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We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules
in weak dissipative environments. The simulations are performed within the reduced density matrix
formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The
prototypical two-dimensional model system representing two CO molecules approaching a Cu(100)
surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength
is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first
order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation.
Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the
reduced density matrix. Two alternative representations for computing the relaxation rates and the
associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz.
The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann
equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation
is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are repre-
sented as tensor products of one-dimensional operators, for consistency. This procedure results in a
marked reduction of the grid size and in a much more advantageous scaling of the computational
cost with respect to the increase of the dimensionality of the system. The factorizable method is
found to provide an accurate description of the dissipative quantum dynamics of the model system,
specifically of the time evolution of the state populations and of the probability density distribu-
tion of the molecular wave packet. The influence of intra-molecular vibrational energy redistribu-
tion appears to be properly taken into account by the new model on the whole range of coupling
strengths. It demontrates that most of the mode mixing during relaxation is due to the potential part
of the Hamiltonian and not to the coupling among relaxation operators. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4892376]

I. INTRODUCTION

A variety of phenomena of major importance in physics
and chemistry involve the interaction between comparatively
small molecules and their environment. An important exam-
ple is that of chemical reactions on solid substrates, being a
key step in technological processes such as catalysis, chro-
matography or materials processing, etc.1–10 Unravelling the
atomistic mechanisms governing elementary reactions such as
adsorption, bond formation and breaking, diffusion, and des-
orption may lead to substantial improvements in controlling
the selectivity and enhancing the efficiency of the associated
practical applications. A particularly interesting aspect is the
role played in these processes by inter-mode coupling,11–18

which can either be mediated by the molecular potential or by
weak interaction with the environmental degrees-of-freedom.
In the following, we will keep the traditional use of the term
“intra-molecular vibrational energy redistribution” (IVR) to
refer only to the former type of coupling.

Although much mechanistic information can be obtained
from classical and semi-classical simulations, it is very in-

a)Email: jean.c.tremblay@gmail.com

structive to resort to a quantum mechanical description of
atomic motions to gain a deeper insight into dynamical pro-
cesses at surfaces. Except for a few idealized textbook exam-
ples, the solution of the quantum equations of motion describ-
ing molecules impinging on or attached to a surface must be
addressed numerically.19, 20 Nevertheless, because of the un-
favourable scaling of memory and computing time require-
ments with the increase of the dimensionality of the sys-
tem, rigorous computer simulations are restricted at present
to problems involving a relatively small number of dynamical
variables. Accordingly, developing and testing new numerical
schemes to undertake the integration of the quantum equa-
tions of motion for many-body systems continues to be crucial
for achieving a realistic modelling of quantum phenomena on
the nanoscale. This aspect is especially relevant in the case
of molecules adsorbed on surfaces, since experiments show
that the dynamics exhibits a marked correlation between the
internal degrees of freedom (i.e., among the motion along and
perpendicular to the surface and the vibrational and rotational
motions of the adsorbate).11–18

The vibrational relaxation of a molecule in the vicin-
ity of a non-rigid surface is mediated by the excitation of
phonons21, 22 and electron-hole pairs in the solid, the second

0021-9606/2014/141(7)/074703/15/$30.00 © 2014 AIP Publishing LLC141, 074703-1
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mechanism being dominant for metallic substrates.23–30

Hence, molecules scattering from a surface or sticking on it
may be classified as open or dissipative systems, i.e., sys-
tems interacting with its environment. State-of-the-art quan-
tum dynamical methods are not well suited to handle con-
densed phase problems because of the exponential scaling of
the solution with increasing system size, but the separation
of the “system” from the “bath” contributes to alleviate this
difficulty. The language of open system density matrix theory
provides an appealing theoretical framework to describe the
reduced quantum dynamics of these phenomena, enabling to
incorporate the dynamical state of the surroundings implic-
itly. Tracing out the environmental degrees of freedom, the
dynamics along the remaining coordinates is described by the
reduced density matrix (RDM), which obeys the dissipative
Liouville-von Neumann equation.

To map the dynamics on the reduced system, the specific
dissipative model must account for the energy flow between
the molecule and the environment, e.g., the creation and anni-
hilation of phonons and electron-hole pairs in the substrate
during reactions at surfaces. The phonon and the electron-
hole pair relaxation channels usually proceed on picosec-
ond and femtosecond time scales, respectively.31–33 Indeed, at
least for metallic hosts, the irreversible dissipative dynamics
is expected to be dominated by the coupling of the molecu-
lar motion with the much faster electronic (de-)excitations of
the substrate. Since the characteristic correlation time of the
bath modes are frequently smaller than those of the explic-
itly treated degrees of freedom, short-term memory effects of
the surface can be neglected and the Markov approximation
holds. The resulting dissipation operator is local in time and
its particular form can be derived in a variety of ways, rang-
ing from microscopic approximate modelling of the system-
bath coupling to imposing physical constraints on the repre-
sentability of the RDM.34–37

On the contrary, if the coupling of the excited adsor-
bate motion to the slow phonon modes of the substrate is
significant, the bath memory time scale is not much shorter
than the characteristic time scale of the system. In this
case, the dissipative effects arising from the vibrational ex-
citations in the surface cannot be disregarded. Accounting
for this delayed vibrational relaxation gives rise to mem-
ory terms in the Liouville-von Neumann equation, derived
from the time-correlation function of the displacements of
surface atoms.38, 39 Although more sophisticated theoretical
treatments have been developed,38–41 explicitly incorporating
non-Markovian effects on the dissipative quantum dynamics,
the influence of memory terms on the time evolution of the
reduced density matrix is routinely neglected in applications
of the theory of open quantum systems. Quantum systems in-
teracting with a strong, short electromagnetic field, constitute
an important example of dynamical systems lying outside the
domain of applicability of the Markov approximation.

The Lindblad formalism, which maps the time evolu-
tion of the full system to a Markovian semi-positive re-
duced dynamics, provides an analytical form for the dissipa-
tion super-operator,34 and will be used throughout this work.
The strictly positive time evolution of the RDM allows for
a probabilistic interpretation of its diagonal elements at all

times. Although the specific shape and the effect of the Lind-
blad operator on the dynamics is known, the rates associated
with each dissipative channel must be computed from first
principles.

For the specific case of gas phase molecules on metal-
lic surfaces, the theoretical framework for describing non-
adiabatic interactions in the system-bath, weak coupling
regime is well established.7, 42, 43 The standard procedure con-
sists in computing the non-adiabatic couplings between the
different vibronic states using first order time-dependent per-
turbation theory.42 The non-adiabatic coupling between elec-
tronic states mediated by the molecular vibrations arises from
the nuclear kinetic energy operator. Hereafter we will con-
sider that only first order off-diagonal vibronic couplings are
relevant, therefore neglecting higher order non-adiabatic cou-
plings. By doing so, well-established expressions for the an-
harmonic vibrational relaxation rates can be obtained.42, 44–47

It is important to note that the effects of IVR, i.e., of inter-
mode coupling induced by the molecular potential, are here
explicitly included in the definition of both the relaxation op-
erators and the associate rates.

Although considerable progress has been made in wave
packets propagation techniques as applied to multidimen-
sional dynamical problems,48, 49 simulating the time-evolution
of the reduced density matrix according to the Liouville-von
Neumann equation poses much bigger challenges in terms
of the associated computational cost, as compared to the nu-
merical solution of the Schrödinger equation.19, 20 As a rule,
the feasibility of both, time-independent and time-dependent
quantum mechanical calculations, relies on a judicious choice
of the basis functions. Consequently, a careful evaluation of
the relative advantages and shortcomings of each alternative
expansion is needed in order to assess their affordability, espe-
cially for quantum systems undergoing dissipation. In the case
of chemical reactions at surfaces, the reduced density matrix
must often be capable of accounting for unbound motion of
adsorbates, thus grid bases are the conventional choice. Nev-
ertheless, when studying the relaxation dynamic processes of
strongly coupled systems, usually confined in space, the spec-
tral representation is more suitable, as in this case both the
dissipative operators and rates are well defined.

