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Abstract
We present the evaluation of temperature and precipitation forecasts obtained with the MiKlip decadal
climate prediction system. These decadal hindcast experiments are verified with respect to the accuracy of the
ensemble mean and the ensemble spread as a representative for the forecast uncertainty. The skill assessment
follows the verification framework already used by the decadal prediction community, but enhanced with
additional evaluation techniques like the logarithmic ensemble spread score. The core of the MiKlip system
is the coupled Max Planck Institute Earth System Model. An ensemble of 10 members is initialized annually
with ocean and atmosphere reanalyses of the European Centre for Medium-Range Weather Forecasts. For
assessing the effect of the initialization, we compare these predictions to uninitialized climate projections
with the same model system. Initialization improves the accuracy of temperature and precipitation forecasts
in year 1, particularly in the Pacific region. The ensemble spread well represents the forecast uncertainty in
lead year 1, except in the tropics. This estimate of prediction skill creates confidence in the respective 2014
forecasts, which depict less precipitation in the tropics and a warming almost everywhere. However, large
cooling patterns appear in the Northern Hemisphere, the Pacific South America and the Southern Ocean.
Forecasts for 2015 to 2022 show even warmer temperatures than for 2014, especially over the continents. The
evaluation of lead years 2 to 9 for temperature shows skill globally with the exception of the eastern Pacific.
The ensemble spread can again be used as an estimate of the forecast uncertainty in many regions: It improves
over the tropics compared to lead year 1. Due to a reduction of the conditional bias, the decadal predictions of
the initialized system gain skill in the accuracy compared to the uninitialized simulations in the lead years 2
to 9. Furthermore, we show that increasing the ensemble size improves the MiKlip decadal climate prediction
system for all lead years.
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1 Introduction
Decadal climate prediction research gains progressively
more attention in climate science as well as in society,
industry and economy. The research aims to close the
gap between short term forecasts and long term projec-
tions. Numerical weather predictions focus on an initial
value problem in the beginning of a forecast. On the
other hand, climate projections as a boundary condition
problem examine the long-term development (Meehl
et al., 2009; Mehta et al., 2011). In order to accommo-
date the demand for reliable informations on near-term
climate variability on the crucial timescales of a year up
to a decade, different national and international initia-
tives have been launched. The Coupled Model Intercom-
parison Project Phase 5 (CMIP5, Taylor et al., 2012)
offers a platform to approach decadal predictions on a
common basis via hindcast experiments in the ‘observa-
tion’ period from 1960 to 2010.
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The ‘Mittelfristige Klimaprognosen’ (MiKlip) pro-
ject, funded by the Federal Ministry of Education and
Research in Germany (BMBF), is based on CMIP5
and currently develops a decadal forecast system us-
ing the Max Planck Institute Earth System Model (MPI-
ESM). With the improvements made through initializa-
tion techniques using ocean and atmosphere reanalyses
in a coupled initialization (Pohlmann et al., 2013), the
MiKlip model version outperforms the CMIP5 comple-
ment (Müller et al., 2012), especially in the tropics.

In this study we present the forecasts and the
skill assessment of the MiKlip decadal climate predic-
tion system following the verification framework for
interannual-to-decadal prediction experiments recom-
mended by Goddard et al. (2013). For this purpose, we
employ the decadal evaluation tool ‘MurCSS’ (Illing
et al., 2014) as part of the MiKlip Central Evaluation
System. We point out the importance of a detailed eval-
uation by combining initialized decadal climate predic-
tions with their prediction skill using the MiKlip sys-
tem. In Section 2 we present the statistical methods used
to evaluate the accuracy and the spread of the ensem-
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ble hindcast experiment. We present decadal forecasts
and their prediction skill for near surface air temperature
and precipitation for lead year 1 and lead years 2 to 9,
as well as the improvement due to increased ensemble
size in Section 3. In Section 4, we discuss the combina-
tion of predictions and the prediction skill of the MiKlip
system.

2 Data and methods

The MiKlip decadal forecasts and hindcasts (Base-
line1, see also Pohlmann et al., 2013) used in this
study were conducted with the earth system model
from the Max-Planck-Institute in the low resolution ver-
sion (MPI-ESM-LR). It is a coupled atmosphere-ocean
system triggered by two different initialization tech-
niques. The ocean component MPI-OM (Jungclaus
et al., 2013) with the resolution of 1.5 °/L40 was initial-
ized with temperature and salinity anomaly fields from
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ocean reanalysis system 4 (ORAS4 –
Balmaseda et al., 2013). The atmospheric component
ECHAM6 (Stevens et al., 2013) with the resolution of
T63L47 was obtained by a full-field initialization with
ECMWF atmosphere reanalyses, including fields of
temperature, vorticity, divergence, and surface pressure
(ERA40 in 1960–1989 and ERA-Interim in 1990–2013,
Uppala et al. (2005) and Dee et al. (2011) respectively).
The simulations were started annually for the period
1961 to 2013, each initialization simulating a decade and
consisting of 10 ensemble members.

