
Hybrid solar cells with ZnO-nanorods and dry processed small molecule absorber
W. Riedel, S. Wiesner, D. Greiner, V. Hinrichs, M. Rusu, and M. Ch. Lux-Steiner 
 
Citation: Applied Physics Letters 104, 173503 (2014); doi: 10.1063/1.4875255 
View online: http://dx.doi.org/10.1063/1.4875255 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/104/17?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Power losses in bilayer inverted small molecule organic solar cells 
Appl. Phys. Lett. 101, 233903 (2012); 10.1063/1.4769440 
 
Influence of the polymer concentration on the electroluminescence of ZnO nanorod/polymer hybrid light emitting
diodes 
J. Appl. Phys. 112, 064324 (2012); 10.1063/1.4754542 
 
The photovoltaic performance of ZnO nanorods in bulk heterojunction solar cells 
J. Renewable Sustainable Energy 3, 033105 (2011); 10.1063/1.3599838 
 
Thickness dependence of the MoO 3 blocking layers on ZnO nanorod-inverted organic photovoltaic devices 
Appl. Phys. Lett. 98, 103305 (2011); 10.1063/1.3554381 
 
Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires 
Appl. Phys. Lett. 94, 173107 (2009); 10.1063/1.3126955 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:  160.45.66.60

On: Mon, 26 Jan 2015 10:32:49

http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1801869040/x01/AIP-PT/TREK_APLArticleDL_012115/Trek-BannerAd-APLdownloads-01-21-2015.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=W.+Riedel&option1=author
http://scitation.aip.org/search?value1=S.+Wiesner&option1=author
http://scitation.aip.org/search?value1=D.+Greiner&option1=author
http://scitation.aip.org/search?value1=V.+Hinrichs&option1=author
http://scitation.aip.org/search?value1=M.+Rusu&option1=author
http://scitation.aip.org/search?value1=M.+Ch.+Lux-Steiner&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.4875255
http://scitation.aip.org/content/aip/journal/apl/104/17?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/101/23/10.1063/1.4769440?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/112/6/10.1063/1.4754542?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/112/6/10.1063/1.4754542?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jrse/3/3/10.1063/1.3599838?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/98/10/10.1063/1.3554381?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/94/17/10.1063/1.3126955?ver=pdfcov


Hybrid solar cells with ZnO-nanorods and dry processed small molecule
absorber

W. Riedel, S. Wiesner, D. Greiner, V. Hinrichs, M. Rusu,a) and M. Ch. Lux-Steiner
Institut f€ur Heterogene Materialsysteme, Helmholtz-Zentrum Berlin f€ur Materialien und Energie,
Lise-Meitner Campus, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

(Received 10 February 2014; accepted 25 April 2014; published online 2 May 2014)

We demonstrate hybrid solar cells with ZnO-nanorods (ZnO-NRs) prepared by a low temperature

electrochemical method and small molecule organic absorber processed by dry organic vapor phase

deposition. A homogeneous coverage of ZnO-NRs by the blend absorber consisting of zinc

phthalocyanine (ZnPc) as donor and of fullerene C60 as acceptor is best realized when a thin C60

layer is first inserted at the ZnO-NR/ZnPc:C60 interface. ZnO-NR/C60/ZnPc:C60/MoO3/Ag solar cell

devices with efficiencies of 2.8% under an illumination of 100 mW/cm2 at 25 �C are demonstrated.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4875255]

In the past decade, organic photovoltaic (OPV) devices

have been extensively developed due to their potential low

cost, light weight, easy to up-scale, and compatibility with

flexible substrates. The efficiency of small molecule based

OPV cells has been continuously improved and reached 5%

on single solar cells1 and 12.0% on tandem devices.2 This re-

markable progress has been attained through the use of new

organic materials, better band alignment at organic and

hybrid interfaces as well as through the development of new

absorber structures including donor-acceptor (D:A) blend

layers. The latter approach has been introduced in order (i)

to match the size of the donor and/or acceptor domains to the

exciton diffusion length (which is typically of less than

40 nm)3 and (ii) to be able to increase the absorber thickness

to the optical absorption length (which is of the order of few

hundreds of nanometers). However, while the first condition

is easily achieved, the realization of the second one is chal-

lenging. The point is that dead end pathways impede the car-

rier flow and thus increase the series resistance of devices.

This results in reduced fill factors (FFs) which in the end det-

rimentally affect the solar cell efficiency.

In order to overcome the latter problem, it has been

recently proposed to prepare OPV cells with blend organic

absorbers deposited on nanostructured oxide semiconductors

such as ZnO with vertically aligned nanorods (nanofibers).4

By using this approach, the active area of the absorber

increases. In addition, effective charge carrier transport path-

ways are created. In particular, electrons are effectively

transported via ZnO-nanorods (ZnO-NRs), since their mobil-

ity of approx. 100 cm2�V�1� s�1 is by several orders of

magnitude higher than that found in organic semiconductors.

