring function can be combined with various loss functions, which makes DemPRED suita-

ble for classification and regression. In cases were a linear model is not flexible enough Dem-

PRED makes use of the kernel trick to transform the linear core into a non linear one. Dem-

PRED contains many additional routines, which help users to generate reliable prediction 

models. These include various quality measurements as well as re-sampling strategies and 

routines for saving and loading of generated models. DemPRED includes various regulariza-

tion and feature selection strategies, which make this library especially suitable for prediction 

tasks where few observations are described by thousands of descriptors. The object oriented 

implementation of DemPRED allows users to extend and modify the build in routines by their 

own ones. During my PhD I successfully used DemPRED on various classification and re-

gression problems such as predicting major histocompatibility complex II (MHC II) epitopes, 

prediction of human volume of distribution and clearance as well as detecting protein inter-

face regions. The predictive power of all generated models was as good as or even better than 

other state of the art classification and regression techniques.  
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5 Summary in German 

Trotz fortgeschrittener Messtechniken kann das Erfassen molekularer Eigenschaften für die 

meisten biochemischen Prozesse sehr zeitaufwändig und teuer sein. Dies gilt insbesondere 

dann, wenn Eigenschaften umfangreicher Moleküldatenbanken untersucht werden sollen. Um 

den Prozess der Messung zu beschleunigen, werden Laborexperimente heutzutage immer 

häufiger durch Computer gestützte Vorhersagemethoden ergänzt. Somit können selbst große 

Datenbanken in einem Bruchteil der sonst dafür im Labor benötigten Zeit untersucht werden. 

Ohne geeignete Werkzeuge kann die Generierung eines aussagekräftigen, computergestützten 

Vorhersagemodels jedoch ebenfalls kompliziert und zeitaufwändig sein. Aus diesem Grund 

besteht die Nachfrage nach einfach zu bedienenden und erweiterbaren Programmbibliotheken, 

welche die Grundfunktionen für die Generierung von Vorhersagemodellen zur Verfügung 

stellen. Während meiner Promotion habe ich eine solche Bibliothek namens DemPRED ent-

wickelt. DemPRED basiert im Kern auf einem linearen Model, welches mit verschiedenen 

Verlustfunktionen kombiniert werden kann. In Fällen, in denen ein lineares Model nicht die 

nötige Flexibilität liefert, kann DemPRED mit Hilfe des Kernel Tricks zu einem nicht-

linearen Model erweitert werden. Die DemPRED Bibliothek bietet zudem etliche zusätzliche 

Funktionen an, die dem Benutzer helfen, gute Vorhersagemodelle zu generieren. Während 

meiner Promotion habe ich DemPRED dazu genutzt, unterschiedlichste biochemische Prozes-

se vorherzusagen. Unter anderem habe ich Modelle für die Vorhersage der MHC II bindenden 

Epitope, humanen Verteilungs- und Ausscheidungskoeffizienten und Protein Interaktionsflä-

chen entwickelt. Die Qualität der generierten Vorhersagemodelle war hierbei meist besser 

oder aber mindestens vergleichbar zu anderen bisher verwendeten Techniken.  
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