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Abstract Prp3 is an essential U4/U6 di-snRNP-associated protein whose functions and molecular

mechanisms in pre-mRNA splicing are presently poorly understood. We show by structural and

biochemical analyses that Prp3 contains a bipartite U4/U6 di-snRNA-binding region comprising an

expanded ferredoxin-like fold, which recognizes a 3′-overhang of U6 snRNA, and a preceding

peptide, which binds U4/U6 stem II. Phylogenetic analyses revealed that the single-stranded

RNA-binding domain is exclusively found in Prp3 orthologs, thus qualifying as a spliceosome-specific

RNA interaction module. The composite double-stranded/single-stranded RNA-binding region

assembles cooperatively with Snu13 and Prp31 on U4/U6 di-snRNAs and inhibits Brr2-mediated

U4/U6 di-snRNA unwinding in vitro. RNP-disrupting mutations in Prp3 lead to U4/U6•U5 tri-snRNP

assembly and splicing defects in vivo. Our results reveal how Prp3 acts as an important bridge

between U4/U6 and U5 in the tri-snRNP and comparison with a Prp24-U6 snRNA recycling complex

suggests how Prp3 may be involved in U4/U6 reassembly after splicing.

DOI: 10.7554/eLife.07320.001

Introduction
Pre-mRNA splicing is catalyzed by a multi-subunit RNA-protein (RNP) enzyme, the spliceosome, which

facilitates two successive transesterification reactions (steps 1 and 2) that lead to the removal of an

intron and the ligation of its flanking exons. For each splicing event, a spliceosome is newly formed via

the stepwise recruitment of small nuclear (sn) RNPs (U1, U2, U4, U5 and U6 in the case of the major

spliceosome) and numerous non-snRNP proteins to a pre-mRNA substrate (Wahl et al., 2009; Will

and Lührmann, 2011). During canonical cross-intron spliceosome assembly, U1 and U2 snRNPs bind

the 5′-splice site (5′SS) and the branch point region of an intron, respectively (Mount et al., 1983;

Kramer et al., 1984; Parker et al., 1987; Wu and Manley, 1989; Zhuang and Weiner, 1989).

Formation of this A complex is followed by the recruitment of a preformed U4/U6•U5 tri-snRNP,

yielding the pre-catalytic B complex (Bindereif and Green, 1987; Cheng and Abelson, 1987;

Konarska and Sharp, 1987; Deckert et al., 2006; Fabrizio et al., 2009), which requires extensive

conformational and compositional rearrangements to form a catalytically active spliceosome. Catalytic

activation includes the disruption of the U1/5′SS interaction (Konforti et al., 1993) and the separation

of U4 snRNA from U6 snRNA (Konarska and Sharp, 1987; Yean and Lin, 1991), which are extensively

base-paired in the tri-snRNP and in the B complex, leading to the dissociation of U1 snRNP, U4 snRNA
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and all U4/U6-associated proteins. These rearrangements give rise to the Bact complex (Fabrizio et al.,

2009; Bessonov et al., 2010) and, upon further remodeling, to the B* complex (Warkocki et al., 2009),

in which U6 snRNA forms a central part of the spliceosome’s active site. The B* complex facilitates the

first step of splicing, the ensuing C complex (Konarska et al., 2006; Bessonov et al., 2008; Fabrizio

et al., 2009) catalyzes the second step of splicing, after which the spliceosome releases its products and

the remaining snRNPs and non-snRNP factors are recycled.

To participate in further rounds of splicing, the U4/U6•U5 tri-snRNP must be reassembled by initial

dimerization of U4 and U6 snRNPs followed by association with U5 snRNP (Stanek and Neugebauer,

2006). Association of U4 and U6 snRNPs is mediated in part by base pairing between their respective

snRNAs, which form two inter-molecular helices (stems I and II) that are separated by a U4 5′-stem-loop

(5′SL; Figure 1A). U4/U6 base pairing is mutually exclusive with the U6 snRNA conformation in the

activated spliceosome. Reannealing of U4 and U6 snRNAs after splicing thus requires the Prp24

assembly chaperone in yeast (Raghunathan and Guthrie, 1998) or its SART3 ortholog in human

(Bell et al., 2002), which transiently bind U6 snRNA, as well as the LSm proteins (Achsel et al., 1999;

Rader and Guthrie, 2002; Verdone et al., 2004), which bind and remain at the 3′-end of U6 snRNA

(Beggs, 2005; Zhou et al., 2014). In addition, the U4-specific Prp3 protein is required for U4/U6 di-

snRNP and U4/U6•U5 tri-snRNP formation (Anthony et al., 1997) but molecular mechanisms

underlying its functions are poorly understood.