In this work, we investigate the accuracy of an approx-
imate representation of the vibrational relaxation dynamics,
which follows from three central hypotheses:

(i) the system-bath coupling is weak and only first-order
perturbative rates are relevant,

(ii) a contracted grid basis generated via a potential-
optimized discrete variable representation (PO-DVR)
can capture most of the effects of IVR in effective one-
dimensional grid bases, and

(iii) the Lindblad operators representing each dissipative
channel can be represented as a tensor product of one-
dimensional operators spanning the factorizable space.

These assumptions result in a marked reduction of the grid
size and of the scaling of the computational cost with respect
to the increase of the dimensionality of the system.

The physical correctness of this treatment, as compared
to the reduced density matrix propagation in the basis of its
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eigenstates, is illustrated for a two-dimensional system of
two-coupled Morse oscillators with realistic parameters mod-
elling two interacting CO molecules oriented perpendicular
to a Cu(100)-surface. Two-dimensional models historically
played a remarkable role in the development of the theory of
molecule surface reactions50–52 and they can be regarded as a
minimal representation of various phenomena such as inelas-
tic scattering of a molecule from a substrate or the adsorption
of gas phase atoms at non-rigid surfaces (i.e., the simplest
model comprising the essential features of those dynamical
processes). Therefore, they appear as a natural starting point
to test novel theoretical approaches for which an extension to
larger dimensionality problems is envisaged.

In Sec. II, the reduced density matrix formalism and the
perturbative separable scheme employed to model the adsor-
bates coupling to the internal modes of the substrate are pre-
sented. Sec. III introduces the model system under study as
well as the computational details regarding the time integra-
tion. In Sec. IV, the numerical procedure used to generate the
PO-DVR of the vibrational motion is introduced. The relax-
ation dynamics of the system is analysed in Sec. V, in terms
of the time evolving state populations and the density distribu-
tion of the molecular wave packet. The conclusions are briefly
summarized in Sec. VI.

II. QUANTUM DISSIPATIVE DYNAMICS

A. General Liouville-von Neumann equation

Open quantum systems exhibit irreversible time evolu-
tion due to their interaction with the environment. Therefore,
a reduced description of the system dynamics is required. As-
suming that the total evolution of the system together with its
environment is unitary, then the dynamics of the reduced sys-
tem can be mapped to follow the evolution of a completely
positive semigroup.34, 53 Thus, the time evolution of the re-
duced density matrix ˙̂ρ(t) of a Markovian system is governed
by the Liouville-von Neumann equation, given here in the
Schrödinger representation:

˙̂ρ = − i

¯
[Ĥs, ρ̂] + LDρ̂, (1)

where Ĥs is the system Hamiltonian and LD is the Lindbla-
dian superoperator that accounts for dissipation effects. The
explicit form of this superoperator is

LD =
∑
mn

1

2
([Ĉmn(t), ρ̂(t)Ĉ†

mn(t)] + [Ĉmn(t)ρ̂(t), Ĉ†
mn(t)]).

(2)

Here, Ĉmn(t) are the coupling operators accounting for the
interaction between the system and the bath, in particular rep-
resenting the (m → n) dissipative channel. The bath operators
Ĉmn can be derived microscopically starting from the system-
bath Hamiltonian, taking the strict secular limit of the second-
order Born-Markov approximation to the time-evolution of
the reduced density matrix.36, 54 In general, the operators Ĉmn

will describe the “jumps” between eigenstates of Ĥs induced
by the interaction with the bath.

B. Choice of dissipative operators

There are several choices for selecting the explicit form
of the bath operators Ĉmn(t) depending on the physical effect
to be described. For instance, in the case of pure dephasing,
i.e., when the bath cause decoherence in the system, but no
energy is exchanged, the Lindblad operators are diagonal in
the basis of the system eigenstates:

Ĉmn = δmn�
1/2
n→m|m〉〈m|. (3)

The quantities �
1/2
n→m represent environment-induced

transition rates between states n and m, and they are computed
perturbatively as described bellow. Since dissipative operators
Ĉmn are diagonal, the populations ρmm(t) remain unchanged
as the system evolves, thus conserving the energy during the
evolution. Moreover, the coherences given by the off-diagonal
terms of the density matrix, ρnm(t), decay exponentially. This
scenario describes the case where elastic collisions between
system and bath particles take place.

The other limiting case occurs when the system relaxes
via inelastic collisions with the environment, while also un-
dergoing dephasing. In this case the Lindblad operators are
strictly non-diagonal, i.e.,

Ĉmn = �
1/2
n→m|m〉〈n|,m �= n, (4)

Ĉmn = 0,m = n. (5)

Again, �
1/2
n→m stands for the rate of population transfer from

state n to state m.

C. Transition rates

As seen previously, for energy relaxation the spectral
basis,

Ĥs |n〉 = En|n〉, (6)

appears as the natural choice for expressing the Lindblad op-
erators and, hence, for the equations of motion (EOM). In the
interaction picture and in the spectral basis representation, this
EOM read

ρ̇
(I )
mn(t) = δmn

∑
n′

�n′→mρ
(I )
n′n′(t)

−
∑
n′

(
�m→n′ + �n→n′

2

)
ρ

(I )
mn(t). (7)

The transition rates �n→m mix the coupled multidimensional
states |n〉 and |m〉 via the system-bath coupling Hamiltonian.
As it has been demonstrated in Ref. 42, proper inclusion of the
inter-mode coupling induced by the molecular potential can
lead to drastically different microscopic relaxation scenarios.
In the weak-coupling limit and factorising the vibronic states,
the transition rates can be evaluated using Fermi’s golden rule.
At zero temperature it reads

�n→m = 2π

¯

∑
if

|〈n|〈i|Ŵ |f 〉|m〉|2δ(Ef − Ei + ¯ωmn), (8)

where Ŵ is the interacting system-bath Hamiltonian. Ei and
Ef are all possible initial and final state energies of the bath
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modes whereas the bath energy uptake (loss), (Ef − Ei), is
transferred from the system into the surroundings allowing
the former to relax.

Within the context of an adsorbate approaching a metal-
lic surface, the mechanism of energy transfer between the vi-
brational degrees of freedom of the molecule and electronic
degrees of freedom of the surface is well known.7, 42–44, 46 Es-
sentially, the electron-hole pairs creation in the metal is asso-
ciated with the transfer of population between two vibrational
states of the molecule. In this particular case, the system-bath
coupling is nothing else but the kinetic energy operator of the
adsorbate nuclei. The transition rates are then expressed as

�n→m =
∑

q

(
2π

¯

∑
if

∣∣∣∣ − ¯2

2Mq

〈n|〈i|∇2
q |f 〉|m〉

∣∣∣∣
2

× δ(Ef − Ei + ¯ωmn)

)

=
∑

q

π¯3

2M2
q

∑
if

|(〈i|∇2
q |f 〉〈n|m〉

+ 2〈i|∇q |f 〉〈n|∇q |m〉)|2δ(Ef − Ei + ¯ωmn). (9)

Here, Mq is the mass corresponding to the motion along the
qth degree of freedom. Note that, in the spirit of first order
perturbation theory, the contribution of each mode q to the
transition rate is treated additively as a separate channel. The
first term of Eq. (9) involves second derivatives of the elec-
tronic wave functions and is usually much smaller than the
second term involving only first derivatives. Indeed, the for-
mer can be rewritten as second-order contributions and they
will be neglected in the present treatment. The approximate
form of the transition rates thus reads

�n→m =
∑

q

�(q)|〈n|∇q |m〉|2, (10)

where the electronic contributions are given by Refs. 42 and
44

�(q) � 2π¯3

M2
q

∑
if

〈i|∇q |f 〉2δ(Ei − εF )δ(Ef − εF ). (11)

The definition of the scaling constant is obtained in the quasi-
static limit, where ¯ωmn → 0 and the initial and final elec-
tronic states are about the Fermi energy εF. This approxima-
tion does not affect the rates at larger transition frequencies,
since the integrals on the right-hand side of Eq. (10) vanish as
the energy difference increases.