Uninitialized runs with the same model configura-
tion and in the same time period serve as references
(Goddard et al., 2013; Matei et al., 2012), disclosing
the effect of the initialization and its potential gain of
skill. The uninitialized simulations equate to the ‘his-
torical’ experiment performed during CMIP5 using ob-
served external forcings. Due to the fact that the ‘his-
torical’ experiment ends in 2005, the reference run was
extended by the CMIP5 ‘rcp45’ experiment consisting
of the projected RCP4.5 scenario (Taylor et al., 2012).
A 10 member experiment of uninitialized runs was con-
ducted to have an equivalent ensemble size to the initial-
ized runs.

We compare near surface air temperature to the Had-
CRUT3v (Brohan et al., 2006) dataset from the Hadley
Centre and Climatic Research Unit for the period 1961
to 2012. This commonly used anomaly data set is cho-
sen to maintain the comparability to other decadal pre-
diction studies (Pohlmann et al., 2013; Goddard et al.,
2013; Matei et al., 2012). To enable a global compar-
ison of precipitation with observation over land and
ocean, a shorter time period was selected, focussing on
the era of satellite data. The Global Precipitation Cli-
matology Project Satellite-Gauge (GPCP-SG) dataset
(Adler et al., 2003) was used for the period from 1979
to 2012. However, for full comparablity with the decadal
prediction community and the evaluation over the longer

timescale, we also present the evaluation of precipi-
tation with the Global Precipitation Climatology Cen-
tre (GPCC) Full Data Reanalysis Version 6 dataset
(Schneider et al., 2011; Becker et al., 2013) over land
in the supplementary material of this publication. For
both evaluated variables, anomalies are considered for
comparison with the model data to ensure that no gen-
eral bias is influencing the results like differences in the
height of model and observation.

The anomaly real-time forecasts for temperature and
precipitation are available for the year 2014 and the time
period of the years 2015 to 2022. The reference period
is 1981 to 2010. The uninitialized simulations are used
as reference datasets for the anomaly calculations.

The following skill assessment – based on the
decadal climate prediction verification framework (God-
dard et al., 2013) – includes spatial averaging on a
5 × 5 degree grid, temporal aggregation and lead-time
dependent bias adjustment in a cross validated manner
(ICPO, 2011). The lead year 1 hindcast continues the
observed initial conditions in the first prediction year.
For the lead years 2 to 9, the representation of the
decadal-scale climate predictions excludes the skill of
lead year 1. Significance of the verification scores was
estimated using a non-parametric bootstrap approach
(Wilks, 2005; Mason and Mimmack, 1992) taking au-
tocorrelation into account (Goddard et al., 2013). First,
we investigate the gain of accuracy in the ensemble
mean due to the initial conditions compared to unini-
tialized climate change projections. In a second step, we
analyze whether the ensemble spread is an appropriate
representation of the forecast uncertainty on average.

2.1 Accuracy of the ensemble mean

The mean squared error skill score (MSESS) compares
the accuracy of two predictions (Murphy, 1988) of the
past, so called hindcasts. The initialized hindcasts Hi j
consist of their ensemble members i = 1, . . . ,m and
the start times j = 1, . . . , n. The mean squared error
(MSE) between the hindcast ensemble mean H j and the
observations O j over j = 1, . . . , n start times can be
expressed as

MSEH =
1
n

n∑

j=1

(H j − O j)
2. (2.1)

Compared to some reference prediction, such as the
climatological forecast MSEŌ = 1

n

∑n
j=1 (Ō − O j)2, the

skill can be determined by the

MSESS(H, Ō,O) = 1 −
MSEH

MSEŌ
. (2.2)

Applying the Murphy-Epstein decomposition and using
anomalies, the MSESS for the climatological forecast
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can be written as:

MSESS(H, Ō,O) = r2
HO −

[
rHO −

sH

sO

]2

(2.3)

with rHO being the sample correlation coefficient be-
tween the hindcasts and the observations, and the sample
variance of the hindcasts s2

H and observations s2
O (Mur-

phy, 1988; Murphy and Epstein, 1989). This decom-
position allows to differentiate between the correlation
coefficient and the conditional prediction bias (second
term on the right hand side of Eq. 2.3). When compar-
ing the initialized hindcasts H with the uninitialized ref-
erence R, the MSESS can be written as

MSESS(H,R,O) =
MSESSH −MSESSR

1 −MSESSR
(2.4)

to assess the change of skill from the uninitialized to the
initialized prediction system.