Human (h) and yeast (y) Prp3 form a complex with the respective Prp4 proteins (Ayadi et al., 1998;

Gonzalez-Santos et al., 2002). hPrp3 can be crosslinked to the U6 snRNA portion of a U4/U6

di-snRNA complex comprising the U4 5′SL, an intact stem II and a U6 3′-overhang (Nottrott et al.,

2002) and can pull down U4 and U6 snRNAs from nuclear extract (Gonzalez-Santos et al., 2002),

pointing towards direct Prp3-snRNA interactions. hPrp3 also interacts with the U5-specific proteins

hPrp6 and hSnu66 (Liu et al., 2006).

Except for an N-terminal region, Prp3 is highly conserved from yeast to human and contains a

C-terminal domain of unknown function (DUF1115; PFAM ID PF06544; Figure 1A; Figure 1—figure

supplement 1). Recent homology modeling has predicted a ferredoxin-like fold for the human Prp3

DUF1115 domain (Korneta et al., 2012). Here, we demonstrate that C-terminal regions of Prp3,

eLife digest Proteins are built following instructions contained within the DNA of gene

sequences. This genetic information is copied into short-lived molecules, called messenger RNAs (or

mRNAs), which move away from the DNA and are then decoded by the molecular machines that

build proteins. However, mRNA sequences often have to be edited before they are used. Another

molecular machine, called a spliceosome, carries out some of this editing.

A spliceosome is formed from a number of smaller subunits, including three RNA-protein particles

that each contain one RNA molecule (called U1, U2 and U5), and one particle that contains two RNA

molecules (called U4 and U6). These subunits must assemble around an unedited mRNA in

a particular order so that the spliceosome can work correctly. Once the mRNA has been edited, and

the spliceosome has performed its job, these complexes need to disassemble so that they are ready

to be reassembled around a new mRNA molecule. A protein called Prp3 is known to be involved in

these assembly, disassembly and reassembly steps. However, it is unclear how this protein performs

these activities.

Liu et al. have now used structural biology and biochemical techniques to determine the three-

dimensional structure of Prp3, and have shown that this protein has a “two-part” binding site that

binds to the RNA molecules in the U4/U6 subunit of the spliceosome. Further analyses revealed that

one of these features is only found in Prp3 and not in other types of RNA-binding proteins.

Together with previous work, Liu et al. also reveal that Prp3 can serve as a ‘bridge’ between the

U4/U6 and U5 subunits of the spliceosome, and suggest how these features allow the two subunits

to group together before they are incorporated into a spliceosome.

Notably, certain mutations in the gene for the Prp3 protein lead to a human eye disease called

retinitis pigmentosa. In the future it will be important to investigate if the above activities are

affected in the mutant variants of the Prp3 protein.

DOI: 10.7554/eLife.07320.002
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Figure 1. Protein and RNA requirements for Prp3 binding to U4/U6 di-snRNA. (A) Schematic presentation of yeast U4/U6 di-snRNA (yU4—gold;

yU6—orange) and domain organizations of yeast and human Prp3. Regions corresponding to the C-terminal U4/U6-binding fragments (CTF) of the

proteins are indicated by black lines above the schemes. (B) ESMA monitoring binding of hPrp3 protein variants (as MBP or GST fusions; 25 μM) to hU4/

U6stem II+13nt (scheme on the left). hPrp3 constructs are indicated above the lanes. FL—full-length; N—residues 1–442; C—residues 195–683; CTF—residues

Figure 1. continued on next page
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including DUF1115, bind U4/U6 di-snRNA fragments containing stem II and a U6 3′-overhang and

elucidated crystal structures of a yPrp3 C-terminal region alone and in complex with a U4/U6 di-snRNA

fragment. Structure-guided mutations that led to reduced U4/U6 interaction in vitro and to reduced

cell viability also reduced U4/U6•U5 tri-snRNP levels and splicing in vivo. Our results indicate how

Prp3 functionally bridges U4/U6 and U5 in the tri-snRNP by Prp3-RNA interactions on one side and

Prp3-protein interactions on the other. Moreover, a comparison with the structure of a Prp24-U6

snRNA complex (Montemayor et al., 2014) suggests how Prp3 may initiate the handover of U6

snRNA from the Prp24 recycling factor to U4 snRNP during U4/U6 reassembly.