It is important to stress that, even after obtaining a sim-
plified expression for the transition rates (Eq. (10)), construct-
ing the Lindblad operators in the representation of the system
eigenstates, as in Eq. (4), requires the knowledge of the mul-
tidimensional nuclear wave-functions, |n〉. In practice, the re-
quirement to perform the computation of the �n→m effectively
limits the amount of degrees of freedom that can be treated,
especially if a great number of dissipative channels have to
be considered. Indeed, it restricts the actual possibilities of
numerically solving the equation of motion (7), owing to the
fact that obtaining the solutions of Eq. (6) is a prerequisite
for the evaluation of the transition rates. Depending on the

number of dissipation channels to be considered, solving the
secular equation (6) may require a great effort from the com-
putational standpoint. This constitutes the main drawback of
this particular choice of Lindblad operators when considering
multiple channels and several degrees of freedom. The main
contribution of this article is to propose a more suitable form
for the dissipative operators, in order to improve the former
choice and, as a consequence, to make numerically converged
calculations feasible for larger systems.

D. Alternative representation of Lindblad operators

Given the particular form of the system-bath Hamiltonian
as a sum of kinetic energy operators corresponding to each
nucleus, and therefore the corresponding structure of the tran-
sition rates between two eigenstates |n〉 and |m〉, it becomes
natural to think about exploring an alternative representation
of the Lindblad operators using a more suitable basis set. We
propose to construct the multidimensional dissipative opera-
tors as a tensor product of one-dimensional operators corre-
sponding to each degree of freedom. The question that arises
right away is whether this representation is sufficient to cor-
rectly describe the intra-molecular couplings, that were ex-
plicitly included in the former representation within the multi-
mode states |n〉. Hereinafter, we will answer this question by
solving the resulting equation of motion for a model system.
The alternative choice of dissipative operators results in tran-
sition rates which are naturally decomposed into a sum of
corresponding one-dimensional rates associated with each de-
gree of freedom. The Lindblad operators in the tensor product
basis set read

Ĉm0n0
= �

1/2
n0→m0

|m0〉〈n0|, (12)

where

|m0〉 = |mq1
〉 ⊗ |mq2

〉 · · · ⊗ |mq
N
〉, (13)

N being the total number of degrees of freedom of the system.
Furthermore, the new transition rates �n0→m0

can be split into
N one-dimensional rates, each one representing the single-
mode dissipative channels. Within this approach, the transi-
tion rates become decoupled:

�m0→n0
=

N∑
i

Iq1
⊗ Iq2

⊗ . . . �̃m
q
i
→n

q
i

⊗ . . . Iq
N
. (14)

Henceforth, the advantages of this assumption to tackle the
quantum reaction dynamics of systems of sequentially in-
creasing dimensionality are striking: the numerical effort as-
sociated with the computation of the quantities �m0→n0

scales
linearly with the system dimension. If the system Hamiltonian
is conveniently decomposed into a sum of one-dimensional
Hamiltonians plus an intra-molecular coupling term:

Ĥ = Ĥ0 + �V̂ , Ĥ0 =
∑

i

Ĥq
i
, (15)

then the states |m0〉 can be chosen as the eigenfunc-
tions of the problem Ĥ0|m0〉 = Em0

|m0〉. In that case, the
Liouville-von Neumann equation in the interaction picture
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becomes

˙̂ρ(I )(t) = − i

¯
[�V̂

(I )
, ρ(I )(t)]

+
∑

i

∑
m

q
i
n

q
i

�m
q
i
→n

q
i

2

([
Âm

q
i
n

q
i

(t), ρ̂(I )(t)Â†
m

q
i
n

q
i

(t)
]

+ [
Âm

q
i
n

q
i

(t) ρ̂(I )(t), Â†
m

q
i
n

q
i

(t)
])

, (16)

where Âm
q
i
n

q
i

= |mq
i
〉〈nq

i
|. The interpretation of this equa-

tion of motion becomes clear: while the alternative Lindblad
operators accounts for the dissipation channels of one-
dimensional modes coupled to the bath, the first term of the
equation containing �V̂ , properly incorporates the intra-
molecular vibrational energy redistribution between the sys-
tem degrees of freedom. That is, by choosing a representation
for the dissipative operators of uncoupled uni-dimensional
channels linked with the single-mode Hamiltonians, we are
thus transferring the coupling between the system degrees of
freedom into the commutator between the density matrix and
�V̂ . When �V̂ = 0, both representations coincide.

Care must be taken in choosing the basis set for the repre-
sentation of the operators. Since the dynamics of the system is
not unitary, it evolves towards a pointer state that depends on
the chosen basis.36 In the Lindblad form, proper unitary trans-
formation of all operators will yield the same microscopic re-
laxation scenario at the cost of losing the diagonal form of
the dissipative super-operator.36, 55 Using a tensor product ba-
sis of one-dimensional pseudo-spectral functions, |m0〉, the
equations of motion take the form

ρ̇
(I )
m0n0

(t) = − i

¯

∑
n′

(
�V

(I )
m0n′ρ

(I )
n′n0

(t) − ρ
(I )
m0n′(t)�V

(I )
n′n0

)

+ δm0n0

∑
n′

�n′→m0
ρ

(I )
n′n′(t)

−
∑

n′

(
�m0→n′ + �n0→n′

2

)
ρ

(I )
m0n0

(t). (17)

The matrix exhibits lots of structure, which can be exploited
to render the time integration of Eq. (17) very efficient while
simultaneously limiting the memory storage of the Liou-
ville super-operator. Despite the apparently more complicated
structure of Eq. (17) as compared to Eq. (7), the former is, in-
deed, more suitable when the number of degrees of freedom
increases, as solving Eq. (7) becomes infeasible. Once again,
the advantage of Eq. (17) over Eq. (7) lies in the possibility
of computing the high dimensional transition rates as a ten-
sor product of one-dimensional rates, via the one-dimensional
eigenstates, |mq

i
〉. The costly diagonalization of the high-

dimensional Hamiltonian, Ĥ , to generate the full spectral ba-
sis and to compute the high-dimensional transition rates, is
no longer feasible when the number of degrees of freedom
increases. The grid-based representation appears thus more
computationally suitable for high-dimensional quantum dy-
namics, especially if the stochastic unravelling of the RDM is
preferred to the full density matrix propagation technique.

III. MODEL SYSTEM

This section is devoted to testing the new approach in a
two-dimensional system interacting with a bath. The Hamil-
tonian of the model system was chosen to resemble the real-
istic interactions of two coupled CO molecules approaching
a Cu(100) surface. The parameters of the interaction poten-
tials between the CO molecules and the copper substrate are
adapted from Refs. 56 and 57.

Previous calculations carried out for the CO/Cu system
reference 39, including both instantaneous and delayed dis-
sipation, have shown that the main effect of the latter is the
appearance of quantum coherences in the time evolution of
the state populations. Nevertheless, the overall population dy-
namics remains similar to that obtained if only instantaneous
dissipation is considered. Delayed dissipation is expected to
play a minor role in the present case since only normal vi-
brations of the CO centre of mass relative to the surface are
considered here, and the surface vibrations couple preferen-
tially to the frustrated translational mode. Therefore, in this
paper, we consider Lindblad instantaneous rates only.

A. Hamiltonian

In Fig. 1 a cartoon of the problem we use as a toy system
is depicted.

The system Hamiltonian for two rigid CO molecules ori-
ented perpendicular to the copper surface is given by

Ĥ = T̂q1
+ T̂q2

+ V̂1(q1) + V̂2(q2) + V cpl(q1, q2), (18)

where q1 and q2 are the respective distances from each of the
CO-centre of masses to the surface. T̂q1

and T̂q2
are the one-

dimensional kinetic energy operators while V̂1, V̂2, and V cpl

designate, respectively, the potential energy operators corre-
sponding to the motion along the q1 and q2 coordinates and
the coupling between these two vibrational modes. Here we
adopt the dissipative model introduced in Ref. 57, where state-
resolved anharmonic transition rates were calculated pertur-
batively, as in Eq. (10). The non-adiabatic couplings �m→n,
between the adsorbates degrees of freedom and the electrons
at the surface, drive the population transfer from state |m〉 to
state |n〉. Upon relaxation, dephasing destroys coherence in
the system.

