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INTRODUCTION

A quarter of a century after Bose and Einstein’s 1924-
1925 prediction [1, 2] that a free gas of Bose particles
would condense at low temperature to a coherent state,
Bogoliubov developed a first theory of weakly interacting
Bose-Einstein condensates (BEC) in 1947 [3]. It was an
inspiring paper for many similar condensation phenom-
ena, such as superfluidity and superconductivity. The
experimental study of a BEC had to wait until 1995.
Only then were cooling and trapping techniques suffi-
ciently well developed to prepare large enough samples of
such gases to observe their physical properties. Presently
these supply us with important systems on which we can
test the theoretical tools developed in many-body physics
and quantum field theory.

As an important result it was found that a nonlin-
ear Schrödinger equation, which in this context is known
as Gross-Pitaevskii equation, yields satisfactory descrip-
tions of such condensed states if the temperature is suffi-
ciently low [4, 5]. This is possible due to the high dilution
of the condensates which ensures the weakness of the in-
teraction of the particles.

More recently, however, it has been possible to increase
the interaction strength of these gases so much that in
spite of the high dilution, the interactions can be consid-
ered as strong. The way to do is to exploit the so-called
Feshbach resonance in the two-body potential. There ex-
ists a magnetic field Bc where the scattering length of the
two-body potential grows to infinity [7]. In that regime,
the Bogoliubov theory is no longer applicable, and the
quantum field theory of the Bose gas becomes completely
nontrivial and therefore interesting.

If we want to carry quantum field theoretical calcula-
tions from the well understood weak-coupling regime to
strong couplings, we may resort to various procedures.
One is, of course, the numerical simulation of the par-
tition function of the system on a computer. This may
yield numerical date with can be compared with exper-
iments. A more satisfactory understanding can, how-
ever, be reached by analytic methods. If the action of
the systems is formulated on a lattice, there are high-

temperature and low-temperature expansions. The criti-
cal regime between them remains, however, hard to reach
since both expansions diverge where they are supposed
to meet. The problem is that one needs in principle in-
finitely many orders to reach a critical point.

In the past twenty years, methods have been developed
to use weak-coupling expansions and resumming them in
the strong-coupling regime. This is known as the renor-
malization group approach [8]. If the field theory is for-
mulated in the continuum, the weak-coupling expansions
require the calculation of Feynman diagrams. The crit-
ical point lies at an infinite coherence length which cor-
responds to a zero mass of the euclidean field theory. At
that point, many Feynman diagrams diverge. If we want
to study the limiting theory, we must renormalize the the-
ory. For this we introduce an arbitrary mass scale µ, and
for each µ we calculate a renormalized coupling strength
g. The resulting expansions in powers of g are all diver-
gent with a vanishing radius of convergence. They need
sophisticated mathematical methods of resummation.

There exists a a renormalization group function β(g)
which controls the change of the renormalized coupling
constant under a change of the renormalization scale µ
[9, 10]. If this function has a fixed point g∗ in the infrared
limit µ → 0, then the resummed series yield reasonable
estimates for the critical behavior of a theory. The gen-
eral form of the physical laws in this limit have been
formulated by many authors [11–13].

A much simpler and yet most powerful method has
been developed in the textbook [14]. Again, the ba-
sic input consists in the diagrammatic expansions of the
amplitudes, but here expressed directly in powers of the
unrenormalized or bare coupling constant gB. These ex-
pansions are subjected to a variational procedure [15]
that converts the divergent weak-coupling power series
into convergent strong-coupling power series [16]. Their
expansion parameter is a certain inverse power of the
coupling constant, 1/gωB. The parameter ω is the so-
called exponent governing the approach to scaling, in-
troduced by Wegner in 1990 [17]. The new method is
called Variational Perturbation Theory (VPT). If applied
to quantum mechanics it reproduces the same results as
the old-fashioned δ-expansion [18]. In quantum field the-
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ory, however, there are anomalous power laws, which can-
not be handled by the δ-expansion, and the full VPT is
essential. It has so far given the most accurate critical
exponents measured by precision experiments in micro-
gravity satellite environment [19].
For various physical quantities and critical exponents,

the critical expressions and the approach to the criti-
cal limit have been given in the textbook [14]. It is the
purpose of this paper to extend the method to the cal-
culation of effective actions. From perturbation theory
it is well known how to calculate the effective action as
a power series in the field strength, to be called Φ. This
expansion is valid as long as Φ remains small. For large
field strength, however, the effective action exhibits a
nontrivial power behavior which is approached in a way
controlled again by the Wegner exponent ω. We shall
present a method for finding a global expression the ef-
fective action as a function of of any Φ. It has for small
Φ the correct power series, and for large Φ the correct
power behavior, with the proper approach to the scaling
limit.

GENERATING FUNCTIONAL AND EFFECTIVE

ACTION

The physical properties of a system described by a
scalar quantum field φ(x) can be derived from a classi-
cal effective action that is derived as follows. One starts
from the generating functional of all Green functions

Z[j] = eiW [j]/~, (1)

where W [j] is the generating functional of all connected
Green functions. The vacuum expectation of the field,
the average

Φ(x) ≡ 〈φ(x)〉, (2)

is given by the first functional derivative

Φ(x) = δW [j]/δj(x). (3)

This can be inverted to yield j(x) as an x-dependent
functional of Φ(x):

j(x) = j[Φ](x). (4)

This is used to form the Legendre transform of W [j]:

Γ[Φ] ≡ W [j]−
∫

d4xj(x)Φ(x). (5)

where j(x) on the right-hand side is replaced by (4). This
is the effective action of the theory. Its first functional
derivative gives back the current

δΓ[Φ]

δΦ(x)
= −j(x). (6)

In the absence of an external current j(x), the effective
action is extremal on the physical field expectations Φ(x).
The generating functional of all connected Green func-

tions can be recovered from the effective action by the
inverse Legendre transform

W [j] = Γ[Φ] +

∫

d4xj(x)Φ(x). (7)

In general, the above quantities can be obtained with
the help of functional integrals. The generating func-
tional Z[j], for example, is given by

Z[j] =

∫

Dφ(x)e(i/~){A[φ]+
∫
d4xj(x)φ(x)}

∫

Dφ(x)e(i/~)A0 [φ]
. (8)

Using (1) and (5), this amounts to the functional integral
formula for Γ[Φ]:

e
i
~{Γ[Φ]+

∫
d4xj(x)Φ(x)}

= N
∫

Dφ(x)e(i/~){A[φ]+
∫
d4xj(x)φ(x)} (9)

with the normalization factor

N =

{
∫

Dφ(x)e(i/~)A0 [φ]

}−1

. (10)

In writing this we have explicitly displayed the funda-
mental action quantum ~, which is a measure for the size
of quantum fluctuations. There most physical systems,
the quantum fluctuations are rather small except in the
immediate vicinity of critical points.
For ~ → 0, the path integral over the field φ(x) in