Results

Characterization of a conserved C-terminal U4/U6 di-snRNA-binding
region in Prp3
Previous studies have shown that human (h) Prp3 in the context of a hPrp3-hPrp4-hCypH complex

contacts U6 snRNA in a region that forms stem II and a U6 single-stranded 3′-overhang (Nottrott

et al., 2002). To test whether hPrp3 alone is sufficient for stable RNA binding and to delineate hPrp3

elements required for complex formation, we produced full-length hPrp3 (hPrp3FL) and fragments

lacking ca. 200–250 residues from either end (hPrp3N—residues 1–442; hPrp3C—residues 195–683) as

N-terminal maltose-binding protein [MBP] fusion proteins. We then tested binding of these proteins

to a hU4/U6 construct containing stem II (fused by a GAAA tetraloop) and a 13 nucleotide [nt] U6 3′-
overhang (hU4/U6stem II+13nt) in electrophoretic mobility shift assays (EMSAs). Only the full-length

protein and hPrp3C, but not hPrp3N, bound hU4/U6stem II+13nt (Figure 1B, lanes 2–4). Trypsin treatment

of the hPrp3C-hU4/U6stem II+13nt complex gave rise to a protein fragment containing residues 484–683

(hPrp3CTF) as shown by mass spectrometric fingerprinting and N-terminal sequencing. hPrp3CTF

contains the predicted DUF1115 domain (residues 540–683) and a conserved, preceding peptide rich

in basic amino acid residues (Figure 1A; Figure 1—figure supplement 1). Binding of recombinant

hPrp3CTF (as a glutathione S-transferase [GST] fusion) to hU4/U6stem II+13nt was comparable to hPrp3FL

or hPrp3C (Figure 1B, lane 5). These results show that the C-terminal ca. 200 amino acids of hPrp3

encompass the protein elements that mediate stable U4/U6 binding.

All following experiments were performed with yeast (y) factors. To test whether the C-terminal

U4/U6 di-snRNA-binding region is conserved in yPrp3, we produced a protein comprising the 177

C-terminal residues of yPrp3 (residue 296–469; yPrp3CTF). yPrp3CTF bound a yU4/U6 duplex

containing the complete stem II and a 13-nt yU6 3′-overhang (yU4/U6stem II+13nt) with an apparent

Figure 1. Continued

484–683. Bands are identified on the right; RNA—unbound RNA; RNPs—RNA–protein complexes. (C) EMSA titrations monitoring binding of yPrp3CTF

variants and yPrp3DUF1115 (proteins indicated at the left of the gels) to yU4/U6stem II+13nt (scheme on the top). Protein concentrations in each lane are

indicated above the first gel. Bottom: quantification of the data above. The data were fit to a single exponential Hill equation (fraction bound = A

[protein]n/([protein]n + Kd
n): A, fit maximum of RNA bound; n, Hill coefficient) (Ryder et al., 2008). Errors indicate standard errors of the mean of at least

two independent experiments. (D) Isothermal titration calorimetry monitoring interactions between yPrp3CTF variants or yPrp3DUF1115 (proteins indicated

above and on the left of each panel) to yU4/U6stem II+13nt (scheme in the first panel). The proteins, in particular yPrp3DUF1115 and yPrp3CTF,R322A, tended to

aggregate when added in excess of available RNA binding sites, giving rise to background signals at the ends of some runs. Data points in gray in the

DUF1115 analysis were omitted during the fitting. Deduced binding stoichiometries (N), Kd′s, enthalpies (ΔH) and entropies (ΔS) of the interactions are

listed in the lower parts of the panels. (E) Binding of yPrp3CTF (20 μM) to the indicated fragments of yU4/U6 (schemes above the gels; arrows indicate

sequential shortening of RNA elements). Lanes 1–14—shortening of the yU6 3′-overhang. Lanes 15–20—shortening of stem II. (F) EMSA titrations

monitoring binding of binding of yPrp3CTF or yPrp3DUF1115 to yU4/U6stem II+13nt bearing yU6 C69 G (top two gels) or yU4 C12 G (bottom two gels) exchanges

that restore Watson–Crick base pairing (schemes on the far left; mutant residues highlighted in green). Proteins are indicated at the left of the gels. Protein

concentrations in each lane are indicated above the first gel. Bottom: quantification as in panel 1C. CTF-wt U4/U6—reference copied from panel 1C.

Errors indicate standard errors of the mean of at least two independent experiments.

DOI: 10.7554/eLife.07320.003

The following figure supplements are available for figure 1:

Figure supplement 1. Protein sequence comparisons.

DOI: 10.7554/eLife.07320.004

Figure supplement 2. RNA sequence comparisons.