FIG. 1. Scheme of the system: two CO molecules approaching a Cu(100)
surface. q1 and q2 are the distances from each CO centre of mass to the sur-
face, respectively. d corresponds to the distance between the centre of mass
of each molecule.
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B. Potential energy surface

The Hamiltonian Ĥ (Eq. (18)) describing the vibrations
of the target two-dimensional system comprises the one-
dimensional potential energy operators V̂1(q1) and V̂2(q2),
which are taken as Morse functions with equilibrium dis-
tance q

eq

i = 4.805 bohrs, well depth Dq
i
= 0.02128 a.u., and

anharmonicity parameter αq
i
= 1.588 bohr−1, (i = 1, 2).

The parameter values are chosen so that the resulting Morse
potential resembles the interaction between a CO molecule
and a Cu(100) substrate extracted from Ref. 56. On the
other hand, the non-separable term V cpl(q1, q2) consists in a
screened bi-linear coupling of the form:

V cpl(q1, q2) = a

⎡
⎣

√
Mq1

Mq2
ωq1

ωq2

2

⎤
⎦ (q1 − q

eq

1 )F1(q1)

· (q2 − q
eq

2 )Fq2
(q2), (19)

where ωq
i

designate the oscillation frequency (within the har-
monic approximation) along each coordinate. This magnitude
of the prefactor takes the value of 0.00086 a.u.

The screening functions F1, F2 guarantee the linear
behavior of the coupling in the neighbourhood of the equilib-
rium position along each degree of freedom and they asymp-
totically vanish for large elongations. In this work, the appli-
cability of the numerical scheme described above, to account
for the dissipation dynamics of two coupled identical Morse
oscillators, is explored for several coupling strengths. The di-
mensionless parameter a, which controls the relative intensity
of the interaction term V cpl(q1, q2) with respect to the uncou-
pled Hamiltonian, is varied within the range from 0.0 to 1.0. It
can be understood as the distance-dependence (d) of the inter-
action between the two CO molecules. The value a = 1 refers
to a situation where the coupling and the one-dimensional po-
tentials V̂q

i
are of the same order of magnitude. As a conse-

quence of the symmetry of the problem, the screening func-
tions are also taken to be equal:

Fi(qi) = e
−
(

q
i

q
eq
i

+2/α
q
i

)8

·
⎡
⎣1 − e

−
(

q
i

q
eq
i

−1/α
q
i

)8
⎤
⎦ . (20)

The analysis of the effect of the potential asymmetry on the
numerical performance of the proposed method is deferred for
further discussion in a forthcoming contribution.

C. Basis representation

The calculation of the derivative in Eq. (1) implies the
evaluation of the action of both the Liouvillian and the Lind-
blad superoperators on the density operator at every time step,
which can be expressed more conveniently in the Dirac rep-
resentation. Accordingly, two different routes were followed
to describe the vibrational relaxation of the system: first, by
solving the Liouville-von Neumann equation (1) in the full
spectral basis representation (7), and second, by using the di-
rect product basis representation corresponding to the effec-
tive one-dimensional Hamiltonians leading to Eq. (16) and
then projecting on the same basis (Eq. (17)). In the first case,

the direct diagonalization of the two-dimensional Hamilto-
nian Ĥ is necessary. To this aim, Ĥ is represented using
a tensor product basis built up by the one-dimensional po-
tential optimized-discrete variable representation (PO-DVR)
basis sets corresponding to each degree of freedom, |α〉|β〉.
The two-dimensional Hamiltonian eigenfunctions can be then
written as

|n〉 =
∑
αβ

Cαβ,n|α〉|β〉. (21)

In this basis, the matrix elements of the Hamiltonian exhibit
also a favourable sparse structure:

Hαβ,α′β ′ = T
(1)
α,α′δββ ′ + T

(2)
β,β ′δαα′ + (V1(q1α) + V2(q2β)

+V cpl(q1α, q2β ))δαα′δββ ′ . (22)

In the PO-DVR basis, the kinetic energy operators are one-
dimensional matrices and the potential is diagonal and simply
evaluated at the DVR points, α, β. The diagonalization of the
Hamiltonian Ĥ in that basis yields the expansion coefficients
Cαβ, n.

In a second approach, we split the Hamiltonian Ĥ as
follows:

Ĥ = Ĥ0 + �V̂ . (23)

The contribution,

Ĥ0 = Ĥ eff
q1

+ Ĥ eff
q2

= (
T̂q1

+ V̂ eff
q1

) + (
T̂q2

+ V̂ eff
q2

)
, (24)

is a simple sum of effective one-dimensional Hamiltonians,
Ĥ eff

q1
and Ĥ eff

q2
, generated by the PO-DVR procedure which is

described bellow. The advantage of using this basis set lies
in the reduction, to a large extent, of the intra-molecular cou-
pling originally present in Ĥ . The residual potential coupling,
�V̂ , is given by

�V̂ = Ĥ − Ĥ0 = V̂ cpl + (
V̂q1

− V̂ eff
q1

) + (
V̂q2

− V̂ eff
q2

)
.

(25)

This partition enables the use of the effective Hamiltonians
eigenbasis:

Ĥ eff
q

i
|mq

i
〉 = εq

i
|mq

i
〉, (i = 1, 2), (26)

to perform the transformation to the interaction picture.
The solution of Eq. (1) requires the specification of an

initial state, generally mimicking certain experimental condi-
tions. Here, the initial density matrix corresponds to a pure
vibrational state along each degree of freedom, which is de-
noted as |2〉q1

⊗ |0〉q2
in product representation, or as (2, 0) in

pseudo-spectral form.

D. Numerical details

A fourth-order Adams-Moulton predictor-corrector
method, initiated by the fourth-order Runge-Kutta integrator,
was used to evolve in time the matrix elements of the reduced
density matrix according to the dissipative Liouville-von
Neumann equations (7) and (17). Convergence tests were
carried out for the different parameters influencing the
numerical propagation, e.g., the time step and the number
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of basis functions in the grid representation introduced in
Sec. III C, and a step size of 5 a.u. was chosen. The total prop-
agation time was set to 24 ps. For comparison, the lifetime
of the first excited state along the mode q1 was calculated
from first principles in the local harmonic approximation. It
was found to be 3 ps, in good agreement with experimental
estimates.

At each time step, the projection operators P̂n
q1

= |nq1
〉

〈nq1
| ⊗ Iq2

and P̂n
q2

= Iq1
⊗ |nq2

〉〈nq2
| are used, respectively,

to compute the state populations pn
q1

(t) and pn
q2

(t) according

to

pn
q1

(t) = 〈P̂n
q1

〉 = Tr{P̂n
q1

ρ̂}, (27)

with similar formula holding for the populations pn
q2

(t). Ad-

ditional observables were calculated to aid the interpretation
of the physical process under study, for instance, the purities,

γ (R) = Tr (ρ̂(R) ρ̂(R)),R = {f act, f ull}; (28)

as well as the time-averaged mean squares of the one-
dimensional-populations and -purities differences,

�pi =
√

1

T

∫ T

0

(
p

f ull
n

q
i

− p
f act
n

q
i

)2
dt, (29)

and

�γ =
√

1

T

∫ T

0
(γ f ull − γ f act )2 dt, (30)

where T is the total propagation time. The superscripts fact
and full stand for the factorization and full-dimensional pro-
cedures used to compute the transition rates.