By using this approach, OPV cells based on composite

blends of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl

C61 butyric acid methyl ester (PCBM) with efficiencies of

2.03% (Ref. 4) were prepared by means of a wet

spin-coating method. Similar concept was applied for the

preparation of polymer-based OPV devices with efficiencies

of 3.9%.5

In this work, we demonstrate hybrid solar cells with an

efficiency of 2.8% (under 100 mW/cm2 at 25 �C) which

comprise ZnO-NRs and dry-processed small molecule or-

ganic absorber consisting of a blend of zinc phthalocyanine

(ZnPc) as donor and of the fullerene C60 as acceptor. When

compared to conventional OPV cells, the polarity of elec-

trodes in the investigated device is inverted, the front ZnO

transparent electrode acting as cathode. The ohmic contact

at the cathode/C60 interface is realized by a matching

ZnO-NR work function. The effective charge selectivity at

the interface between ZnPc:C60 blend layer and Ag back

contact is ensured by the insertion of a transition metal ox-

ide (TMO) layer such as MoO3 at this interface. MoO3 was

previously proven to successfully replace poly(3,4-ethylene

dioxythiophene):(polystyrene sulfonic acid) PEDOT:PSS

as the hole selective buffer layer in polymer photovoltaic

cells.6 Our experiments demonstrated an effective replace-

ment for the wet-processed p-type PEDOT:PSS layer by an

evaporated MoO3 thin film for small molecule based con-

ventional planar solar cells: even higher solar cell PV pa-

rameters were recorded on solar cells with MoO3 (see

Table I).

The morphology of thin films and cross-section views of

solar cells were investigated by scanning electron micros-

copy (SEM) using a Gemini LEO 1530 microscope at an

operating voltage of typically 5.0 kV. Optical transmission

and reflection measurements were carried out at room tem-

perature in air by a Varian Cary 500 UV-Vis-NIR spectro-

photometer. The work function of ZnO-NRs was determined

from high binding energy cut-off (HBEC) spectra of x-ray

photoelectron spectroscopy (XPS) measurements. The XPS

measurements were carried out under UHV conditions (base

pressure �10�10 millibars). The data were recorded using

Mg Ka x-ray radiation (1253.6 eV, source Specs XR 50) and

a Specs Phoibos 100 electron spectrometer. The electrical

parameters—the series resistance, Rs, and the parallel resist-

ance, Rp, of the OPV devices were determined by fitting the

dark current-voltage (J-V) curves to the one diode model

described by the extended Shockley equation7 which is ap-

plicable for phthalocyanine/fullerene based solar cell devi-

ces.8 The PV parameters—power conversion efficiency
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(Eff), short-circuit current density (Jsc), open circuit voltage

(Voc), and FF were determined from J-V measurements per-

formed under an illumination of 100 mW/cm2 (Ha-lamp) at

25 �C.

ZnO-NRs were grown by electrodeposition on indium

tin oxide (ITO) substrates from an aqueous solution of 5 mM

Zn(NO3)2 and 5 mM NH4NO3 at a temperature of 75 �C.

Before ZnO deposition, ITO substrates were covered by a

seed layer (SL) of 30 nm sputtered intrinsic ZnO (i-ZnO).

The ZnO-NR diameter and length were adjusted by varying

the deposition time. Further details of the ZnO-NR prepara-

tion are published elsewhere.9,10

Figure 1 shows the morphology of ZnO-NRs. The

as-grown ZnO-NRs represent high quality crystallites and

exhibit a hexagonal structure, as demonstrated by x-ray

diffraction analysis (not shown). The deposition results are

highly reproducible: the average diameter and length of

as-grown ZnO-NRs can be well adjusted between 50 and

100 nm and between 180 and 600 nm, respectively, by vary-

ing the deposition time between 400 and 1500 s. Due to a

slight tilt of the ZnO-NRs, the spacing between ZnO-NRs

varies from few nanometers to few hundreds of nanometers.

Figure 2(a) shows the transmittance and reflectance

spectra of ZnO-NRs/i-ZnO seed layer/ITO/glass structures

and that of reference ITO/glass and planar ZnO doped by

Aluminium (ZnO:Al)/glass stacks measured against air

with the light incident on the glass side. The transmission

of ZnO-NRs in the wavelength range of 400-800 nm is on

average higher than 83% and thus surpassing that of the

planar ITO and ZnO:Al thin films (ITO (5 X/�): 82% and

ZnO:Al (5 X/�): 81%). In addition, ZnO-NRs show in the

same wavelength range the lowest average reflection of

about 7%.

From XPS spectra in Fig. 2(b), work function values of

3.9 6 0.1 eV were determined for the as-prepared ZnO-NRs,

which are similar to that of planar ZnO:Al prepared by sput-

tering for inorganic solar cells.11 This value matches per-

fectly the work function value found for ohmic Mg-Ag

contacts to C60 and that of selective Mg-Ag cathodes of solar

cells based on CuPc:C60 or ZnPc:C60 absorber layers.12,13

Thus, the as-prepared ZnO-NRs can be directly applied

(without any additional surface treatments or use of buffer

layers) as cathodes in (Cu or Zn)Pc:C60 based solar cells.