DOI: 10.7554/eLife.07320.005
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dissociation constant (Kd,app) of 0.92 μM as determined by EMSA (Figure 1C, first gel and

quantification) and with a Kd of 110 nM as determined by isothermal titration calorimetry (ITC;

Figure 1D, top left). The lower apparent affinity estimated by EMSA is likely due to the presence of

non-specific tRNA competitor in this assay. The yPrp3 DUF1115 domain (residues 325–469;

yPrp3DUF1115) lacking the preceding basic peptide showed ca. twofold reduced affinity for yU4/U6stem

II+13nt in EMSA (Kd,app 1.83 μM; Figure 1C, second gel and quantification) and a ca. 3.5-fold lower

affinity in ITC (Kd 380 μM; Figure 1D, top right). Exchange of conserved arginine residues at

positions 304 and 322 in the N-terminal basic peptide of yPrp3CTF (Figure 1—figure supplement 1),

which could directly interact with the negatively charged RNA backbone, reduced affinities for yU4/

U6stem II+13nt in both EMSA (Kd,app 1.58 μM and 2.63 μM for yPrp3CTF,R304A and yPrp3CTF,R322A,

respectively; Figure 1C, third and fourth gels and quantification) and ITC (Kd 260 nM and 400 nM for

yPrp3CTF,R304A and yPrp3CTF,R322A, respectively; Figure 1D, bottom left and right) to a similar extent as

removal of the entire preceding peptide. Furthermore, the thermodynamic signatures of the

interactions involving yPrp3DUF1115, yPrp3CTF,R304A and yPrp3CTF,R322A changed considerably compared

to yPrp3CTF. The DUF1115 domain as well as both arginine-to-alanine variants (in particular yPrp3CTF,

R304A) exhibited significantly less favorable interaction enthalpies and more favorable (or less

unfavorable) interaction entropies compared to yPrp3CTF (Figure 1D). One explanation for these

observations could be that the N-terminal peptide is a flexible element in yPrp3CTF, which becomes

immobilized (loss in conformational entropy) by RNA contacts (gain in interaction enthalpy) upon

binding of yU4/U6stem II+13nt. In any case, these observations show that both the DUF1115 domain and

the preceding basic peptide contribute to the RNA binding.

Next, we further probed the RNA requirements for stable binding. yPrp3CTF efficiently bound

a yU4/U6 constructs bearing full-length stem II and yU6 3′-overhangs of at least eight nts (Figure 1E,

lanes 1–8), while further shortening of the yU6 3′-overhang led to progressively reduced binding

(lanes 9–14). Removal of the first two A-U base pairs from the 5′-end of stem II had no consequence

for binding of yPrp3CTF (Figure 1E, lanes 15–18), but reduced binding was seen when seven base pairs,

including a non-canonical C69U6-C12U4 pair, were removed (Figure 1E, lane 20). A non-canonical

pyrimidine–pyrimidine base pair is conserved in the corresponding stem II regions of U4/U6 from other

organisms (Figure 1—figure supplement 2). When we converted yU6 C69 or yU4 C12 of the non-

canonical C-C pair in stem II to G’s to allow Watson-Crick base pairing at these positions, the affinity of

yPrp3CTF was reduced about twofold in EMSA titrations (Figure 1F, first and third gels and

quantification). In contrast, the DUF1115 domain alone did not exhibit reduced affinity to the mutant

RNAs compared to the wt (Figure 1F, second and fourth gels and quantification). These findings

suggest that yPrp3CTF recognizes portions of the U6 3′-overhang as well as parts of yU4/U6 stem II,

including the non-canonical C69U6-C12U4 pair.

Binding of Prp3 to U4/U6 stem II would be expected to stabilize the U4/U6 duplex, which is

unwound by the Brr2 helicase during spliceosome catalytic activation. To test relative contributions of

the yPrp3 DUF1115 domain and the preceding basic peptide to stabilization of yU4/U6, we therefore

assessed the influence of yPrp3CTF and yPrp3DUF1115 on Brr2-mediated U4/U6 unwinding. Addition of

yPrp3CTF reduced the rate of yBrr2-mediated yU4/U6 unwinding about fivefold, while yPrp3DUF1115

showed almost no effect (ca. 1.2-fold reduction; Figure 2A,B).

Together, these analyses show that Prp3 orthologs contain a conserved, C-terminal region (Prp3CTF)

that is necessary and sufficient for stable binding to U4/U6 di-snRNAs and that upper parts of stem II and

at least eight nts of the U6 3′-overhang are required for stable binding. Prp3CTF comprises the DUF1115

domain and a preceding basic peptide, both of which contribute to RNA binding.

Cross talk of U4/U6-bound proteins
Previous assembly and structural studies had shown that the U4/U6-specific proteins Snu13, Prp31

and Prp3 bind U4/U6 di-snRNAs in a cooperative manner (Nottrott et al., 2002; Liu et al., 2007).