The MSESS represents the improvement in the ac-
curacy of the hindcasts H over the climatology Ō or a
reference forecast R with respect to the observations O,
where −∞ < MSESS ≤ 1. A positive value suggests an
improved accuracy of the hindcast ensemble mean com-
pared to the reference, and a negative value indicates the
opposite.

The correlation coefficient −1 ≤ r ≤ 1 as the po-
tential skill of a prediction system represents the linear
relationship between a hindcast and the observation. For
assessing the change in the correlation coefficient of the
hindcast against a reference prediction, the difference of
rHO and rRO is presented, with values ranging from −2
to 2.

The conditional bias −∞ < rHO − sH
sO
< ∞ is the dif-

ference of the correlation and the ratio of standard devi-
ation from a prediction and observation – it is zero at its
best. The gain of the conditional bias against a reference
prediction is calculated by subtracting the absolute val-
ues |rRO − sR

sO
| − |rHO − sH

sO
|. Positive values represent a

decrease of bias or, in the sense of the MSESS, a gain of
skill and vice versa.

2.2 Ensemble spread as forecast uncertainty

The spread of an ensemble forecast (ensemble variance)
is meant to be an estimate of the forecast uncertainty
due to uncertainty in the initial conditions. If the mean
squared deviation of the observations from the ensemble
mean (MSE) corresponds to the ensemble variance, the
latter is a good estimate of the forecast uncertainty. Is
the ensemble variance smaller than the MSE the ensem-
ble is said to be under-dispersive (overconfident); an en-
semble variance larger than the MSE indicates an over-
dispersive (underconfident) ensemble. This answers the
question, if the ensemble spread can be used as refer-
ence for the forecast uncertainty. Following Goddard
et al. (2013), the ensemble spread is compared to the

forecast uncertainty using a particular version of the
continuous ranked probability skill score (CRPSS). The
CRPSS is based on the continuous ranked probability
score (Matheson and Winkler, 1976)

CRPS(Hi j,O j) =

∫ ∞

−∞
(FHj (y) −H(y − O j))

2dy, (2.5)

which integrates the squared difference between the
probability distribution FHj of the ensemble forecast and
the observation for a given instance j = 1, . . . , n in
probability space over the predictand y. The Heaviside
function H(y − O j) is the associate cumulative distribu-
tion function for the single observation. Gneiting and
Raftery (2007) suggested to use a normal distribution
with mean H j and variance σ2

H for the forecast proba-
bility density function FHj = N(H j, σ

2
Hj

). The CRPS
can be expressed with the standard normal probability
density and cumulative distribution function ϕ and φ, re-
spectively

CRPS(N(H j, σ
2
Hj

),O j) =

σHj

[
1
√
π
− 2ϕ

(
O j − H j

σHj

)

−
O j − H j

σHj

(
2φ

(
O j − H j

σHj

)
− 1

)]
. (2.6)

To quantify the ensemble spread against the standard
error, we use the average ensemble spread

σ2
Ĥ

=
1
n

n∑

j=1

1
m − 1

m∑

i=1

(Ĥi j − Ĥ j)
2 (2.7)

with the ensemble members Ĥi j and the ensemble mean
Ĥ j corrected for mean and conditional bias. The refer-
ence prediction has the same mean, but its variance is
replaced by the MSE

σ2
R =

1
n − 2

n∑

j=1

(Ĥ j − O j)
2. (2.8)

Using these hindcast and reference distributions in the
continuous ranked probability skill score for the assess-
ment of the ensemble spread, the resulting CRPSSES
reads

CRPSSES = 1 −
∑

j CRPSH(N(Ĥ j, σ
2
Ĥ

),O j)
∑

j CRPSR(N(Ĥ j, σ
2
R),O j)

. (2.9)

The reference CRPSR using the MSE represents the
forecast uncertainty and thus defines the desired value
for the CRPSH , therefore CRPSSES ≤ 0. The optimum
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Figure 1: The CRPSSES as function of the ratio between ensemble
spread (σ2

Ĥ
) and MSE (σ2

R) for different ensemble sizes. When the
given ratio is one, the CRPSSES reaches its maximum value of zero.