(8) is dominated by the classical solution φcl(x) which
extremizes the exponent

δA
δφ

∣

∣

∣

∣

φ=φcl(x)

= −j(x). (11)

At this level we therefore identify

W [j] = Γ[Φ] +

∫

d4xj(x)Φ(x)

= A[φcl] +

∫

d4xj(x)φcl(x). (12)

Of course, φcl(x) is a functional of j(x), so that we may
write it more explicitly, as φcl[j](x). By differentiating
W [j] with respect to j, we have from the general first
part of Eq. (2):

Φ(x) =
δW

δj
=

δΓ

δΦ

δΦ

δj
+Φ+ j

δΦ

δj
. (13)

Inserting the classical field equation (11), this becomes

Φ(x) =
δA
δφcl

δφcl

δj
+ φcl + j

δφcl

δj
= φcl. (14)
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Thus, to this approximation, Φ(x) coincides with the
classical field φcl(x). Replacing φcl(x) → Φ(x) on the
right-hand side of Eq. (12), we therefore obtain the
lowest-order result (zeroth order in ~):

Γ[Φ] = A[Φ] (15)

i.e., the effective action equals the fundamental action.
In general it can be shown that the effective action can

be expanded in a functional power series of Φ(x)

Γ[Φ]=

∞
∑

n=0

1

n!

∫

dDx1d
Dx2 · · · dDxnΓ

(n)(x1, x2, . . . , xn)

× Φ(x1)Φ(x2) · · ·Φ(xn). (16)

where the nth coefficient is just the n-point vertex func-
tion of the theory [6, 14].
For the φ4-theory with O(N)-symmetry and action

A[φ] =

∫

d4x

[

1

2
(∂φa)

2 − m2

2
φ2
a −

g

4!

(

φ2
a

)2
]

, (17)

the zeroth-order effective action is

Γ[Φ] =

∫

d4x

[

1

2
(∂Φa)

2 − m2

2
Φ2

a −
g

4!

(

Φ2
a

)2
]

. (18)

For m2 > 0,1 this has an extremum at Φa ≡ 0,
and there are only two non-vanishing vertex functions
Γ(n)(x1, . . . , xn):
n=2:

Γ
(2)
ab (x1, x2) ≡ δ2Γ

δΦa(x1)δΦb(x2)

∣

∣

∣

∣

Φa=0

=
δ2A

φa(x1)φb(x2)

∣

∣

∣

∣

φa=Φa=0

= (−∂2 −m2)δabδ
(4)(x1 − x2). (19)

This determines the inverse of the propagator:

Γ
(2)
ab (x1, x2) = [i~G−1]ab(x1, x2), (20)

Thus we find to this zeroth-order approximation that
Gab(x1, x2) is equal to the free propagator:

Gab(x1, x2) = G0ab(x1, x2) (21)

n=4:

Γ
(4)
abcd(x1, x2, x3, x4)≡

δ4Γ

δΦa(x1)δΦb(x2)δΦc(x3)δΦd(x4)

= gTabcd, (22)

1 The case m
2

< 0 corresponds to the condensed phase of the

system and will be treated below.

with

Tabcd =
1

3
(δabδcd + δacδbd + δadδbc), (23)

which is just the fundamental vertex implied by the local
interaction (18).
According to the definition of the effective action, all

diagrams of the theory can be composed from the propa-
gatorGab(x1, x2) and this vertex via tree diagrams. Thus
we see that in this lowest approximation, we recover pre-
cisely the subset of all original Feynman diagrams with
a tree-like topology. These are all diagrams which do
not involve any loop integration. Since the limit ~ → 0
corresponds to the classical equations of motion with no
quantum fluctuations we conclude: Classical field theory
corresponds to quantum field theory in the tree approxi-
mation.
The use of the initial action as an approximation to the

effective action neglecting fluctuations is often referred to
as mean-field theory.
Let us now apply the effective action formalism to

the phenomenon of Bose-Einstein condensation (BEC).
There the number of O(N) components is N = 2, and Φ2

is identified with Ψ†Ψ/MkBT , and the interaction with
(gS/2)

∫

dD(Ψ†Ψ)2, the subscript S indicating that the
lowest-order equation of motion of the field Φ becomes
the nonlinear Schrödinger equation

[

−i~∂t −
~
2

2M
∇

2 − µ+ gSΨ
†Ψ

]

Ψ(x) = 0, (24)

where M is the physical mass of the particles. The rela-
tion with the previous coupling constant is

gS/2 = g/4!. (25)

Here µ is the chemical potential of the particles which is
fixed by ensuring a given particle number N .
After quantization, the nonlinear Schrödinger equation

(143) has a phase transition at a temperature Tc where
the chemical potential µ vanishes. For a free gas, this is
determined by the equation

N =
∑

p

1

eβ~ωp−βµ − 1
, (26)

where β = 1/kBT , kB is the Boltzmann constant, and
ωp = p2/2M the kinetic energy of the particles. In D
dimensions, (26) can be written as an energy integral

N =
1

Γ(D/2)

VD
√

2π~2β/M
D

∫ ∞

0

dε
εD/2−1

eε−βµ − 1
(27)

where VD = volume. For µ = 0, the integral yields Rie-
mann’s zeta function ζ(D/2) =

∑∞
n=1 n

−D/2, and we find
the critical temperature from

N =
1

Γ(D/2)

VD
√

2π~2βc/M
D
ζ(D/2), (28)
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In the neighborhood of Tc and for D = 3, the chemical
potential behaves like

− µ ≈ 1

4π
kBTc ζ

2(3/2)

[

(

T

Tc

)3/2

− 1

]2

. (29)

This is the critical regime of the Bose gas. Its statistical
properties are governed by the action

A=β

∫

dDx

[

− ~
2

2M
∂Ψ∗∂Ψ+ µΨ∗Ψ− gS

2
(Ψ∗Ψ)2

]

.(30)

The coupling constant gS can be expressed in terms of
the s-wave scattering length as of the atoms as MgS =
4π~2as [5]. The connection with the action (17) is estab-
lished by equating m2 = −2Mµ and g = 4! 2πasMkBT
which has near Tc is, in natural units with ~ = 1,
c = 1, the approximate size g ≈ 4! 2πas/ℓ

2
c where

ℓc = [ζ(D/2)VD/NΓ(D/2)]1/D.
If the BEC takes place in an external trap potential

V (x) = Mω2x2/2, the action (30) contains, instead of
the chemical potential µ, an x-dependent chemical po-
tential µ(x) = µ + Mω2x2/2, and the particle density
n(x) = Ψ∗Ψ is obtained from the solution of the effective
field equation
[

− ~
2

2M
∇

2 + µ+Mω2x2/2 + gSn(x)

]

Ψ(x) = 0. (31)

In the Thomas-Fermi approximation, we neglect the gra-
dient term and find the density profile

n(x) =
Mω2

gS
(R2

c −R2), R2 = x2, (32)

where Mω2R2
c ≡ −µ.