To see whether the C-terminal U4/U6-binding region of Prp3 is sufficient to sense pre-bound Snu13

and Prp31 proteins, we compared binding of yPrp3CTF and yPrp3DUF1115 to a fused yU4/U6-like RNA

(yU4/U6fused; Figure 2C) alone or pre-bound to ySnu13 or ySnu13 and yPrp311−462 under identical

conditions. Both yPrp3 variants bound the ySnu13-yPrp311−462-yU4/U6fused complex (Figure 2C, lanes

13–18, right) more efficiently than the ySnu13-yU4/U6fused complex (lanes 7–12, middle), which in turn

was bound better than the naked RNA (lanes 1–6, left). However, yPrp3CTF interacted more stably than

yPrp3DUF1115 with the naked RNA (lanes 4–6 vs lanes 1–3) and with the ySnu13-yU4/U6fused complex
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(lanes 10–12 vs lanes 7–9). The sensitivity of the assay was insufficient to resolve possible binding

differences to the ySnu13-yPrp311−462-yU4/U6fused complex (lanes 13–18). These results show that

yPrp3CTF binds cooperatively with ySnu13 and yPrp31 to yU4/U6, in part based on the basic peptide

preceding the DUF1115 domain.

Crystal structure of the C-terminal yU4/U6-binding region of yPrp3
Sequence analyses of the C-terminal U4/U6-binding portions of Prp3 proteins did not reveal any

obvious similarities to known RNA-binding domains. We therefore determined the crystal

structure of yPrp3CTF at 2.7 Å resolution (Table 1). The protein crystallized with three monomers

per asymmetric unit (Figure 3—figure supplement 1A). The electron density allowed modeling of

residues 335–467, corresponding to the predicted DUF1115 domain. Apart from the C-terminal

Figure 2. Effects on Brr2-mediated U4/U6 unwinding and interplay with other U4/U6 proteins. (A) Native gels

monitoring yU4/U6 di-snRNA unwinding by yBrr2 in the absence of other proteins (top), in the presence of yPrp3CTF

(middle) or yPrp3DUF1115 (bottom). Asterisks indicate radioactive label on yU4 snRNA. (B) Quantification of the data in

(A). The data were fit to a single exponential equation: % duplex unwound = A{1 − exp(−ku t)}; A—amplitude of the

reaction; ku—apparent first-order rate constant; t—time. Amplitudes and rate constants are listed. Errors indicate

standard errors of the mean of four independent experiments. (C) Binding of yPrp3DUF1115 (left three lanes of each

panel) or yPrp3CTF (right three lanes of each panel) to yU4/U6fused (lanes 1–6; left), yU4/U6fused pre-bound to Snu13

(lanes 7–12; middle) or yU4/U6fused pre-bound to Snu13 and Prp311−462 (lanes 13–18; right) under otherwise identical

conditions. All three panels are from the same gel and were regrouped. Schemes of yU4/U6fused alone or pre-bound

by proteins are shown on the top.

DOI: 10.7554/eLife.07320.006
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two residues, the N-terminal 39 residues (296–334; comprising the preceding basic peptide) could

not be traced, indicating that they indeed constitute an intrinsically disordered or flexibly attached

element, as surmised based on the ITC experiments.

The core of the yPrp3 DUF1115 domain resembles the homology model of the corresponding

human domain (Korneta et al., 2012) (root-mean-square deviation [RMSD] of 2 Å for 87 common Cα
atoms). The structure exhibits a five-stranded mixed β-sheet with two α-helices (α1 and α2) running
parallel to the β-strands on one side of the sheet and one (α3) on the other (Figure 3A). The first 98

residues of the structure (residues 335–432) form a α/β sandwich with a ferredoxin-like topology and

Table 1. Crystallographic data

Data set yPrp3296-469 yPrp3325-469 yPrp3296-469-yU4/U6stem II-2

Data collection

Wavelength (Å) 0.91840 0.91841 0.97968

Space group C2221 P65 C2

Unit cell parameters

a, b, c (Å) 87.7, 161.2, 105.2 56.1, 56.1, 86.8 144.7, 59.6, 109.8

α, β, γ (˚) 90.0, 90.0, 90.0 90.0, 90.0, 120.0 90.0, 118.5, 90.0

Resolution (Å) 50.0–2.70 (2.80–2.70)* 50.0–2.00 (2.12–2.00) 30.0–3.25 (3.33–3.25)

Reflections

Unique 20,036 (1993) 10,459 (1622) 24,895 (1844)

Completeness (%) 97.3 (99.0) 99.3 (96.2) 97.9 (98.5)

Redundancy 3.4 (3.3) 11.4 (11.3) 2.0 (1.9)

Rmeas† 0.066 (0.791) 0.072 (0.459) 0.017 (0.146)

I/σ (I) 13.31 (1.11) 24.96 (5.94) 5.38 (0.90)