IV. POTENTIAL-OPTIMIZED DISCRETE VARIABLE
REPRESENTATION (PO-DVR)

As it is standard in discrete variable representations, the
matrix elements of differential operators such as the kinetic
energy or the transition rates are computed exactly, while
those operators which are local in the position operator repre-
sentation (e.g., the potential energy contributions) are eval-
uated approximately, within the accuracy of the Gaussian
quadrature. The PO-DVR is based on the use of an under-
lying dense grid to solve the time-independent Schrödinger
equations:

Ĥ eff
q

i
|mq

i
〉 = (

T̂q
i
+ V̂ eff

q
i

)|mq
i
〉 = εq

i
|mq

i
〉, (i = 1, 2), (31)

which provides numerically exact one-dimensional eigen-
functions for the low-energy states. Let us recall that we are
neglecting the inter-mode coupling in the calculation of the
one-dimensional eigenstates. The set of eigenfunctions |mq

i
〉

is filtered by imposing certain threshold εmax on the eigenval-
ues εq

i
. This filter is not unique but allows for a good descrip-

tion of low-energy states, which is relevant to the dynamics
reported in this work. In a second stage, the resulting con-
tracted basis sets are used to represent the one-dimensional
effective Hamiltonians, H eff

q
i

, which are subsequently diag-
onalized. The representation actually used in the dynamical

calculations is constructed as the tensor product of the eigen-
functions |mq

i
〉 for each degree of freedom qi.

The definition of the effective Hamiltonians in (26) is also
not unique. However, a clever partitioning of the total Hamil-
tonian may help to shift large parts of the coupling into the ef-
fective operators Ĥ eff

q
i

. In doing so, the commutator appearing
in Eq. (16) containing the coupling gets reduced, ultimately
becoming negligible and yielding a purely dissipative dynam-
ics in the interaction representation.

Following the original implementation by Echave and
Clary,58 we define the effective contributions entering the
terms in the right-hand side of Eq. (23) as

V̂ eff
1 (q1) = V̂1(q1) + V̄ (q1), and

V̂ eff
2 (q2) = V̂2(q2) + Ṽ (q2),

where the auxiliary functions V̄ (q1) and Ṽ (q2) are given by
the expressions:

V̄ (q1) = min
q2

(V cpl(q1, q2)), (32)

Ṽ (q2) = min
q1

(V cpl(q1, q2) − V̄ (q1)). (33)

Here V̄ (q1) is the coupling between the Morse oscillators ob-
tained by minimizing, for each value of the coordinate q1,
the superposition Vq2

(q2) + V cpl(q1, q2) with respect to co-

ordinate q2. The same procedure is used to generate Ṽ (q2),
where the minimization is now performed with respect to co-
ordinate q1. In this case, the second term, k1 = min

q1

(V̄ (q1)), is

just a constant. Within this partitioning, the expression for the
residual potential term �V̂ as a function of V cpl(q1, q2) takes
the following form:

�V̂ (q1, q2) = V cpl(q1, q2) − V̄ (q1) − Ṽ (q2). (34)

In this paper, this quantity is varied to evaluate the equiva-
lence between the factorizable and the fully coupled ansatz,
allowing for a systematic, unbiased investigation of the effect
of the IVR over a wide range of intermode coupling strengths.

In Fig. 2, the ratio between Frobenius norms corre-
sponding to matrix elements representing the operator �V̂

and those of the potential energy operator V̂1(q1) + V̂2(q2)
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FIG. 2. Black points: ratio between Frobenius norms of matrices �V
ij

and V
ij

for different inter-mode coupling strengths. Red line: ratio between
Frobenius norms of matrices �V

ij
and Hij for different values of a.
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+ V cpl(q1, q2) are shown. The mathematical expression for
this ratio is

f V =
∑

i,j |�Vij |2∑
i,j |Vij |2

. (35)

It can be observed, that the residual coupling �V̂ represents
only a small fraction of the total interaction potential. The
same behavior is observed for the ratio between Frobenius
norms of matrix elements corresponding to �V̂ and the total
energy of the system, respectively:

f H =
∑

i,j |�Vij |2∑
i,j |Hij |2

. (36)

In both cases these magnitudes have values below the 1%,
thus indicating that the residual potential operator �V̂ repre-
sents indeed a relatively small perturbation.

Fig. 3 shows a comparison between the coupling
V cpl(q1, q2) and the residual potential term (�V̂ (q1, q2)
− k1), obtained via the transformation procedure outlined
above. The constant term, k1, contained in �V̂ has been dis-
regarded. As it can be seen, the procedure employed tends
to flatten the attractive part of the coupling potential towards
zero, while increasing the repulsive part. This is a result of
the filtering choice, which transfers an important part of the
coupling to the effective one-dimensional Hamiltonians, H eff

q
i

.

FIG. 3. Comparison between the coupling potential V cpl(q1, q2) (left pan-
els) and the residual potential �V (q1, q2) (right panels) after applying the
PO-DVR procedure, for different inter-mode coupling strengths. The region
where the dynamics takes place lies between 4.6 Å and 5.2 Å approxi-
mately, along both axes. The resulting coupling potential �V tends to flatten
around this region compared with V , even for the largest inter-mode coupling
a = 1.0.

This behavior tends to be more pronounced as the coupling
strength increases, and it can be observed more clearly if we
look at the region in which the dynamics takes place (in-
side the dashed square). This area ranges approximately from
4.6 Å to 5.2 Å along both axes and, as it can be seen, the flat-
tening effect of the coupling potential is more marked for the
largest coupling constant a = 1.0 (bottom panels).

Upon construction, the Hamiltonian Ĥ0 contains a signif-
icant part of the correlation between the two degrees of free-
dom in the region relevant for the dissipative dynamics and an
efficient and most likely accurate first approximation would
be to disregard the potential coupling term in the Liouville-
von Neumann equation of motion. Still, our goal is to assess
the influence, on the coupled dynamics, of the choice of the
ansatz (factorizable or full) introduced in order to evaluate
the transition rates. Therefore, the results presented in Sec. V
were obtained by considering both diffusion and dissipation
terms in Eqs. (7) and (17).

V. RESULTS AND DISCUSSION

As mentioned above, the central question to be addressed
is whether expressing the Lindblad operators as a tensor prod-
uct of one-dimensional dissipative operators, and thus trans-
ferring the coupling between the degrees of freedom from the
two-dimensional rate constants towards the commutator part
of Eq. (16), is sufficient to recover the same system dynamics
derived from solving the full two-dimensional Liouville-von
Neumann Eq. (7) with two-dimensional Lindblad operators.
To assess the influence of the product ansatz, in this section
we will present the comparison between different observables
calculated within these two approaches that we shall call here-
after the factorizable and the full methods, respectively, for
the specific system described in Sec. III.

First, we will examine the time evolution of the one-
dimensional state populations corresponding to each degree
of freedom, pn

q1

(t) and pn
q2

(t), as introduced in Eq. (27).

Fig. 4 shows the behavior of these quantities during the first
24 ps of the dynamics. Taking into account the initial condi-
tions and that exclusively downward transitions are allowed,
at T = 0, according to the principle of detailed balance, only
those states fulfilling nq1

, nq2
≤ 2 are considered. The various

panels, from top to bottom, correspond to different coupling
constants ranging from the smallest a = 0.0 to the largest one
a = 1.0. The left panels correspond to the population pn

q1

(t)

of states nq1
∈ {0, 1, 2}, while the corresponding state popu-

lations pn
q2

(t) are displayed on the right.

For the case of vanishing coupling strength (a = 0.0), the
population dynamics serves as a test of the numerical stabil-
ity of the algorithm, as both approaches have to yield same
results for this limiting case. Since there is no population
transfer between the two degrees of freedom, the probabil-
ities pn

q2

(t) (nq2
�= 0) remain equal to zero at all times and

the problem is effectively one-dimensional. As for pn
q1

(t), the

values pn
q1

(0) = δ2 n
q1

follow from the initial conditions. It

can be seen that the state nq1
= 2 undergoes an exponential
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FIG. 4. Comparison between the effective one-dimensional state populations
p

n
q
i

calculated by both, the full and factorizable methods. The p
n
q
i

corre-

spond to the population of each degree of freedom qi (i = 1, 2) and each
effective single-particle state n

q
i
= 1, 2, 3, for different coupling strengths a.