The interaction shifts the critical temperature of the
BEC in D = 3 dimensions from the free-particle value
determined by (28) to a higher value Tc + ∆Tc with
∆Tc/Tc ≈ as(N/V3)

1/3 [21].
The reason for the good agreement with observations

is the smallness of the coupling constant gS which, as we
discussed before, is ensured in experimental BEC by the
diluteness of the atomic gases that can be brought to the
low critical temperatures in the laboratory. If the cou-
pling gets larger, the interaction changes the properties
of the gas, and the extremization of the action (30) will
no longer be sufficient to explain the physical properties
of the gas. Instead, one has to extremize the effective
action Γ[Φ], to which (30) is merely the mean-field ap-
proximation.
An important experimental method to investigate the

strong-coupling properties of the gas is based on placing
the sample in a magnetic field B and raising this up to a
critical value Bc, where the two-particle scattering length
diverges at a so-called Feshbach resonance. At that point
one reaches the strong-coupling limit of the the field the-
ory (30). The purpose of this note is to calculate the full
effective action Γ[Φ] of the theory for all couplings, from
weak to strong.

QUADRATIC FLUCTUATIONS

Let us calculate the higher ~-correction to the mean-
field approximation (15). For this we expand the action
in (9) in powers of the fluctuations of the field around
the classical solution

δφ(x) ≡ φ(x) − φcl(x), (33)

and perform a perturbation expansion. The quadratic
term in δφ(x) is considered as a “free-field action”, the
higher powers in δφ(x) as “interactions”. Up to second
order in the fluctuations δφ(x), the action is expanded as
follows:

A[φcl + δφ] +

∫

d4xj(x)[φcl(x) + δφ(x)]

= A[φcl] +

∫

d4xj(x)φcl(x)

+

∫

d4x

{

j(x) +
δA

δφ(x)

∣

∣

∣

∣

φ=φcl

}

δφ(x)

+

∫

d4xd4y δφ(x)
δ2A

δφ(x)δφ(y)

∣

∣

∣

∣

φ=φcl

δφ(y)

+O
(

(δφ)3
)

. (34)

The curly bracket term that is linear in the variation δφ
vanishes due to the extremality property of the classical
field φcl expressed by the field equation (11). Inserting
this expansion into (9), we obtain the approximate ex-
pression

Z[j] ≈ N e(i/~){A[φcl]+
∫
d4xjφcl}

∫

Dδφ (35)

× exp

{

i

~

∫

d4xd4y δφ(x)
δ2A

δφ(x)δφ(y)

∣

∣

∣

∣

φ=φcl

δφ(y)

}

We now observe that the fluctuations in δφ will be of
average size

√
~ due to the ~-denominator in the Fresnel

integrals over δφ in (35). Thus the fluctuations (δφ)n are
on the average of relative order ~n/2. If we ignore correc-
tions of order ~3/2, the fluctuations remain quadratic in
δφ and we may calculate the right-hand side of (35) as

N e(i/~){A[φcl]+
∫
d4xj(x)φcl(x)}

[

det
δ2A

δφ(x)δφ(y)

]

φ=φcl

= (det iG0)
1/2

e(i/~){A[φcl]+
∫
d4xj(x)φcl(x)}

× e(i/~){i(~/2)Tr log[δ2A/δφ(x)δφ(y)|φ=φcl}. (36)

Comparing this with the left-hand side of (9), we find
that to first order in ~, the effective action may be recov-
ered by equating

Γ[Φ] +

∫

d4xj(x)Φ(x) = A[φcl] +

∫

d4xjφcl

+
i~

2
Tr log

δ2A
δφ(x)δφ(y)

(φcl) . (37)
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In the limit ~ → 0, the trace log term disappears and
(37) reduces to the classical action as in (15).
To include the ~-correction into Γ[Φ], we expand W [j]

as

W [j] = W0[j] + ~W1[j] +O(~2). (38)

Correspondingly, the field Φ differs from Φcl by a correc-
tion of order ~2.

Φ = φcl + ~φ1 +O(~2). (39)

Inserting this into (37), we find

Γ[Φ] +

∫

d4x jΦ = A [Φ− ~φ1] +

∫

d4xjΦ− ~

∫

d4xjφ1

+
i

2
~Tr log

δ2A
δφaδφb

∣

∣

∣

∣

φ=Φ−~φ1

+O
(

~
2
)

.

Expanding the action up to the same order in ~ gives

Γ[Φ] = A[Φ] + ~

{

δA[Φ]

δΦ
− j

}

φ1 +

∫

d4x jΦ

+
i

2
~Tr log

δ2A
δφaδφb

∣

∣

∣

∣

φ=Φ

+O
(

~
2
)

. (40)

But because of (11), the curly-bracket term is only of
order O(~2), so that we find the one-loop form of the
effective action

Γ[Φ] = Γ0[Φ] + Γ1[Φ]

=

∫

d4x

[

1

2
(∂Φa)

2 − m2

2
Φ2

a −
g

4!

(

Φ2
a

)2
]

+
i

2
~Tr log

[

−∂2 −m2 − g

6

(

δabΦ
2
c + 2ΦaΦb

)

]

. (41)

In the special case of a one-component real field, this
becomes

Γ[Φ] =

∫

d4x

[

1

2
(∂Φ)2 − m2

2
Φ2 − g

4!
Φ4

]

+
i

2
~Tr log

[

−∂2 −m2 − g

2
Φ2
]

. (42)

What is the graphical content of the set of all Green
functions at this level? For j = 0, we find that the min-
imum lies at Φ = Φ0 ≡ Φj = 0, as in the mean-field
approximation. Around this minimum, we may expand
the trace log in powers of Φ, and obtain for Γ1[Φ] the
series:

i

2
~Trlog

(

−∂2−m2− g

2
Φ2
)

(43)

=
i

2
~Trlog

(

−∂2−m2
)

+
i

2
~Trlog

(

1+
i

−∂2−m2
ig
Φ2

2

)

.

The second term can be expanded in powers of Φ2 as
follows:

− i
~

2

∞
∑

n=1

(

−i
g

2

)n 1

n
Tr

(

i

−∂2 −m2
Φ2

)n

.

If we insert

G0 =
i

−∂2 −m2
, (44)

then Γ1[Φ] can be written as

i
~

2
Tr log

(

−∂2−m2
)

−i
~

2

∞
∑

n=1

(

−i
g

2

)n 1

n
Tr
(

G0Φ
2
)n
. (45)

More explicitly, the terms with n = 1 and n = 2 read:

−~

2
g

∫

d4xd4yδ(4)(x−y)G0(x, y)Φ
2(y) (46)

+i~
g2

16

∫

d4xd4yd4zδ4(x−z)G0(x, y)Φ
2(y)G0(y, z)Φ

2(z).