CC (1/2)‡ – 99.9 (95.5) 99.4 (42.0)

Refinement

Resolution (Å) 30.00–2.70 (2.77–2.70) 24.28-2.00 (2.20–2.00) 29.78-3.25 (3.38–3.25)

Reflections

Number 18,932 (1146) 10,454 (2424) 24,894 (2631)

Completeness (%) 95.8 (80.5) 99.3 (97.0) 98.3 (98.0)

Test set (%) 5.2 5.0 5.0

R factors§

Rwork (%) 20.7 (37.0) 16.1 (16.6) 24.9 (36.9)

Rfree (%) 26.2 (42.7) 22.1 (21.9) 29.9 (38.9)

RMSD#

Bond lengths (Å) 0.010 0.013 0.007

Bond angles (˚) 1.316 1.278 1.006

Ramachandran plot¶ (%)

Favored 96.57 98.56 90.87

Allowed 2.64 1.44 7.98

Outlier 0.79 0.00 1.14

*Values for the highest resolution shell in parentheses.

†Rmeas = Σh[n/(n − 1)]1/2Σi|Ih − Ih,i|/ΣhΣiIh,I, where Ih is the mean intensity of symmetry-equivalent reflections and n is

the redundancy.

‡CC (1/2) is the percentage of correlation between intensities from random half-data sets.

§R = Σhkl||Fobs| − |Fcalc||/Σhkl|Fobs|; Rwork − hkl ∉ T; Rfree − hkl ∈ T; T—test set.

#Root-mean-square deviation from target geometries.

¶Calculated with MolProbity (http://molprobity.biochem.duke.edu/).

DOI: 10.7554/eLife.07320.007
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an additional, long β-hairpin (residues 403–421, comprising strands β3a and β3b) inserted between

helix α2 and strand β4. The ferredoxin-like fold is further expanded by an extra β-strand (β5), a helix

(α3) and a following loop at the C-terminus. In two of the three independent molecules, the β3a/β3b
hairpins adopt very similar conformations with their long axes oriented perpendicular to the direction

Figure 3. Structural overviews. (A) Structure of a yPrp3CTF. Secondary structure elements and termini are labeled.

Dashed line indicates residues contained in the construct but not visible in the electron density. (B) Structure of

a yPrp3CTF-yU4/U6stem II+10nt complex with the protein in the same orientation as in Figure 3A. yPrp3CTF—cyan;

yU4—gold; yU6—orange. Dashed line indicates residues contained in the construct but not visible in the electron

density. Sections 1–3, between which the yU6 3′-overhang changes direction on the surface of yPrp3CTF, are

indicated by black lines. Residues in the yU6 3′-overhang are numbered. (C) Electrostatic surface potential of

yPrp3CTF in complex with yU4/U6stem II+10nt. Blue—positive; red—negative. Units kT/e with k—Boltzmann’’s constant,

T—absolute temperature, E—charge of an electron.

DOI: 10.7554/eLife.07320.008

The following figure supplements are available for figure 3:

Figure supplement 1. Structural comparisons.

DOI: 10.7554/eLife.07320.009

Figure supplement 2. Phylogenetic analysis.

DOI: 10.7554/eLife.07320.010
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of the strands in the central β-sheet. Residues D405 and D418 at the bases of the hairpins coordinate

an Yt3+ ion. The third molecule lacks electron density for large parts of the hairpin (residues 407–421),

suggesting that crystal packing and a bound metal ion may have stabilized this normally flexible

element in the first two molecules.

We also determined the crystal structure of yPrp3DUF1115, lacking the preceding basic peptide, at

2.0 Å resolution (Table 1). While the ordered parts of yPrp3CTF and yPrp3DUF1115 are very similar

(RMSD of 0.48 Å for 131 common Cα atoms; Figure 3—figure supplement 1A), the β3a/β3b hairpin

in yPrp3DUF1115 is positioned closer to the globular part of the protein, showing that its relative

positioning is indeed flexible.

Crystal structure of a yPrp3CTF-yU4/U6stem II+10nt complex
To elucidate the molecular mechanism underlying U4/U6 di-snRNA binding by yPrp3CTF, we determined

its crystal structure in complex with yU4/U6stem II+10nt at 3.25 Å resolution (Table 1; Figure 3B). Residues

335–468 of yPrp3CTF and all nts (G81-U90) of the yU6 3′-overhang were well ordered in the two

complexes contained in an asymmetric unit. The electron density for the yU4/U6 stem II regions was less

well defined, in particular in the part of stem II distal to the duplex-to-single strand junction in one of the

complexes. The electron density was consistent with the stem II regions adopting standard A-form

geometry in both complexes but did not allow us to model in detail possible local deviations, for

example, around a non-canonical C69U6-C12U4 base pair.