The results obtained applying the factorizable method converge quite well
to those obtained from the full approach even for the largest inter-molecular
coupling. The oscillation frequency increases with the coupling strengths (see
explanation within the text).

decay. The population of both the ground and the first excited
vibrational states increase during the first 5 ps, the growth of
the latter taking place at a faster rate. From 5 ps onwards, the
population of the state nq1

= 1 is also progressively depleted
as a consequence of the population transfer to the ground
state. The calculations carried via the bi-dimensional and the
factorizable representations of the dissipation operators yield
identical results, as expected. The overall relaxation of the
system takes place within the first 24 ps approximately.

This close correspondence between the two simulation
schemes persists upon inclusion of non-vanishing couplings.
For a > 0.0, the relaxation stops to be restricted to a single vi-
brational mode but the predictions based on the factorization
method (Eq. (17)) stay in excellent agreement with the dy-
namics derived within the full-dimensionality approach. For a
= 0.1, it can be noticed that the population dynamics roughly
follows the same trend as the uncoupled case, namely the
decrease of the population of the initial state nq1

= 2 and
the gradual increase of the probabilities to find the system
in states nq1

= 1 and nq1
= 0. However, for this coupling

strength, a marked oscillatory pattern gets superimposed on
the average behavior of the state populations. While the av-
erage trend of the one-dimensional state populations is a fin-
gerprint of the effect of dissipation, the oscillations arise from
the inter-mode coupled dynamics, more specifically from the
IVR. Thus, the deviations from the former becomes increas-
ingly more pronounced as the coupling gets larger.

The oscillatory pattern exhibited by the effective one-
dimensional populations can be understood if we consider
that after tracing out one of the degrees of freedom, the inter-
mode coupling can be regarded as an external oscillatory field
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FIG. 5. Time-evolution of the effective one-dimensional populations p
n
q1

and p
n
q2

, corresponding to the inter-mode coupling strength a = 0.1. Notice

the overlapping between states n
q1

= 1 and n
q2

= 1, whereas states (n
q1

= 2

and n
q2

= 2), and (n
q1

= 0 and n
q2

= 0) have opposite phases. This is a fin-

gerprint of the presence of the vibrational coherence in the evolution of the
density matrix.

affecting the dynamics of the remaining vibrational mode.
This scenario resembles the problem of a three-level sys-
tem subject to an oscillatory field with constant and equal
Rabi frequencies, in which the Rabi frequencies are smaller
than the detuning of the laser field.59, 60 To further under-
stand this behavior let us focus on the evolution of the popu-
lation pn

q1

corresponding to the coupling strength a = 0.1,

as depicted in Fig. 5. From the figure it can be seen that
populations corresponding to states nq1

= 0 and nq1
= 2 are

completely correlated and with opposed phases. The oscil-
latory pattern superimposed to the general dissipative trend
has clearly two frequencies, whereas the one corresponding
to nq1

= 1 has only one. The population flows initially from
state nq1

= 2 to nq1
= 0 passing trough state nq1

= 1 and re-
turning, performing further periodic cycles. The population in
state nq1

= 1 comes from both contributions, namely in tran-
sit from nq1

= 2 → 1 → 0 and vice versa nq1
= 0 → 1 → 2,

leading to a beating frequency twice that of the fastest oscilla-
tory component corresponding to the transition nq1

= 0 → 2.
On the other hand, Fig. 5 shows how the populations in
q1-axis compare to those of the q2-axis. It can be clearly
seen that the states nq1

= 1 and nq2
= 1 completely over-

lap whereas both pair of states
(
nq1

= 2 and nq2
= 2

)
, and(

nq1
= 0 and nq2

= 0
)

have opposite phases. The behavior of
the nq1

= 1 and nq2
= 1 states is a fingerprint of the presence

of vibrational coherence in the time-evolving density matrix.
In other words, IVR remains a coherent process in the cou-
pling range investigated here.

By further increasing the parameter a up to the value of
0.3, an interesting behavior is observed: the curves represent-
ing the populations of the ground and the second excited state
become appreciably more correlated, pointing to the more im-
portant role played by the transitions between these two states
mediated by the intermediate one. Furthermore, as the cou-
pling strength parameter is increased, the oscillations of the
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FIG. 6. Snapshots of the evolution of the probability distribution for certain points in time calculated with both approaches: full (left panels) and factorizable
(right panels). The initial condition is set as (2, 0). (a) Zero inter-molecular coupling. The dynamics takes place only in one axis and both approaches yield
identical results in this limiting case. (b) Intermediate coupling (a = 0.5). Strong IVR causes fast energy flow, leading to the inversion of population along each
degree of freedom. Both approaches yield similar results.

different populations become more and more pronounced as
it is expected, due to the larger Rabi frequency. Even for the
strongest coupling, the population evolution predicted by the
two methods agrees remarkably, thus pointing to the conclu-
sion that the one-dimensional tensor product ansatz of the
multidimensional dissipative operators provides a quite sat-
isfactory description of multidimensional quantum relaxation
processes.

Figs. 6(a) and 6(b) depict the evolution of the different
wave packets along both q1 and q2 axis, corresponding to dis-
tinct coupling strength parameters and to both computational
approaches employed in this work (similar curves for other
coupling strengths can be found in the Appendix, Figs. 9(a)–
9(d)). The representative snapshots were chosen to highlight
important changes in the nodal structures along the dissipa-
tive reaction path. Fig. 6(a) shows the density evolution cor-
responding to certain points in time for the case of uncou-
pled oscillators. It can be observed that, first, the dynamics
takes place only along the q1-axis as it is expected taking
into account the initial conditions. That is, the initial popu-
lation is concentrated in nq1

= 2 and nq2
= 0 states and de-

cays smoothly towards state nq1
= 0 via the intermediate level

nq1
= 1 (3.60 ps) within the first 11 ps.
Moreover, it can be clearly noticed that both methods be-

have identically, as it must be for the limiting case of zero
coupling. By further increasing the coupling parameter we
arrive to the scenario depicted in Fig. 6(b) corresponding to
a = 0.5, the intermediate coupling strength, in which the
two modes are strongly influencing each other and the strong

IVR causes fast energy flow between them. The energy ex-
change leads to the inversion of population along each de-
gree of freedom, compared to the initial state, i.e., when go-
ing from (2, 0) to (0, 2) (the notation (nq1

, nq2
) was chosen to

label the coupled two-dimensional eigenstates). This partic-
ular feature is present at several points in time and it occurs
more frequently as the coupling parameter increases, as it can
be noticed from Fig. 4 in the spectral representation, and in
Fig. 6(b) in the grid representation for the specific time in-
stants t = 0.48 ps and t = 1.92 ps. After switching on the cou-
pling, the two-dimensional wave packet can not be described
anymore as a Hartree product of single-particle wave func-
tions corresponding to each dynamical variable, but as a linear
superposition of all possible combinations of Hartree products
corresponding to different energy states of each mode. As a
consequence, the wave packet turns out to exhibit the intricate
shape observed, for instance, at t = 5.52 ps and t = 10.80 ps
in Fig. 6(b). Additionally, it can be confirmed that for inter-
mediate couplings the full and the factorizable approaches
converge approximately to the same values. For systems sub-
ject to strong IVR, the overall dynamics consists on the peri-
odic, coherent broadening and contraction of the probability
density along the two coordinates, eventually relaxing to the
same ground state wave function (0, 0). Even at the largest
coupling strength, the two methods behave almost identically
(see the Appendix), thereby reinforcing the overall conclu-
sion that the factorizable method entails the same dynam-
ics as the full for all possible coupling strengths, provided
prior effort is made to include as much of the coupling in the
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FIG. 7. Time-evolution of the purity for each of the coupling strengths at
T = 0 K. All purities start at 1 since the initial condition (2, 0) corresponds to
a pure state in all cases. The initial loss of purity is associated to the initial de-
coherence due to the interactions between the system and the bath particles.
As the system relaxes, it reaches its ground state and the purity approaches
towards the unity value. The oscillations of the purity within the full approach
compared with the straight behavior of the factorizable approach, can be ex-
plained by the choice of the initial condition (see text). Both approaches yield
very similar results.

effective one-dimensional operators defining the pseudo-
spectral basis. This is to say that potential-mediated IVR is
the dominant effect determining the intermode mixing upon
relaxation, while the coupling between relaxation operators
remains only marginal. Thus, it is possible to utilise the ad-
vantageous form of the tensor product of one-dimensional dis-
sipative operators to perform high-dimensional quantum cal-
culations, shifting the correlation between these single-mode
wave functions acting as a basis set, to the coupling part of
the Hamiltonian.