The expansion terms of (45) for n ≥ 1 correspond
obviously to the Feynman diagrams

(47)

Thus the series (45) is a sum of all diagrams formed from
one loop and any number of fundamental Φ4-vertices.
This type of loop expansion has been used for many

years in the quantum field theory of many-particle sys-
tems where it is known as Belyaev expansion [20].
To systematize the entire expansion (45), the trace log

term may be pictured by a trivial single-loop diagram
without an extra vertex:

i
~

2
Tr log

(

−∂2 −m2
)

= . (48)

The first two diagrams in (47) contribute corrections
to the vertices Γ(2) and Γ(4) of (19), (22). The remaining
ones produce higher vertex functions and lead to more in-
volved tree diagrams. Note that only the first two correc-
tions are formally divergent, all following loop integrals
converge. In momentum space we find from (47)

Γ(2)(q) = q2 −m2 − ~
g

2

∫

dk4

(2π)4
i

k2 −m2 + iη
(49)

Γ(4)(qi) = g − i
g2

2
× (50)

[

∫

d4k

(2π)4
i

k2−m2+iǫ

i

(q1+q2−k)
2−m2+iη

+2 perm

]

.

The convergence of all higher diagrams in the expansion
(47) is ensured by the renormalizability of the theory
since only up to n = 4 does one have the possibility
to add counter terms of the same form as the original
Lagrangian. We may write (49) in euclidean form as

Γ(2)(q) =
(

q2 +m2 + ~
g

2
D1

)

, (51)

Γ(4)(qi) = g − ~
g2

2
[I (q1 + q2) + 2 perm] . (52)
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where D1 and I(q) are the Feynman integrals

D1 =

∫

d̄4kE
1

k2E +m2
(53)

and

I(q) =

∫

d̄4kE
1

(k2E +m2)

1

[(k + q)2E +m2]
. (54)

The integrals can be calculated in D dimensions by sep-
arating them into a directional and a size integral as

∫

d̄Dk =

∫

dDk

(2π)D
=

SD

(2π)D

∫

dkkD−1

≡ S̄D

2

∫

dk2(k2)D/2−1. (55)

We further simplify all calculations by performing a Wick
rotation of all energy integrals

∫

dk0 into i
∫∞

−∞
dk4. Then

the integrals
∫

d4k become what are called euclidean in-
tegrals i

∫

d4kE where kµE = (k, k4), and k2 = k20 − k2

becomes −k2E = −(k2 + k24).
By the same token we introduce the euclidean version

ΓE [Φ] = −iΓ[Φ] of the effective action (42) whose func-
tional derivatives are vertex functions Γ(n) by formulas
like (19) and (22).
We further introduce renormalized fields

φR(x) ≡ Z
−1/2
φ φ(x) (56)

where Z
1/2
φ is a field renormalization constant. It serves

to absorb infinities arising in the momentum integrals.
The renormalized vertex functions are obtained by cal-
culating all vertex functions in D = 4 − ǫ dimensions
and fixing the renormalization constants order by order
in perturbation theory. Alternatively, we can add to the
bare action suitable counter terms. In either way, we
arrive at finite expressions, such as

Γ
(2)
R (q) =

{

q2 +m2 +
~

2
gµ−ǫS̄Dm2

×
[

1

2
Γ(2− ǫ/2)Γ (−1 + ǫ/2)

(

m2

µ2

)−ǫ/2

+
1

ǫ

] }

, (57)

Γ
(4)
R (qi) = g − ~

g2

2
[IR (q1 + q2) + 2 perm] . (58)

where

IR(q) = −1

2
S̄Dµ−ǫ

[

1 + Lm(q) + log
q2

µ2

]

+O(ǫ), (59)

with

Lm(q) =

∫ 1

0

dx log

[

x(1 − x) +
m2

q2

]

(60)

= −2 + log
m2

q2
+

√

q2 + 4m2

√

q2
log

√

q2 + 4m2 +
√

q2
√

q2 + 4m2 −
√

q2
.

In any regularization scheme, we can also perform sub-
tractions of counter terms which all have the same form
as the terms in the original action to remove the divergent
parts of the Feynman integrals. In this way we obtain for
the the euclidean version ΓE [Φ] = −iΓ[Φ] of the effective
action (42) in D = 4− ǫ dimensions the finite subtracted
expression

ΓE [Φ] =

∫

dDxE

{

1

2
(∂Φ)2 +

m2

2
Φ2 +

g

4!
Φ4

}

− ~

2
Tr log

(

−∂2 +m2 +
g

2
Φ2
)

+
~g

4

∫

dDqE
(2π)4

1

q2E +m2

∫

dDxΦ2(x)

− ~g2

16

∫

dDqE
(2π)4

1

(q2E +m2)
2

∫

dDxΦ4. (61)

In this formulation, the divergent integrals in the last two
terms modify the mass term and the coupling constant.
They may be evaluated with any regularization method.
A direct evaluation in 4− ǫ dimensions yields

ΓE [Φ] =

∫

dDxE

{

1

2
(∂Φ)2 +

m2

2
Φ2 +

g

4!
Φ4

}

− ~

2
Tr log

(

−∂2 +m2 +
g

2
Φ2
)

− mC1
m2

2
Φ2 − gC2

g2

4!
Φ4, (62)

where the third line may be written as

− ~g

4
(m2)1−ǫ/2c1Φ

2 +
~g2

16
(m2)−ǫ/2c2Φ

4, (63)

with the constants

c1 = mǫ−2

∫

d̄DpE
1

p2E +m2
, (64)

c2 = mǫ

∫

d̄DpE
1

(p2E +m2)2
. (65)

We evaluate these integrals using the formulas [14]

∫

-d
D
kE

1

k2E+m2
= S̄D

Γ(D/2)Γ(1−D/2)

2Γ(1)

1

(m2)1−D/2
, (66)

and
∫

-d
D
kE

1

(k2E+m2)2
= S̄D

Γ(D/2)Γ(2−D/2)

2Γ(1)

1

(m2)
2−D/2

.(67)

Further, by integrating (66) over m2, we find

∫

-d
D
kE log

(

k2E+m2
)

= S̄D
Γ(D/2)Γ(1−D/2)

DΓ(1)

(

m2
)D/2

.(68)

In the so-called minimal subtraction scheme in 4 − ǫ di-
mensions, only the singular 1/ǫ pole parts of the two



7

integrals are selected for the subtraction in (61). In the
neighborhood of ǫ = 0, (64) and (65) become

c1 = −S̄D
2

ǫ
+O(ǫ), (69)

c2 = S̄D
1

ǫ

(

1− ǫ

2

)

+O(ǫ). (70)

Hence we can choose the singular terms in (63)

− ~gµ−ǫ

4
m2S̄D

(

−1

ǫ

)