Protein–RNA interactions in the well-defined portions of the two crystallographically independent

complexes were largely identical (Figure 3—figure supplement 1B). In both complexes, the single-

stranded (ss) yU6 3′-overhang arches across helix α1 and strand β5 of yPrp3CTF, running below the long

β3a/β3b hairpin (Figure 3B). Its binding surface on the protein is carpeted by an electropositive

surface potential (Figure 3C). The yU6 3′-overhang can be divided into three sections, between which

its backbone changes directions on the surface of yPrp3CTF (Figure 3B). Nts G81-A83 (section 1) stack

on the terminal U80U6-A1U4 base pair of stem II and run diagonally from the N-terminus of helix α2 to

the N-terminus of helix α1; nts C84-G86 (section 2) are positioned perpendicular across the N-terminal

end of helix α1; nts U87-U90 (section 3) run along the exposed edge of strand β5 and the C-terminus

of helix α1. As a consequence, the end of the U6 3′-overhang is directed via two ca. 90 ˚ kinks back

towards stem II. A RNA structural similarity search using the RNA Bricks database (Chojnowski et al.,

2014) failed to uncover a case of a similar RNA redirection on the surface of a single protein domain.

Notably, the unusual doubly-kinked RNA conformation is stabilized by protein elements that expand

the core ferredoxin fold in yPrp3, that is, the β3a/β3b hairpin, strand β5 and helix α3 (details below).

All nts of the yU6 3′-overhang (G81-U90) contained in the present structure, except the first G81

residue, directly contact yPrp3CTF in one or both complexes, consistent with the important role of this

part of U6 for stable Prp3 binding in yeast and human. In one yPrp3CTF-yU4/U6stem II+10nt complex, the

guanidinium group of R399 (helix α2) forms ionic interactions to the backbone phosphate of A82 and

the side chain amino group of K355 (helix α1) binds to the A83 phosphate (Figure 4A). In the complex

lacking these interactions, the corresponding backbone regions of yU6 and the stem II duplex are

slightly pulled away from the protein, presumably by crystal packing interactions. The exocyclic N6

group of A83 approaches the side chain carboxyl of E362 (helix α1) and its base stacks on the side

chain of F354 (helix α1; Figure 4A). The extracyclic amino group (N4) of C84 is hydrogen bonded to

the backbone carbonyl of E407 (β3a/β3b hairpin) and the base is thereby held sandwiched between

H409 (β3a/β3b hairpin) and P350 (helix α1; Figure 4B). The A83 and C84 backbone phosphates

approach the side chain of K351 (helix α1; Figure 4B). These interactions splay out A83 and C84,

stabilizing the first kink in the yU6 3′-overhang. The guanidinium group of R353 (helix α1) engages in
hydrogen bonds to the Watson-Crick face of C85 (atoms O2 and N3) and to the Hoogsteen face of

G86 (atoms O6 and N7; Figure 4C). Furthermore, N1 of G86 is contacted by the side chain carboxyl of

D374 (β1-β2 loop), its base engages in cation-π stacking to the guanidium group of R371 (strand β2)
and its 2′-hydroxyl group is hydrogen bonded to the backbone carbonyl of M442 (strand β5;
Figure 4C). O4 of U87 is hydrogen bonded to the side chain amide of Q457 (helix α3) and its base

stacks on F441 (strand β5; Figure 4D). The O2 atom of U88 hydrogen bonds with the backbone NH of

W440 (strand β5), positioning the base laterally on the F441 side chain. The U87-U88 backbone region

encircles the side chain of K357 (helix α1), which contacts the anionic phosphate oxygens of U87 and

the O3 atom of U88 (Figure 4D). The interactions involving K357, W440, F441 and Q457 stabilize the

second kink in the yU6 3′-overhang. The side chain amino group of K361 (helix α1) contacts the U89
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anionic phosphate oxygens in one complex (Figure 4E) and interacts with O2, O2′ and O3′ of U88 as

well as the phosphate and O5′ of U89 in the other complex (Figure 4F). The last nt, U90, adopts two

different conformations in the two complexes; in one case, its N3, O2 and O4 atoms are hydrogen

bonded to the side chain hydroxyl of S364 (α3-β2 loop; Figure 4E), while in the other case it interacts

with the N1 and N6 positions of nt A82 at the beginning of the yU6 3′-overhang (Figure 4F).