Organic materials were deposited by dry organic vapor

phase deposition (OVPD
VR

)13,14 which is a diffusion con-

trolled process and thus suitable for deposition of thin films

on highly structured surfaces. Nevertheless, cape-like growth

of ZnPc:C60 layers on ZnO-NRs as, for example, in Fig. 3(a)

was observed for deposition pressures between 0.5 and 1.0

millibars and substrate temperatures between 163 �C and

126 �C, respectively. Cluster formation was observed at low

pressures and high temperatures, e.g., at 0.3 millibars and

195 �C (Fig. 3(b)). Coverage homogeneity was improved

when an additional 50 nm C60 layer was first deposited on

top of ZnO-NRs at a deposition pressure of 0.6 millibars and

a substrate temperature of 151 �C. The cross-section SEM

image in Fig. 3(c) confirms the improved conformal cover-

age of highly structured ZnO-NRs. The device schematic in

Fig. 3(d) shows the materials involved and explains the

charge carrier generation under illumination and transport to

electrodes: generated excitons are separated at D:A interfa-

ces and thus free charge carriers are produced; electrons are

then consecutively transported via C60 acceptor domains,

C60 layer and ZnO-NRs to the front contact. At the same

time, holes reach the back contact by travelling via ZnPc do-

nor domains.

Optical measurements of the complete devices show a

decreased reflectance and thus, an increased absorbance

FIG. 1. SEM images of ZnO-NRs deposited during 700 s on ITO/glass sub-

strates covered by a 30 nm sputtered i-ZnO nucleation layer: (a) Top view.

(b) Cross-section.

FIG. 2. (a) Transmittance and reflectance of a ZnO-NRs/i-ZnO nucleation

layer/ITO/glass structure in comparison to that of glass, ITO/glass, and

ZnO:Al/glass stacks. (b) HBEC spectra of ZnO-NRs and planar ZnO:Al.

The work function, U, is determined by linearly fitting the spectra and

extrapolating to zero. To account for the analyzer broadening of 0.2 eV, the

obtained HBEC values at the intersection points were corrected by 0.1 eV.

TABLE I. PV parameters of conventional glass/ITO/hole transport layer

(HTL)/80 nm ZnPc:C60/100 nm Mg:Ag solar cells (device area 0.063 cm2).

HTL Eff (%) Voc (mV) Jsc (mA/cm2) FF (%)

MoO3 4.5 530 17.1 49.7

PEDOT:PSS 3.7 520 15.9 44.6

173503-2 Riedel et al. Appl. Phys. Lett. 104, 173503 (2014)
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(A¼ 1-R) for the solar cell with ZnO-NRs compared to the

device with the planar ZnO:Al (Fig. 4(a)). Between 350 nm

and 950 nm, clearly interference fringes are reduced and the

average absorbance of the optical stack increases by about

21% indicating improved absorption due to the anti-

reflective effect of the ZnO-NRs and thus suggesting a

higher exciton generation in the device with ZnO-NRs.

The dark and illuminated J-V curves of the solar cell

device with ZnO-NRs shown in Fig. 3(c) are presented in

Fig. 4(b) in comparison to a simultaneously prepared de-

vice on planar ZnO:Al. The electric and PV parameters

derived from the respective J-V curves are summarized in

Table II. An efficiency of 2.8% is demonstrated for the

ZnO-NR solar cell. Despite a higher fill factor and a

reduced series resistance, this efficiency is still lower than

that of the planar PV device. The reason is that the

recorded Jsc is much lower compared to that of the planar

device, in contrast to the result expected from the absorb-

ance characteristics.

The contradiction between optical and photoelectric

data is partially explained by the fact that the additional

absorption does not necessarily result in charge carrier col-

lection: First, the lack of an improved Jsc for the device

with ZnO-NRs despite the increased total absorbance may

partially be due to light absorption in layers which do not

result in charge carrier generation, e.g., in ZnO SL. Second,

charge carriers may be lost due to recombination, as sug-

gested by the reduced parallel resistance (see Table II).

Recombination in the solar cell with ZnO-NRs may be

increased compared to the device with planar ZnO:Al due

to additional interfaces, e.g., ITO/i-ZnO SL and i-ZnO

SL/ZnO-NRs. Moreover, further recombination losses may

occur due to the absence of an interdigitated contact struc-

ture: as seen from Figs. 3(c) and 3(d), the back contact does

not completely follow the morphology of the organic film

on ZnO-NRs. Therefore, an increased recombination is

expected due to in parts enlarged drift paths of holes to the

back contact. Preparation of devices with an optimized

morphology of the back contact will be a subject of further

investigations.

In conclusion, hybrid ZnO-NR/C60/ZnPc:C60/MoO3/Ag

solar cells with efficiencies of 2.8% have been demonstrated.

A homogeneous coverage of ZnO-NRs by organic layers

was achieved by the application of the dry OVPD process. A

C60 thin film between ZnO-NRs and the ZnPc:C60 blend

layer improves the coverage uniformity along the nanorods.
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aTransparent conductive oxide.
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tion pressures and substrate temperatures of (a) 0.5 millibars and 165 �C and
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sure of 0.6 millibars and a substrate temperature of 151 �C.
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