CRPSSES = 0 is attained for σ2
Ĥ

= σ2
R, and σ2

Ĥ
� σ2

R
leads to a negative CRPSSES. The respective simulation
study with varying ensemble size is utilized in Figure 1.
This behavior does not allow to determine whether the
ensemble spread is over- or underestimating the forecast
uncertainty (MSE). To add this missing information,
we consider the spread score (see Palmer et al., 2006;
Keller et al., 2008), with a log-transform to obtain the
logarithmic ensemble spread score

LESS = ln

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
σ2

Ĥ

σ2
R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2.10)

The LESS shows negative (positive) values for under-
dispersive (over-dispersive) forecasts. A meaningful
combination of the CRPSSES and the LESS depicts the
skill and the sign of dispersion. This addresses the ques-
tion whether the ensemble spread is an adequate rep-
resentation of the forecast uncertainty on average posed
by Goddard et al. (2013). In this study, we define a skill
score based on the LESS to compare model development
stages. Different sized ensembles of the model system
can be evaluated with respect to spread development.

LESSS = 1 −
LESS2

pred

LESS2
ref

∈ (−∞, 1] (2.11)

The LESSS answers the question if the prediction sys-
tem improves this ratio between the average ensemble
spread and the mean squared error compared to the ref-
erence prediction.

3 Results

3.1 Forecasts and skill assessment of
temperature

In general, the anomaly forecast of near surface air
temperature for the year 2014 with the MiKlip system
shows rather warming than cooling signals in the dif-
ferent regions of the world (Figure 2a). However, there
are regions with strong negative and positive signals.
The North-East Pacific, the western part of North Amer-
ica including Alaska, Central and Southern Africa as
well as Russia show distinct hot spots with anomalies
over 1.5 K. There are cooling patterns as well, mainly
over the north-eastern North-America, India and south-
ern China, the Antarctic Circumpolar Current and the
northern North Atlantic. The forecast for the eastern Pa-
cific points to a cooling in the ENSO region and positive
anomalies in the surrounding. Over Europe, the forecast
shows a warming of around 0.75 K. The climate forecast
for the years 2015 to 2022 predicts a clear warming sig-
nal on the Northern Hemisphere from 60 ° N northwards
with values over 1.5 K, beside the cooling spot in the
northern North-Atlantic (Figure 3a). The forecast shows
also a cooling area in the Pacific-Antarctic Basin, e.g.
over the Amundsen Sea. All continents show a warming
signal of around 1 K, as do the equatorial eastern Pacific,
the eastern Atlantic, and the western Indian Ocean.

The analysis of the near surface air temperature in
lead year 1 indicates an improvement from the unini-
tialized projections to the initialized hindcasts (Fig-
ure 2g,h,i). Combining the effect of increased correla-
tion and reduced conditional bias, the MSESS exhibits
significant positive values over the ocean, most likely
due to the ocean initialization. The North Pacific in par-
ticular benefits from the initialization (Figure 2g). The
North Atlantic provides a contrast: while there is at least
some improvement in correlation compared to the unini-
tialized runs (Figure 2h), it is accompanied by a decrease
in the conditional bias (Figure 2i). The initialized hind-
cast experiments (Figure 2) of lead year 1 add confi-
dence to the forecast of surface temperature in Figure 2a.

For lead years 2 to 9 (see Figure 3), the initialized
and uninitialized experiments perform similarly. Due to
catching the long-term trend of the climate system, the
correlation coefficients for surface temperature are sig-
nificantly high. Apart from the ENSO-related tropical
Pacific, this is comparable to Goddard et al. (2013) and
Müller et al. (2012). Little correlation is lost almost
over the whole globe in the initialized runs compared to
the historical runs (Figure 3h). However, small areas of
positive gain in correlation can be found in the North At-
lantic (Figure 3h). The conditional bias (Figure 3f) im-
proved in the initialized runs, leading to an overall posi-
tive skill (Figure 3i). The MSESS in the initialized runs
against uninitialized hindcast for the surface tempera-
ture increases significantly in the tropics (Figure 3g). It
decreases over areas such as northern Asia and suffers
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Figure 2: Anomaly forecast of the MiKlip decadal prediction system for near surface air temperature in Kelvin for the year 2014 (a).
Anomalies are calculated relative to the years 1981 to 2010 from the uninitialized (historical and rcp45) simulations and interpolated on the
5 × 5 ° grid for skill assessment. The evaluation of the ensemble spread is to the right of the forecast with the continuous ranked probability
skill score of the ensemble spread vs the reference error (CRPSSES in b) and the logarithmic ensemble spread score (LESS in c). The
ensemble mean hindcast skill is shown in the middle and bottom row – mean squared error skill score (MSESS – left column) and its
decomposition in correlation (middle column) and conditional bias (right column) of near surface air temperature averaged over the first
prediction year against observation from HadCRUT3v over the period 1961–2012. It shows the skill of the initialized decadal experiments
against a climatological forecast (middle row) including the MSESS (d), correlation (e) and the conditional bias (f). The lower row uses
the uninitialized simulations (historical, extended with rcp45 to year 2012) as the reference prediction in the MSESS (g), the correlation
differences (h) and depicting the change in magnitude of the conditional bias (i). Colorbars in the accuracy section are scaled to −1 to 1.
Crosses denote values significantly different from zero exceeding at a 5 % level applying 1000 bootstraps. Gray areas mark missing values
with less than 90 % data consistency in the observation.