Φ2,
~g2µ−ǫ

16
S̄D

1

ǫ
Φ4. (71)

as counter terms. These make the effective action (62)
finite for any mass m.
Note, however, that an auxiliary mass parameter µ

must be introduced to define these expressions. If the
physical mass m is nonzero, µ can be chosen to be equal
to m. But for m = 0, we must use an arbitrary nonzero
auxiliary mass µ as the renormalization scale.
Observe that up to the order ~, there is no diver-

gence that needs to be absorbed in the gradient term
∫

dDx (∂Φ)2 of the effective action (62). These come in
as soon as we carry the same analysis to one more loop
order.
Let us calculate the effective potential in the critical

regime for a constant field Φ at the one-loop level. It is
defined by v(Φ) = −ΓE [Φ]/V T . The argument in the
trace log term is now diagonal in momentum space and
the calculation reduces to a simple momentum integral.
It follows directly from (62) and reads

v(Φ)=
m2

2
Φ2+

g

4!
Φ4+

~

2

∫

dDqE
(2π)D

log

(

1 +
g

2

Φ2

q2E+m2

)

−~g

4
(m2)1−ǫ/2c1Φ

2 +
~g2

16
(m2)−ǫ/2c2Φ

4. (72)

The expansions in powers of ǫ has an important prop-
erty which has the direct applications in the description
of the strong-coupling limit, i.e., in critical phenomena.
For small ǫ, Eq. (57) can be rewritten as

Γ
(2)
R =

(

q2E +m2 +
~

4
µ−ǫgS̄D log

m2
E

µ2

)

(73)

which is, to the same order in g, equal to

Γ
(2)
R (q) =

[

q2E +

(

m2

µ2

)1+ ~

4 µ
−ǫgS̄D

µ2

]

. (74)

This means that the vertex function at q = 0 has a mass
term that depends on the mass m of the φ-field via a
power law:

Γ
(2)
R (0) =

(

m2

µ2

)γ

µ2. (75)

The power γ depends in the coupling strength g like

γ = 1 +
~

4
µ−ǫgS̄D. (76)

The important point is that this power γ is measurable
as an experimental quantity called the susceptibility. It
is called the critical exponent of the susceptibility.
If the effective action is calculated to order ~

2, then
the gradient term in the effective action is modified and
becomes

Γ[Φ] =

∫

ddxΦR(x)ΓR(q̂)ΦR(x), (77)

where ΦR(x) = Z
−1/2
φ Φ(x), and Zφ is the field renor-

malization constant introduced on (56). It is divergent
for ǫ → 0 in D = 4 − ǫ dimensions. In the crit-
ical limit m2 → 0, the renormalization is power-like
ΦR(x) → (µ/µ0)

−η/2Φ(x), and Eq. (74) becomes

Γ
(2)
R (q) = −

[

(q2)2−ηµη +

(

m2

µ2

)γ

µ2

]

. (78)

The power η is called the anomalous dimension of the
field Φ.
From (78) we extract that the coherence length of the

system ξ behaves like

ξ = µ−1(m2)−ν . (79)

where

ν ≡ γ/(2− η) (80)

is the critical exponent of the coherence length.

Another power behavior is found for Γ
(4)
R (0):

Γ
(4)
R (0) →

m→0
g

(

1 +
3

4
~gµ−ǫS̄D log

m2

µ2

)

+O(m2)

= g

(

m2

µ2

)~
3
4 gµ

−ǫ S̄D

. (81)

Also this power behavior is measurable and defines the
critical index β via the so-called scaling relation

γ − 2β ≡ 3

4
~gµ−ǫS̄D, (82)

so that

β =
1

2
− 1

4
~gµ−ǫS̄D. (83)

The higher powers of Φ are accompanied by terms which
are more and more singular in the limit m → 0. We see
from the Feynman integrals in (45) that the diagrams
in (47) behave like m4−ǫ−n for m → 0, and so do the
associated effective action terms Φn.
The coefficients of the dimensionless quantities

(Φ2/µ2−ǫ)≡
(

Φ̃2
)n

or (gΦ2/µ2)n ≡
(

Φ̂2
)n

have the gen-

eral form (m2/µ2)γ−2nβ , so that the effective potential
can be written as

v(Φ) = µ4−ǫ

(

m2

µ2

)γ
Φ2

µ2−ǫ
f(x), (84)
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with

x ≡
(

m2

µ2

)−2β
Φ2

µ2−ǫ
≡ t−2β Φ2

µ2−ǫ
= t−2βΦ̃2, (85)

where we have abbreviated

t ≡ m2

µ2
. (86)

For small Φ, the function f(x) has a Taylor expansion
in even powers of Φ, corresponding to the diagrams in
Eq. (47):

f(x) = 1 +

∞
∑

n=1

fnx
n = 1 +

∞
∑

n=1

fn

(

t−2nβΦ̃2
)n

. (87)

If we start the sum at n = −1, we also get the general
form of the vacuum energy

v(0) = µ4−ǫ

(

m2

µ2

)γ+2β

. (88)

The exponent γ + 2β is equal to Dν, where ν is the
exponent defined in (80).

By differentiating this energy twice with respect tom2,
we obtain the temperature behavior of the specific heat

C ∝
(

m2

µ2

)Dν−2

=

(

m2

µ2

)−α

(89)

which yields the important critical exponent α = 2 −
Dν that governs the singularity of the famous λ-peak in
superfluid helium at Tc ≈ 2.7 Kelvin, the most accurately
determined critical exponent in many-body systems by a
measurement in a satellite [19].

We can also rewrite (84) in the form

v(Φ) = µ4−ǫ S̄D

λ

(

m2

µ2

)γ
gΦ2

µ2
f̄(y), (90)

where

f̄(y) = 1 +
∞
∑

n=1

f̄ny
n = 1 +

∞
∑

n=1

f̄n

(

t−2β

(

gΦ2

µ2

))n

. (91)

and

y ≡ λ

S̄D
x = gµ−ǫx =

(

m2

µ2

)−2β (
gΦ2

µ2

)

= t−2βΦ̂2.(92)

In the limit m2 → 0, the expansion (87) and (91)
are divergent since the the coefficients grow like n!. A
sum can nevertheless be calculated with the technique of
Variational Perturbation Theory (VPT) developed in the
textbook [14].

MASSLESS THEORY AND WIDOM SCALING

Let us evaluate the zero-mass limit of v(Φ). Since m2

always accompanies the coupling strength in the denomi-
nator, the limit m2 → 0 is equivalent to the limit g → ∞,
i.e., the strong-coupling limit.
The strong-coupling limit deserves special attention.

The theory in this limit is referred to the critical theory.
This name reflects the relevance of this limit for the be-
havior of physical systems at a critical temperature where
fluctuations are of infinite range.
We shall see immediately that for large y, f(y) behaves

like a pure power of y: f(y) → y(δ−1)/2, so that

v(Φ) → µ4−ǫ 1

4!