The evolution of the system purity for each value of the
coupling strength parameter as well as for each of the ap-
proaches considered in this article (factorizable and full), is
depicted in Fig. 7. Since the system is initially prepared as
a coherent superposition of the zeroth-order states of Ĥ , the
initial state has a purity equal to 1, independent of the basis
choice. Very quickly, the purity starts to decrease from the
value 1 till reaching a minimum in every case, this phase cor-
responding to the initial interaction between the system and
the bath particles. The overall trend of the time evolution of
the purity can be divided into two time steps: the initial de-
creasing behavior, and the later increase in magnitude towards
the asymptotic limit of unity. The first contribution is due to
the loss of quantum coherence of the wave packet mediated
by the interaction of the system with the bath. At zero tem-
perature, as the system undergoes further quantum relaxation,
it eventually reaches its global ground state, which is also a
pure state, the latter being the reason for the increase in the
quantum purity at later times.

The overall shape of the different curves being the same,
the main deviations between purities related to different cou-
pling strengths appear in the magnitude of the correspond-
ing minima, the specific points in time at which such min-
ima are reached as well as in their asymptotic behavior. In
the case of zero coupling, the system reaches its purity mini-
mum around 5 ps after the dynamics have started, and its value
at this particular instant is the largest among the minima ap-
pearing for all the other coupling strengths studied here. This
indicates that the absence of inter-molecular vibrational cou-
pling between the independent effective one-dimensional sys-
tems initially speeds up the loss of quantum coherence reach-
ing much faster its minimum, but also the return to the pure
ground state at later times. On the other hand, the purities
associated with non-vanishing coupling strengths reach their
minimum at much later times, around 10 ps. The presence
of the inter-vibrational coupling between the effective one-
dimensional systems leads to a slower dynamics, as the two
degrees of freedom internally exchange energy, delaying the
energy release into the bath modes. This effect can be visu-
alized both in the less pronounced slope of the purity when
the inter-coupling constant is different from zero, as well as
in the final value of the purity depicted in the graphic, as com-
pared with the zero coupling case. Moreover, all of non-zero
coupling purities have approximately the same value at their
respective minimum, which corresponds to the most strongly
mixed state. As the coupling strength increases, there are no
major differences between the overall behavior of this mag-
nitude along the entire simulation, except for the case of zero
coupling. Regarding the comparison between the full and the
factorizable methods, it can be observed from this figure that,
as the other observables calculated in this work, both are very
similar to each other for all cases. The small difference be-
tween the two approaches increases about linearly with cou-
pling strength, apart from the case a = 0.1.

Likewise, the asymmetric initial condition (2, 0) is re-
sponsible for the emergence of the structured pattern in the
case of the fully coupled basis representation, resulting in
small oscillations in the purity. In the small potential cou-
pling regime, the incoherent relaxation due to the system-
bath interaction dominates, resulting in two different relax-
ation scenarios depending on the choice of the initial wave
function representation. When the factorizable representation
is selected, the initial wave-packet (2, 0) is an eigenstate of
the effective Hamiltonian, Heff, and the initial density ma-
trix is not only diagonal, but contains only one term differ-
ent from zero, corresponding to the population of this single
eigenstate. This feature leads to a nearly one-dimensional re-
laxation of the q1 degree of freedom at short times for systems
where the characteristic environment-induced relaxation time
is faster than or on the same order as IVR. Thus, the early
system evolution is roughly dominated by the transitions (2,
0) → (1, 0) → (0, 0) essentially due to the system-bath cou-
pling. In the factorizable ansatz, the resulting purity exhibits
a smooth profile due to the vanishing effective inter-mode
coupling.

On the other hand, when the full spectral basis rep-
resentation is chosen, this particular initial wave func-
tion is, by construction, a linear coherent superposition of

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

87.77.118.212 On: Fri, 12 Sep 2014 08:15:38



074703-12 L. Uranga-Piña and J. C. Tremblay J. Chem. Phys. 141, 074703 (2014)

two-dimensional states (2, 0) = ∑
m

d
(2,0)
m |m〉. Conversely, the

fully coupled states can be expressed as a linear combina-
tion of pseudo-spectral states, |m〉 = ∑

ij

cm
ij (i, j ). In a min-

imal spectral basis, two factorizable states combine to lift
the degeneracy: |g〉 = {(2, 0) + (0, 2)}/√2 and |s〉 = {(2, 0)
− (0, 2)}/√2, where the symmetric state |g〉 is more stable.
In general, since each spectral state exhibits both (2, 0) and
(0, 2) character, the initial reduced density matrix associated
with the factorizable initial condition is full and the states are
coupled. These two-dimensional states implicitly carry the
intermolecular vibrational coupling, thus leading to a some-
what distinct relaxation scenario where the two-dimensional
wave function relaxes as a whole leading to natural oscilla-
tions in the purity. This reflects the coherent movement of
the wave packet between the symmetrically equivalent fac-
torizable states. These oscillations are damped after at longer
times (t > 5 ps) due to the loss of “internal” coherence caused
by the system-bath interaction. It is interesting to recognize
that the frequency of this purity oscillation coincides with the
corresponding oscillations of the populations.

As the coupling strength increases (a = 0.3) an interme-
diate regime is reached, where the system-bath interaction and
the inter-vibrational coupling are of the same order of magni-
tude and, although the purity undergoes the same behavior, its
oscillation amplitude are almost vanishing from the very be-
ginning. For larger inter-mode coupling constants, a, a regime
where IVR is faster than the characteristic system-bath inter-
action time is reached. In this case the corresponding purities
are almost flat (the oscillation frequencies are greater and the
damping times of their amplitudes are smaller) and better co-
incides in the early stage with the purities obtained within the
factorizable representation. Nevertheless, at longer times, the
contribution of the loss of “internal” coherence (i.e., the IVR)
within the full representation adds up, slightly slowing down
the relaxation dynamics as compared to the pseudo-spectral
representation.

To gain more insight into the differences between the
two theoretical approaches described above, the distances be-
tween two of the observables integrated over time as a func-
tion of the coupling strengths are shown in Fig. 8. The top
panel depicts the average distances between the populations
corresponding to each state along both modes, while the bot-
tom panel depicts the distance between purities. Note that,
for the case a = 0.1, the distances between the populations
of the nq

i
= 2 states for the two approaches does not exhibit

the same symmetry as for the other quantum numbers and
the other coupling strengths. We attribute this difference to
the asymmetric initial condition at small coupling strengths,
as discussed above. In the coupled basis, the initial (2, 0)
state is a linear superposition of eigenstates which includes
large part of the IVR between states (2, 0) and (0, 2). This
is also the case for the relaxation operators, which also in-
clude IVR. In the factorizable basis, only the potential contri-
bution to the IVR is included and the relaxation operators re-
main decoupled. For weak potential-induced inter-mode cou-
pling, it appears that system-bath induced coupling included
in the dissipative operators can play a non-negligible role in

0

0.01

0.02

0.03

0.04

√ 
< 

|p
(t

) nfu
ll
 -

 p
(t

) nfa
ct

| 2
>

T

n
q

1
 = 0

n
q

1
 = 1

n
q

1
 = 2

n
q

2

 = 0

n
q

2
 = 1

n
q

2
 = 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
coupling strength (a)