Figure 3: As in Figure 2 but for the forecast of 2015–2022 and evaluation of lead years 2 to 9 over the period 1962–2012.
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from an increased conditional bias and negative correla-
tion.

The CRPSSES in Figure 2b,3b shows that the ensem-
ble spread can represent forecast uncertainty in various
regions. This is not the case in the central Pacific for
lead year 1 (Figure 2b). The LESS in Figure 2c reveals
that the spread is too small in the tropics and the South-
ern Hemisphere; this improves slightly for years 2 to 9
(Figure 3c). Variabilities around the North Atlantic as
well as the North Pacific in lead year 1 (Figure 2c) show
patterns with over- and under-dispersive spreads next to
each other. The ensemble is over-dispersive for North
America, the North Atlantic, Europe as well as around
the Kuroshio, which means the ensemble spread is too
large compared to the reference error (Figure 2c,3c).

The model system used in this study also participates
in a multi-model comparison project as accomplished
by Smith et al. (2013). However, a different initializa-
tion strategy is applied, when comparing the real-time
forecasts. The anomaly initialization in the ocean was
conducted through a NCEP forced assimilation run, so
called MiKlip Baseline0 simulation (see Matei et al.,
2012; Müller et al., 2012). The MiKlip system as an-
alyzed in this study (Baseline1) is closer to the multi-
model average as shown in Smith et al. (2013) than
Baseline0 (not shown). In general a more uniform warm-
ing (less regions with cooling) is predicted with Base-
line1 compared to Baseline0 on the longer timescales
beyond lead year 1.

3.2 Forecasts and skill assessment of
precipitation

The prediction of precipitation is more challenging, and
consequently results are more dispersive than for tem-
perature. The forecasts feature strong anomalies in the
tropics and over the oceans (Figure 4a,5a). The anomaly
forecast in Figure 4a shows an increase in precipitation
for the year 2014 in the northern West Pacific, East At-
lantic and Indian Ocean. Precipitation is decreasing in
the southern equatorial Pacific and Atlantic. The fore-
casts over Africa and northern South America predict an
overall drying, while Central America and India show
a wetter signal. For the next 2 to 9 years (2015–2022)
precipitation rates decrease over the northern equatorial
Atlantic as well as south of the equator in the Indian
Ocean and increase in the tropical Pacific. The latter
shows El Niño like structures (Figure 5a). In general, the
continents in the northern hemisphere show an increase,
whereas the southern continents including Africa rather
indicate a decrease.

The evaluation of lead year 1 shows a significant
gain in correlation for the initialized over the uninitial-
ized experiment (Figure 4h). Significant positive corre-
lation between the decadal hindcasts and the observa-
tions from GPCP-SG (Figure 4e) is present mainly in
the tropical Pacific, but can also be detected in the equa-
torial Atlantic and the Indian ocean. Conditional biases

for initialized (Figure 4f) and uninitialized (Figure 4i)
simulations are large and negative over the whole globe
compared to GPCP-SG. In the tropics in particular, the
model has difficulties to reproduce precipitation vari-
ability. For the initialized run the performance is worse
compared to the climatological forecast. However, the
combined MSESS still shows some skill (Figure 4d,g),
which can be traced back to the strong improved corre-
lation compared to the uninitialized simulations.