S̄D

λ

(

gΦ2

µ2

)(δ+1)/2

. (93)

Since without fluctuation corrections, δ = 3, this reduces
properly to the mean-field potential gΦ4/4!.
With this leading large Φ-behavior, we can rewrite

the general form (90) of the potential also as a so-
called Widom scaling expression depending on y−1/2β ∝
m2/Φ1/β [11]:

v(Φ) ∝ Φδ+1w(m2/Φ1/β). (94)

From this effective potential we may derive the general
Widom form of the equation of state. After adding a
source term HΦ and going to the extremum, we obtain
H(Φ) = ∂v(Φ)/∂Φ with the general behavior

H(Φ) ∝ Φδh(m2/Φ1/β). (95)

Recalling (94), we expect the general form of the po-
tential (84) to be

v(Φ) → µ4−ǫ 1

4!

S̄D

λ

(

gΦ2

µ2

)(δ+1)/2

ŵ (τ) , (96)

where τ ≡
(

m2/µ2
)

/(Φ/µ1−ǫ/2)1/β ≡ t/(Φ̃2)1/β .
For small m2, ŵ(τ) has a series expansion in powers of

των :

ŵ(τ)=1+c1τ
ων +c2τ

2ων + . . . ), (97)

or since t = µξ−1/ν :

ŵ(τ)=1+ c̄1ξ
−ωΦ−ων/β+ c̄2ξ

−2ωΦ−2ων/β + . . . ). (98)

Here ω is the Wegner exponent [17] that governs the ap-
proach to scaling. Its numerical value is close to 0.8 [22].
Differentiating (96) with respect to Φ yields the follow-

ing leading contribution to H :

H = ∂Φv(Φ) =
δ + 1

4!
µ2

(

gΦ2

µ2

)(δ−1)/2

=
δ + 1

4!
µ2

(

λΦ̃2

S̄D

)(δ−1)/2

, (99)
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where δ − 1 = γ/β.
Note that the effective potential remains finite for m =

0. Then, v(Φ) becomes

v(Φ)=
g

4!
Φ4+

~

2

∫

dDq

(2π)D
log

(

1+
g

2

Φ2

q2

)

+
~g2µ−ǫ

16

S̄D

ǫ
Φ4.(100)

It displays an important feature: When expanding the
logarithm in powers of Φ, the expansion terms correspond
to increasingly divergent Feynman integrals

∫

dDq

(2π)D
1

(q2)n
.

Contrary to the previously regularized divergencies com-
ing from the large-q2 regime, these divergencies are due
to the q = 0 -singularity of the massless propagators
G0(q) = i/q2. This means that they are IR-singularities.
Let us verify that the effective potential remains indeed
finite for m = 0. Performing the momentum integral in
(100) the potential becomes

v(Φ)=
g

4!
Φ4+

~

4
S̄D

(

−1

ǫ

)

(g

2
Φ2
)2− ǫ

2

+
~g2

16
S̄Dµ−ǫ 1

ǫ
Φ4.

(101)

With the goal of expanding this for small ǫ-expansion, we
divide the coupling constant and field by a scale parame-
ter involving µ. Then gµ−ǫ and Φ/µ1−ǫ/2 are dimension-
less quantities, in terms of which

v(Φ)= µ4−ǫ

[

gµ−ǫ

4!

(

Φ

µ1−ǫ/2

)4

+
~

4
S̄D

(

−1

ǫ

)

×
(

gµ−ǫ

2

Φ2

µ2−ǫ

)2− ǫ
2

]

+
~g2

16

µ−2ǫ

ǫ
S̄D

(

Φ

µ1−ǫ/2

)4

.(102)

If we use the dimensionless coupling constant

λ ≡ S̄D~gµ−ǫ (103)

and the reduced field Φ̃ ≡ Φ/µ1−ǫ/2 as new variables,
then

v(Φ)=
µ4−ǫ

~S̄D





λ

4!
Φ̃4 +

1

4

(

−1

ǫ

)

(

λΦ̃2

2

)2

×
(

1− ǫ

2
log

λΦ̃2

2

)

+
λ2

16ǫ
Φ̃4

}

. (104)

To zeroth order in ǫ, the prefactor is equal to µ4 8π2.
Thus the massless limit of the effective potential is well
defined in D = 4 dimensions. There is, however, a spe-
cial feature: The finiteness is achieved at the expense of
introducing the extra parameter µ.
The most important property of the critical potential

is that it cannot be expanded in integer powers of Φ2.

Instead, the expression (104) can be rewritten, correctly
up to order λ2, as

v(Φ)=
µ4−ǫ

S̄D

1

6

{

(

λ

2
Φ̃2

)2

+
3

8

(

λ

2
Φ̃2

)2

log
λ

2
Φ̃2

}

=
µ4−ǫ

S̄D

1

6λ

(

λ

2
Φ̃2

)2+ 3
4λ

+O(λ3). (105)

This is the typical power behavior of the critical inter-
action. The power of Φ̃ defines the critical exponent of

the interaction 1 + δ, so that up to the first order in the
coupling strength:

δ = 3 +
3

2
λ. (106)

At the mean-field level, δ is equal to 3

CRITICAL COUPLING STRENGTH

What is the coupling strength λ in the critical regime?
The counter term proportional to Φ4 in Eq. (100) implies
that the use of the renormalized coupling constant in the
subsequent subtracted expressions. This corresponds to
the use of a bare coupling constant gB instead of g in the
original action (17). The relation between the two to this
one-loop order is

gB = g +
3

2
~g2µ−ǫ S̄D

ǫ
+ . . . . (107)

For a given bare interaction strength gB, the renormal-
ized coupling depends on the parameter µ chosen for the
renormalization procedure. Equivalently we may imag-
ine having defined the field theory on a fine spatial lat-
tice with a specific small lattice spacing a ∝ 1/µ, and the
renormalized coupling constant will depend on the choice
of a.
If we sum an infinite chain of such corrections, we ob-

tain a geometric sum that is an expansion of the equation

gB =
g

1− 3

2
~gµ−ǫ S̄D

ǫ

, (108)

which has (107) as its first expansion term. Equivalently
we may write

1

~gBµ−ǫ
=

1

~gµ−ǫ
− 3

2

S̄D

ǫ
+ . . . . (109)

In this equation, we can go to the strong-coupling limit
gB → ∞ by taking µ to the critical limit µ → 0, where
we find that the renormalized coupling has a finite value

1

~gµ−ǫ
=

3

2

S̄D

ǫ
+ . . . . (110)
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For the dimensionless coupling constant (103), this
amounts to the strong-coupling limit

λ ≡ ~gµ−ǫS̄D → 2

3
ǫ+ . . . , (111)

with the omitted terms being of higher order in ǫ. The
approach to this limit starting from small coupling is ob-
tained from (108) to be