0

0.01

0.02

0.03

0.04

 √
 <

 |γ
 (t

) fu
ll
 -

 γ(
t)

 fa
ct

| 2
>

T

FIG. 8. Overall distances between observables computed using both ap-
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tive differences in all cases do not exceed the 4%.

the proper microscopic description of relaxation dynamics in
the early stages. Once the system has lost a full vibrational
quantum incoherently, this particular resonant condition is
lost and the dynamics follow the same trend in both bases.
As one increases the potential coupling, a, the energy trans-
fer is faster and the resonant condition is reached earlier. This
means that both the density matrices and the populations ap-
proach each other at early stages, thus causing the asymmetry
feature to disappear more quickly. Also, the same mechanism
explains why at intermediate times the distances between pop-
ulations and purities corresponding to both methodologies are
very similar. For larger coupling strengths, the energy trans-
fer between equivalent states in the coupled basis represen-
tation is faster and accumulates, leading to a slightly slower
relaxation dynamics at later times that cannot be fully de-
scribed within the factorizable approach. Nonetheless, in both
cases, the relative difference between the observables com-
puted with both the full and the factorizable methods lies bel-
low 4%, thereby defining an upper limit for the validity of the
factorizable ansatz, where it is possible to describe the dis-
sipative quantum dynamics of a system interacting with its
environment by explicitly constructing the corresponding
multidimensional Lindblad operators as a tensor product of
one-dimensional dissipative operators, and transferring the
coupling between the modes to the remaining term of the
commutator between the coupling potential and the density
matrix in the Liouville-von Neumann equation (see Eq. (16)).

VI. CONCLUSIONS

We have analyzed the accuracy of approximating the
dissipative operators appearing in the Liouville-von Neumann
equation by a tensor product of effective one-dimensional
operators carrying on most of the potential coupling be-
tween the different degrees of freedom of the system. The
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residual intra-molecular vibrational coupling term is taken
into account by the commutator of the residual potential with
the RDM in Eq. (16). The new approach was applied to the
study of a two-dimensional system consisting in two CO
molecules approaching a Cu(100) surface (Fig. 1). A com-
parison between the resulting dynamics using the factoriz-
able method proposed in this work and the propagation of
the reduced density matrix using fully coupled multidimen-
sional Lindblad operators has been performed. The proposed
method yields results in close agreement with the multidimen-
sional propagation scheme, thereby confirming the validity of
the factorization ansatz.

The advantage of the form of the dissipative operators
presented in this work over the standard spectral approach,
lies in the possibility of treating larger systems that would
be otherwise inaccessible. This advantage comes essentially
from the feasibility of computing the multidimensional transi-
tion rates as a sum of one-dimensional rates, thus only requir-
ing the diagonalization of N effective one-dimensional Hamil-
tonians instead of the much more computationally demanding
diagonalization of the full N-dimensional Hamiltonian. In or-
der to properly describe the dynamics of the system, the one
dimensional dissipative operators contained inside the multi-
dimensional Lindblad operator are designed to effectively ac-
count for most of the intra-molecular vibrational coupling. In
the present study, such goal is achieved by a careful choice of
the basis set used to represent these operators, that is, by em-
ploying a contracted grid basis generated via a PO-DVR trans-
formation. The resulting partition of the total Hamiltonian of
the system tends to flatten the attractive part of the coupling,
so the residual interaction gets smaller around the active re-
gion where the dynamics takes place. It is worth to notice,
that the resulting scheme is a factorizable, pseudo-spectral
ansatz employing fully non-local relaxation operators, rather
than a grid-based ansatz. The PO-DVR grid is used to define
a good factorizable, pseudo-spectral representation that cap-
tures most of the intermode coupling.

The one-dimensional populations computed within the
two approaches described above, and starting from an ini-
tial wave-packet which is taken to be an eigenstate, (2, 0),
of the effective one-dimensional Hamiltonians, agree remark-
ably well, even for the strongest inter-mode coupling. Regard-
ing the case of zero coupling, they exactly coincide, owing
to the fact that both approaches concur at this limit. The re-
laxation dynamics for zero inter-vibrational coupling occurs
only along the q1 axis, while decoherence is faster than for
non-vanishing inter-mode couplings. For a > 0.0, the relax-
ation mechanism in the factorizable picture consists initially
in population going back and forth from state (2, 0) to state (0,
2) via state (1, 1) during the first 3 ps, while slowly relaxing
to the asymptotic (0, 0) state. The oscillatory pattern exhib-
ited by these one-dimensional populations can be regarded as
Rabi oscillations, similar to the problem of a three level sys-
tem subject to an external oscillatory field. Within this pic-
ture, the role of the external oscillatory field is played by
the average external oscillatory force exerted by the remain-
ing degrees of freedom. The greater the inter-mode coupling,
the larger the Rabi frequency observed in the population
patterns.

The time-dependent probability density distributions for
the whole range of inter-vibrational couplings considered in
this work are remarkably similar for both the factorization
ansatz and the full spectral representation. The main features
of the relaxation dynamics of the system, e.g., the inversion
of population with respect to the initial distribution at some
points in time, are well reproduced. Also, the overall dynam-
ics exhibit periodic breathings of the wave packet along each
of the coordinates for the first 11 ps, eventually relaxing to the
global ground state (0, 0).

Regarding the quantum purity we have observed that
there are minor differences between both descriptions for the
whole range of potential couplings studied. Since the initial
wave-packet coincides with one of the eigenstates of the fac-
torizable Hamiltonian, the purity for small inter-mode cou-
plings initially exhibits some small oscillatory features in the
fully coupled spectral basis that are absent in the factorizable
ansatz. We attribute this behavior to the fast relaxation along
a single mode as compared to the inter-mode coupling time
within the Lindblad operators. Owing to the zero tempera-
ture regime, the system purity is fully recovered in the asymp-
totic limit in all cases, which occurs faster in absence of IVR.
The presence of the vibrational coupling between the modes
slows down the process of decoherence and the recovering of
the asymptotic coherent character, since the energy exchange
between the internal modes delays the energy release into the
bath modes.

Based on the results summarized above, it can be
concluded that the proposed approach of representing the
dissipative Lindblad operators as a tensor product of one-
dimensional operators, combined with a suitable potential-
optimized basis representation, provides a proper description
of the population dynamics and probability distributions evo-
lution in quantum dissipative systems. The two-dimensional
system addressed here incorporates the essential features of
the dynamics of adsorbates at surfaces. Hence, the close
correspondence between the results of the present model
and those of standard techniques for the integration of the
Liouville-von Neumann equation, is a strong indication that
most of the intermode coupling upon relaxation is mediated
by IVR and not by the coupling between relaxation opera-
tors, even at large coupling strengths. Since the former can
be included exactly in a factorizable ansatz, the conclusions
presented here are likely to hold for dissipative dynamics in
similar systems. Compared to the use of coupled multidi-
mensional spectral Lindblad operators, the present scheme
presents the advantage of enabling a marked reduction of
the grid size and a favourable scaling of the computational
cost with respect to the increase of the dimensionality of the
system.

In the present study, the vibrational degrees of freedom
other than the CO-surface stretch mode, have been disre-
garded. As an outlook, we plan to consider other degrees of
freedom of the adsorbate-surface system, such as frustrated
translations and rotations. The inclusion of the remaining vi-
brational modes is a necessary step for an accurate description
of the true system dynamics, and it constitutes the natural ex-
tension of the present algorithm to treat higher dimensional
systems.
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APPENDIX: EVOLUTION OF THE DENSITY
FOR VARIOUS COUPLING STRENGTHS

See the snapshots of the density evolution in
Fig. 9.
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FIG. 9. Snapshots of the density evolution for an initial condition (2, 0). Weak coupling (a) (a = 0.1) and (b) (a = 0.3). Strong coupling (c) (a = 0.8) and (d)
(a = 1.0)
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