The various skill scores (Figure 5) become noisy
for the lead years 2 to 9. However, we present these
results as well – for consistency and comparability
with other international studies (Goddard et al., 2013;
Smith et al., 2013). Some continental areas like Eu-
rope, the Middle East and North-East Asia, as well as
the Indian Ocean, show some positive correlation in the
decadal hindcasts compared to the climatological fore-
cast (Figure 5e). The decadal hindcasts improve over
Europe when compared to the uninitialized simulations
(Figure 5h). This comes along with an improved tem-
perature and therefore energy budget over Europe when
compared to the uninitialized hindcast for the lead years
2 to 9. This gets more obvious, when the initialized
system clearly outperforms the uninitialized system in
the detrended temperature analysis of the MSESS and
correlation in the leadyears 2 to 9 (Figure S3). This is
because annual precipitation is not that trend related
(Kumar et al., 2013), especially in Europe (Cubasch
and Kadow, 2011) and the North Atlantic is shown to
be the source of skill over Europe (Ghosh et al., sub-
mitted). But, due to the loss of correlation for precipi-
tation in most of the other regions by contrast with the
uninitialized runs and the negative conditional bias in
the North Atlantic, as well as the same difficulties as ex-
perienced for lead year 1 at the equatorial regions in the
conditional bias (Figure 5f,i), the MSESS comparison
from initialization runs versus uninitialized simulations
(Figure 5d,g) shows almost no skill for precipitation.

For lead year 1 the ensemble spread is an adequate
estimate for the forecast uncertainty for most regions
(Figure 4b). This is no longer valid for lead years 2 to
9 (Figure 5b), with only some small areas left over the
ocean with the spread being close to the reference error.
The CRPSSES highlights the areas in the tropical Pacific
and Atlantic showing no skill. The LESS demonstrates
the over-dispersion (Figure 4c,5c) in these regions. Here,
the precipitation rates suffer from positive temperature
biases in the ocean in these areas (not shown), which
leads to more convective activity and variability. Fur-
thermore, the LESS reveals that areas of small and large
ensemble spreads are next to each other in the central
Pacific and Atlantic. This points to problems in the cor-
rect representation of small scale processes on these
time scales in the spread of the ensemble. Variabilities
in convective and large scale precipitation processes in
climate models are difficult to represent. The standard
error of satellite instruments is also relatively high in re-
gions with little precipitation, especially in the first years
of the GPCP-SG dataset (Adler et al., 2003). The short
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Figure 4: As in Figure 2 but for precipitation in mm/day and using the observation from GPCP-SG over the period 1979–2012 for skill
assessment.

Figure 5: As in Figure 4 but for the lead years 2 to 9 over the period 1980–2012.
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Figure 6: Comparison of the hindcast skill of different sized ensemble model versions (10 member vs 3 member). MSESS and LESSS for
near surface air temperature over the period 1961–2012 against HadCRUT3v for the lead year 1 (upper row) and lead years 2 to 9 (lower
row). The MSESS shows the improvement made in the hindcast ensemble mean prediction and the LESSS exhibit the improvement in the
ensemble spread as an adequate representation of the forecast uncertainty. Crosses denote values significantly different from zero exceeding
at a 5 % level applying 1000 bootstraps. Gray areas mark missing values with with less than 90 % data consistency in the observation.

observational period of the satellite observations is prob-
lematic too, when analyzing the lead years 2 to 9.

3.3 Ensemble Size

The CMIP5 (Taylor et al., 2012) decadal experimental
design with initializations every 5 years led to an un-
reliable skill assessment (Goddard et al., 2013). Since
then, most of the prediction systems are initialized an-
nually. The small ensemble size of these experiments is
another known issue, particularly for comparing differ-
ent prediction systems (Smith et al., 2013). Pohlmann
et al. (2013) analyze only 3 ensemble members of the
MiKlip system in order to have a clean comparison with
the results of the 3 available members in the CMIP5 sys-
tem. Kruschke et al. (2014) use a bias corrected RPSS
to compensate for different ensemble sizes. A compre-
hensive study on the effect of the ensemble size on
decadal prediction is given in Sienz et al. (submitted).
To fill the gap between the MiKlip system analyzed in
Pohlmann et al. (2013) and the results shown in this
study, we present the change of skill for lead years 1
and 2 to 9 by increasing the ensemble size from 3 to 10
ensemble members.

The MSESS in Figure 6 shows a significant gain
of prediction skill for surface temperature. Besides the
Central Atlantic, the temperature prediction skill for
lead year 1 increases for the whole globe – not sig-
nificant everywhere (Figure 6a). But on the long run,

the forecast for the Central Atlantic benefits from the
larger ensemble for lead years 2 to 9 (Figure 6c). The
LESSS for temperature shown in Figures 6b) and 6d)
improves in the tropics where the CRPSSES reveals sig-
nificant negative skill (Figure 2b,3b) and the LESS (Fig-
ure 2c,3c) depicts an under-dispersion. Therefore, the
decreasing under-dispersion due to the increased ensem-
ble size leads to a slightly better representation of the
uncertainty by the ensemble spread. Precipitation shows
an improvement in the MSESS in lead years 1 and 2 to 9
(not shown). The LESSS improves only in local areas in
the development of the ensemble spread as an adequate
forecast uncertainty in the comparison of the 10 to the 3
ensemble member system for precipitation (not shown).