~gµ−ǫ =
1

1

~gBµ−ǫ
+

3

2

S̄D

ǫ

. (112)

At small bare coupling constant, this starts out with
the renormalized expression that is determined by the s-
wave scattering length ~gµ−ǫ = 6 × 4π~2as/M . In the
strong-coupling limit of gB or the critical limit µ → 0,
the value (110) is reached.
For the critical exponents γ, β, δ in (76), (83), (106),

the strong-coupling limits are

γ = 1 +
1

6
ǫ, β =

1

2
− 1

6
ǫ, δ = 3 + ǫ. (113)

They are approached for finite gB like

γ = 1 +
1

4
~gµ−ǫ, β =

1

2
− 1

4
~gµ−ǫ, (114)

with the just discussed gB-behavior of g.
If the omitted terms in (111) are calculated for all N

and to higher loop orders one finds λ = 2g∗, where g∗

is the strong-coupling limit gB → ∞ of the series in Eq.
(15.18) in the textbook [14]]. The other critical expo-
nents may be obtained from the ḡB → ∞ -limit of similar
expansions for ν, η into α = 2 − νD, β = ν(D − 2 + η),
γ = ν(2− η), δ = (D+2− η)/(D− 2+ η). These can be
extracted from Chapter 15 in Ref. [14].
All these series are divergent, but can be resummed for

ǫ = 1 and ḡB → ∞. The series for ḡ yields for N = 2
the value ḡ → g∗ ≈ 0.503 (see Fig. 17.1 in [14]). The
typical dependence of ḡ on ḡB is plotted in Fig. 20.8 of
Ref. [14]. For ν and η the plots are shown in Figs. 20.9
and 20.10, and we leave it to the reader to compose from
these the dependence of α, β, δ as functions of ḡB.
It should be pointed out that the potential in the first

line of (105) has another minimum away from the origin
at

λ

3!
Φ̃3 +

λ2

8
Φ̃3

(

log
λ

2
Φ̃2 − 1

2

)

+
λ2

16
Φ̃3 = 0. (115)

This is solved by

λ log
λ

2
Φ̃2 = −4

3
(116)

or

Φ̃2 =
2

λ
e−43λ. (117)

However such a solution found for small λ cannot be
trusted. The higher loops to be discussed later and ne-
glected up to this point will produce more powers of
λ log(λΦ̃2/2), and the series cannot be expected to con-
verge at such a large λ. As a matter of fact, the approx-
imate exponentiation performed in (105) does not show
this minimum and will be seen, via the methods to be
described later, to be the correct analytic form of the
potential to all orders in λ for small enough ǫ and λ.
If we want to apply the formalism to a Bose-Einstein-

condensate we must discuss the case of a general O(N)-
symmetric version of the effective potential based on the
action (41), and insert into it the number N = 2. The
equation for the bare coupling constant is then

gB = g +
N + 8

6
~g2µ−ǫ S̄D

ǫ
+ . . . , (118)

rather than (107), so that the strong-coupling limit (111)
becomes

λ ≡ S̄D~gµ−ǫ → 6

N + 8
ǫ + . . . , (119)

with the other critical exponents (113):

γ=1+
N + 2

2(N+8)
ǫ, β=

1

2
− 3

2(N+8)
ǫ, δ=3+

9

N+8
ǫ.(120)

For the coupling constant gS defined in (25) the strong-
coupling limit (119) reads

gS → 2
1

4!

λ

S̄D
µǫ =

(4π)2

4!
λµǫ =

(4π)2

12
g∗ µǫ, (121)

with g∗ ≈ 0.503 for N = 2.
If we carry the loop expansion to higher order in ~, we

find for the renormalized ḡ = ~gBµ
−ǫ/2S̄D as function

of the bare coupling ḡB = ~gBµ
−ǫ/2S̄D the perturbation

expansion [see Eq. (15.18) in Ref. [14]. See there also the
higher expansion terms]

ḡ

ḡB
=1− ḡB

8+N
3 ǫ−1 + ḡ2B

{

(8+N)2

9
1
ǫ2 + 14+3N

6
1
ǫ

}

+ ḡ3B

{

− (8+N)3

27
1
ǫ3 − 4 (8+N)(14+3N)

27
1
ǫ2 (122)

− [2960+922N+33N2+(2112+480N)ζ(3)]
648

1
ǫ

}

+ . . . .

Given this dependence of ḡ on the bare coupling con-
stant ḡB, we find for γ the expansion

γ(ḡB)= ḡ

6
(N+2) − 5 ḡ2

36
(N+2) + ḡ3

72
(N+2)

(

5N + 37
)

−
ḡ4

15552
(N+2)

[

−N2 + 7578N + 31060 (123)

+48ζ(3)(3N2+10N+68) + 288ζ(4)(5N+22)
]

+. . . ,

where ḡ is replaced by (122).
The expression (m2/µ2)γ in the two-point function can

be replaced by an expansion of m2/m2
B in powers of ḡB
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that can be taken from Eq. (15.15) in [14], again with
ḡ replaced by (122). This expansion can be resummed
by Variational Perturbation Theory to obtain a curve of
the type in Fig. 20.8–20.10. This permits us to relate
t = m2/µ2 directly to µ−ǫgB.

RESUMMING THE EFFECTIVE POTENTIAL

According to Eq. (90), the effective action below in the
condensed phase with negative m2 has the general form

v(Φ)

µ4−ǫ
= tγ

Φ2

µ2−ǫ
(f̄0 + f̄1y + . . . ), (124)

where

y = t−2βgΦ2/µ2 = t−2βΦ̂2. (125)

From Eq. (91 we determine f̄0 = f̄1 = 1. For small t, y
becomes large, and we must convert the small-y expan-
sion into a large-y expansion.
Near the strong-coupling limit, the Widom function

(94) has an expansion in powers of (m2)ω/ν ∝ ξ−ω which
contains the Wegner critical exponent ω ≈ 0.8 governing
the approach to scaling [22]. The general expansion for
strong couplings is

v(Φ)

µ4−ǫ
=tγ

Φ2

µ2−ǫ
(t−2βΦ̂2)(δ−1)/2

(

b0+

∞
∑

m=1

bm

(t−2βΦ̂2)mων/2β

)

,

(126)

We may derive this from the rules of VPT in [14]. First
we rewrite a variational ansatz for the right-hand side of
Eq. (124) with the help of a dummy parameter κ = 1 as

wN = µ2tγΦ2κp
(

f̄0 + f̄1
y

κq
+ . . .