4 Discussion and conclusions

Combining forecasts and detailed evaluation for the
MiKlip system for near surface air temperature and pre-
cipitation provides a comprehensive assessment of the
decadal climate predictions. With a strong impact in
lead year 1, initialization techniques improve the pre-
diction system in comparison to an uninitialized sys-
tem. Both atmospheric parameters benefit from an ini-
tialization with an oceanic reanalysis. Mainly the Pa-
cific region temperature forecast improves, which causes
an improved convection, triggering precipitation fluxes.
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The equatorial regions suffer from an under-dispersive
ensemble in temperature and an over-dispersion of pre-
cipitation in regions of western South America over the
Pacific and western Central Africa over the Atlantic.
Both variables exhibit a large negative conditional bias
in lead year 1. The largest temperature anomalies for
year 2014 are forecasted in areas where the performance
of the model system is less satisfying, e.g. a warming
of 3 Kelvin in West Africa or a cooling of 2 Kelvin in
a small region in the North Atlantic. Regions with few
data for validation like the southern Pacific can not be
reliably evaluated using observational reconstructions.

As the initialized system drifts towards the same
state as the uninitialized model, the lead years 2 to 9
produce similarly performances for the initialized and
uninitialized experiments. The improvement of the ini-
tialized prediction system on these timescales stems
from the decreased conditional bias in combination with
an increased ensemble size, at least for temperature.
The conditional bias exists, when a climate model e.g.
over-responds to increasing greenhouse gases (God-
dard et al., 2013). This can result in an overestimation
of temperature anomalies. In this respect, the initialized
MiKlip prediction system performs better in the MSESS
than the uninitialized due to matching the climate trend
much better. But it is difficult to differentiate between a
model drift of the initialized system towards a warmer
state of the uninitialized system and a possible predicted
warming after the hiatus (Meehl et al., 2011; Kosaka
and Xie, 2013). Analyzing a decadal prediction system
being between an initial and boundary condition prob-
lem leads to several factors for potential skill. The cor-
rect initial condition in the beginning of the forecast
improves the forecast on the seasonal to the interan-
nual timescale. The memory of the ocean plays a big
role on interannual to decadal timescale, when running
a coupled model. But the trend due to increased green-
house gases has even more influence on the long-term
development. Analyzing the time range of 2 to 9 years
mixes these potentials of skill and the uninitialized sys-
tem improves on the long run. Therefore the uninitial-
ized can outperform the initialized system in correla-
tion like shown in this study. But, filtering the trend in
the temperature hindcasts and observations showed that
the initialized system beats the uninitialized simulations
in terms of correlation on these timescales. However,
the long-term temperature trend belongs to the 2 to 9
year forecast. This cannot be adjusted, when presenting
decadal predictions.

The comparison of the 10 ensemble member sys-
tem against the 3 ensemble member system (used in
Pohlmann et al., 2013), shows clear improvements in
the MSESS over the whole globe. Even for regions of
overestimated precipitation, the forecasts improved for
lead years 2 to 9. The analysis of the LESSS also shows
a slight improvement in ensemble spread in the trop-
ics, comparing two different ensemble sizes. In most
of the regions the ensemble spread is an adequate rep-
resentation for the uncertainty of this system and it is

much closer to the reference error (MSE) than for other
decadal prediction systems (Goddard et al., 2013).

Including the LESS and the LESSS to the set of
skill assessment for decadal prediction allows to dis-
tinguish between an over- or under-dispersive ensem-
ble and detect improvements made when aiming at
larger ensemble sizes (Sienz et al., submitted). The
LESSS could also be used to evaluate different ensem-
ble generation methods of the same model system to as-
sess their possible improvement. After the development
stages and accomplished improvements (Müller et al.,
2012; Pohlmann et al., 2013; Kruschke et al., 2014;
Stolzenberger et al., submitted; Spangehl et al., sub-
mitted), the next step in the ongoing MiKlip project is to
switch from the anomaly initialization in the ocean with
ORAS4 to full-field multi-reanalysis initialization with
ORAS4 and GECCO2 (Köhl, 2014). A first study on
these combined predictions is given by Kruschke et al.
(submitted). The coming 30 member prediction system
will allow a more robust assessment. It will be possi-
ble to involve other scores to this combined prediction
system, e.g. the error spread score (Christensen et al.,
2015), which needs ensemble sizes larger than available
in this study.