)

. (127)

Next we exchange κp by the identical expression
√

K2 + gr
p
, where r ≡ (k2 − K2)/K2. After this we

form w1 by expanding wN up to order g, and setting
κ = 1. This leads to

w1 = µ2tγΦ2Kp

[

f̄0

(

1− p

2
+

p

2

1

K2

)

+ f̄1
y

Kq

]

= µ2tγΦ2W1(y). (128)

The last term in the first line shows that for large y, K
has to grow like

K ∝ y1/q. (129)

We now extremize w1 with respect to K and find that
the derivative dw1/dK has to vanish, i.e.,

tγΦ2Kp−1 p(2− p)

2

[

f̄0

(

1− 1

K2

)

− f̄1c
y

Kq

]

=0, (130)

where

c ≡ 2(p− q)

p(p− 2)
≈ 0.32. (131)

In the free-particle limit y → 0, the solution is K(0) = 1,
and

w1 = µ2tγΦ2f̄0. (132)

The last term in (130) shows once more that for large
y, K will be proportional to y1/q. Moreover, it allows to
sharpen relation (129) to the large-y behavior

K → Kas(y) = (cy)1/q ≈ 0.648 y0.381. (133)

Then the leading large-y behavior of (108) is Φ2(cy)p/q ∝
(Φ2)p+1.
The first correction to the large-y behavior comes from

the second term in the brackets of (130), which by (125)
should behave like

K2 → (c t−2βgΦ2/µ2)ων/2β ≈ (c t−2βgΦ2/µ2)0.76.(134)

Comparing this with (110) and (129), we find p = 2(2−
η)/ω and q = 4β/ων. For the N = 2 universality class
these have the numerical values p ≈ 4.92 and q ≈ 4 ×
0.32/(0.8× 0.66) ≈ 2.63. Solving (130), we see that for
small y, K(y) has the diverging expansion

K(y)=1+0.32 y−0.165967 y2+0.155806 y3+. . . , (135)

so that W1 has the diverging expansion

W1 = 1+ y + 0.154436y3 + . . . . (136)

From Eq. (93), we know that the power p + 1 must be
equal to (δ + 1)/2, so that

yp/q = y(δ−1)/2 = y(2−η)ν/2β ≈ y1.87. (137)

If we insert (129) into (108), the extremal variational
energy is

w1(y) = µ2tγΦ2Kp
(

1− p

2
+

y

Kq

)

. (138)

whereK = K(y) is a function y which is plotted in Fig. 1.

For large y, where K(y) has the limiting behavior
(133), W1 becomes

W1(y) → Was(y) = Kp

(

1− p

2
+

1

c

)

≈ 0.197 y1.87. (139)

Near the limit, the corrections to (133) are

K(y) = Kas(y)

(

1 +

∞
∑

m=1

hm

ymων/2β

)

≈ 0.648 y0.381

(

1 +

∞
∑

m=1

hm

y0.761m

)

. (140)
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Figure 1: Solution of the variational equation (130) for f̄1 = 1.
The dotted curves show the pure large-y behavior.

with h1 ≈ 0.909, h2 ≈ −0.155, . . . . Inserting this into
(128), we find

W1(y) = Was(y)

(

1 +
∞
∑

m=1

bm
ymων/2β

)

≈ 0.197 y1.87

(

1 +

∞
∑

m=1

bm
y0.761m

)

. (141)

with b1 ≈ 3.510, b2 ≈ 4.65248, . . . .

FRACTIONAL GROSS-PITAEVSKII EQUATION

We now extremize the effective action (62) with the
two-loop corrected quadratic term (74). We consider the
case of N = 2 where Φ2 = Ψ∗Ψ. Then we take the
effective potential (138) with the extremal K = K(y) as
a function y plotted in Fig. 1. From this we form the
derivative ∂w1(y)/∂Ψ

∗ and obtain the time-independent
fractional Gross-Pitaevskii equation:

(p̂2)1−η/2Ψ+
∂w1(y)

∂Ψ∗
=0. (142)

If we use the weak-coupling limit of w1(y) and the gradi-
ent term, this reduces to the ordinary time-independent
Gross-Pitaevskii equation

[

− ~
2

2M
∇

2 − µ+ gSΨ
†Ψ

]

Ψ(x) = 0. (143)

In a harmonic trap µ is replaced by µ + Mω2x2/2.
Recalling the relation m2 = −2Mµ one has m2 =
−2M Mω2R2

c(1−R2/R2
c). The oscillator energy Mω2R2

c

corresponds to a length scale ℓO by the relation
Mω2R2

c = ~
2/Mℓ2O, so that m2 may be written as

m2 = µ2(R2/R2
c − 1) with µ = 1/ℓO.

In the strong-coupling limit, however, we arrive at the
time-independent fractional Gross-Pitaevskii equation:

[

(p̂2)1−η/2+
δ+1

4µη
gc|Ψ(x)|δ−1

]

Ψ(x)=0. (144)

By using the full effective action for all coupling strengths
and masses m2 we can calculate the properties of the

condensate at an coupling strength. Before reaching the
strong-coupling limit, we may use Eq. (142) to calcu-
late the field strength as a function of gS . Then the
critical exponents η, α, β, δ have not yet reached their
strong-coupling values by must be replaced by the ḡB-
dependent precritical values calculated from (122) and
the corresponding equations for η, α, β, δ.

In a trap, the mass term becomes weakly space-
dependent. If the trap is rotationally symmetric, then
m2 will depend on R = |x| and the time-independent
Gross-Pitaevskii equation has to be solved with m2(R) ∝
1−R2/R2

c . More specifically, the bare coupling constant
on the right-hand side has to be determined in such a
way that m2/m2

B has the experimental size. If the ex-
periments are performed in an external magnetic field B
the s-wave scattering length as has an enhancement fac-
tor (B/Bc − 1)−1 and Eq. (122) can again be used. We
can then calculate the density profile quite easily in the
Thomas-Fermi approximation as done in Ref. [23].

In a rotating BEC we can calculate the different forms
of the density profiles of vortices for various coupling
strengths which can be varied from weak to strong by
subjecting the BEC to different magnetic fields, raising
it from zero up to the Feshbach resonance. The profiles
are shown in Fig. 2).

In addition, the central region is depleted (see Fig. 2).
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Figure 2: Condensate density from Gross-Pitaevskii equation
(24) (GP,dashed) and its fractional version (144 (FGP), both
in Thomas-Fermi approximation where the gradients are ig-
nored. The FGP-curve shows a marked depletion of the con-
densate. On the right hand, a vortex is included. The zeros
at r ≈ 1 will be smoothened by the gradient terms in (24)
and (144), as shown on the left-hand plots without a vortex.
The curves can be compared with those in Ref. [24–28].

SUMMARY

We have shown that the expansion of the effective ac-
tion of a φ4-theory in even powers of the field strength
Φ = 〈φ〉 can be be resummed to obtain an expression
that is valid for any field strength, even in the the strong-
coupling limit. It has the phenomenological scaling form
once proposed by Widom, and can be used to calculate
the shape of a BEC up to the Feshbach resonance, with
and without rotation.
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