The decadal skill assessment used in this study is an
operational part of the central evaluation in MiKlip. It
is available to the climate science community (Illing
et al., 2014) and is planned to be deployed in the next
stages of the MiKlip project development.
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Appendix

Table 1: Overview table of used variable names and equations.

Variable or Equation Explanation

i = 1, . . . ,m ensemble members

j = 1, . . . , n start or initialization times of experiments

Hi j initialized hindcasts

Hj ensemble mean of hindcasts

Oj observations

MSEH = 1
n

∑n
j=1 (Hj − Oj)2 mean squared error of the hindcast (against observation)

MSEŌ = 1
n

∑n
j=1 (Ō − Oj)2 mean squared error of the climatological forecast (against observation)

ref =
A−Aref

Aperf−Aref
general expression of a skill score (A value for accuracy measure, Aperf the
value for perfect prediction and Aref the value for a reference forecast system

MSESS(H, Ō,O) =
MSEH −MSEŌ

0 −MSEŌ

= 1 −
MSEH

MSEŌ

mean squared error skill score of the hindcast H vs the climatological fore-
cast Ō (with MSEperf = 0)

MSESS(H, Ō,O) = r2
HO −

[
rHO − sH

sO

]2
Murphy-Epstein decomposition of the MSESS

MSESS(H,R,O) = 1 − MSEH

MSER

=
MSESSH −MSESSR

1 −MSESSR

mean squared error skill score of the hindcast H vs a reference prediction R

rHO sample correlation coefficient between hindcasts (H) and observations (O)

s2
H and s2

O sample variance of the hindcasts and observations

rHO − sH
sO

conditional bias of hindcasts (H) compared to observations (O)

CRPS(Hi j,Oj) =∫ ∞

−∞
(FH j (y) −H(y − Oj))

2dy

continuous ranked probability score

CRPS(N(Hj, σ
2
H j

),Oj) =

σH j

[
1
√
π
− 2ϕ

(
Oj − Hj

σH j

)
−

Oj − Hj

σH j

(
2φ

(
Oj − Hj

σH j

)
− 1

)]
continuous ranked probability score expressed with the standard normal
probability density (ϕ) and cumulative distribution function (φ)

H(y − Oj) =

⎧⎪⎪⎨⎪⎪⎩
1, if y ≥ Oj

0, if y < Oj

Heaviside function as the associate cumulative distribution function for the
single observation

FH j = N(Hj, σ
2
H j

) probability distribution of the ensemble forecast

ϕ and φ standard normal probability density (pdf) and cumulative distribution func-
tion (cdf)

Ĥi j and Ĥ j ensemble members and ensemble mean corrected for mean and conditional
bias

σ2
Ĥ

= 1
n

∑n
j=1

1
m−1

∑m
i=1(Ĥi j − Ĥ j)2 average ensemble spread

σ2
R = 1

n−2

∑n
j=1(Ĥ j − Oj)2 mean squared error (MSE)

CRPSSES = 1 −
∑

j CRPSH (N(Ĥ j ,σ
2
Ĥ

),O j)
∑

j CRPSR(N(Ĥ j ,σ
2
R),O j)

continuous ranked probability skill score for the assessment of the ensemble
spread

LESS = ln

(
σ2

Ĥ

σ2
R

)
logarithmic ensemble spread score

LESSS = 1 −
LESS2

pred

LESS2
ref
∈ (−∞, 1] logarithmic ensemble spread skill score
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Figure S1: As in Figure 4 but using the observation from GPCC over the period 1961–2012 for skill assessment.

Figure S2: As in Figure 5 but using the observation from GPCC over the period 1962–2012 for skill assessment.
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Figure S3: Comparison of the detrended analyses from initialized vs uninitialized simulations. Anomaly correlation and the Mean Squared
Error Skill Score (MSESS) for near surface air temperature over the period 1961–2012 against HadCRUT3v for the lead year 1 (upper row)
and lead years 2 to 9 (lower row). The anomaly correlation and MSESS shows the added value of the initialization made in the hindcast
ensemble mean prediction when neglecting the linear climate trend. Crosses denote values significantly different from zero exceeding at a
5 % level applying 1000 bootstraps. Gray areas mark missing values with with less than 90 % data consistency in the observation.
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