The overall structure of the DUF1115 domain is globally unchanged compared to the structure of

isolated yPrp3CTF or yPrp3DUF1115 (RMSD of 0.80–0.86 Å for 133 common Cα atoms) but there are local

adjustments accompanying RNA binding, which may contribute to the binding specificity. Upon RNA

binding, the β3a/β3b hairpin moves closer to the yPrp3CTF core domain to engage in direct

interactions with the RNA and the H409 side chain in this element turns on top of the C84 base

(Figure 4G). Within the yPrp3CTF core domain, the side chain of F441 is rotated ca. 90˚C out of its

Figure 4. Details of the yPrp3-yU4/U6 di-snRNA interaction. (A–H) Close-up views of yPrp3–RNA contacts. The protein and the RNA are shown as semi-

transparent cartoons (yPrp3CTF—cyan; yU6—orange; yU4—gold) with interacting residues as sticks (colored by element; carbon or phosphorus—as the

respective molecule; nitrogen—blue; oxygen—red, sulfur—yellow). Black dashed lines—hydrogen bonds or salt bridges. Panels (G) and (H) show overlays

of unbound (protein—gray) and complex (protein—cyan; yU6 snRNA—orange) situations. Rotation symbols indicate the views relative to Figure 3B.

(I) Binding of yPrp3CTF (20 μM) to wt and mutant versions (indicated above the gel) of U4/U6stem II+13nt (scheme on the left; mutated region in green).

(J) Variants of yPrp3CTF (20 μM; indicated above the gel) binding to yU4/U6stem II+10nt (scheme on the left).

DOI: 10.7554/eLife.07320.011
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intra-molecular position in the isolated protein to stack on U87. Instead, the U88 base moves into the

original F441 position, from where it contacts the W440 backbone (Figure 4H). Furthermore, the K357

side chain adopts an alternative conformation upon RNA binding to interact with the anionic

phosphate oxygens of U87 and the O3′ atom of U88 (Figure 4H).

Mutational probing of the protein–RNA interface
Although not directly contacted by the protein, the bases of G81 and A82 mediate a continuous

π-stack from the terminal base pair of stem II to the yPrp3-bound portion of the yU6 3′-overhang.
Consistent with this stacking being important for yPrp3 binding, replacement of these purines in

yU4/U6stem II+13nt with a smaller pyrimidine (C) led to reduced affinity to yPrp3CTF (Figure 4I, lanes 2

and 3). Sequence-specific interactions are seen between R353 and the Watson-Crick edge of C85 as

well as the Hoogsteen edge of G86 (Figure 4C), suggesting that the protein reads out parts of the

RNA sequence. Consistently, mutation of C85 to A or G86 to C in yU4/U6stem II+13nt significantly

reduced or essentially abrogated the interaction with yPrp3CTF, respectively (Figure 4I, lanes 4 and 5).

Correspondingly, a yPrp3CTF variant bearing a R353A exchange showed essentially no binding to

yU4/U6stem II+10nt anymore (Figure 4J, lane 2; this and all other yPrp3CTF variants discussed below

could be produced and purified like the wild type [wt] protein, suggesting that none of the tested

mutations interfered with proper protein folding).

We also exchanged several additional yPrp3 residues that directly contact yU4/U6stem II+10nt in our

structure and tested binding of the corresponding yPrp3CTF variants to this RNA (Figure 4J). R399A

(lane 12) and F441H (lane 14) essentially abrogated the interaction with the RNA, while K357A (lane 6)

strongly and F354A/H (lanes 3 and 4), K361A (lane 9) and S364R (lane 11) weakly destabilized the

complex (indicated primarily by larger fractions of unbound yU4/U6stem II+10nt in the corresponding

lanes). Single residue exchanges K355A (lane 5), M358A/E (lanes 7 and 8), E362A (lane 10) and H409E

(lane 13) of yPrp3CTF showed no significant or only very mild reduction in RNA binding under the chosen

conditions, indicating that individually the interactions involving these residues are not essential for

stable RNA complex formation.

Nts G81, A82, C85 and G86, which upon mutation led to reduced yPrp3CTF binding, are highly

evolutionarily conserved in U6 snRNAs (Figure 1—figure supplement 2). Likewise, R353, R399

and F441, where substitutions strongly affected RNA binding, are conserved in Prp3 orthologs

(Figure 1—figure supplement 1). We conclude that the mode of Prp3-U4/U6 interaction seen in

our structure is present in all eukaryotes.

Evolutionary comparisons
The ferredoxin superfamily currently encompasses 59 subfamilies. Previous bioinformatics

analyses indicated that within the superfamily the Prp3 DUF1115 domain is most homologous to

acylphosphatase (AcyP) and BLUF domains (Korneta et al., 2012), which do not recognize

nucleic acids. However, the sequence comparison did not reveal the evolutionary relationship

between the Prp3 ssRNA-binding domain and other members of the ferredoxin superfamily.

We therefore calculated a phylogenetic tree based on pairwise structural comparisons with

representative ferredoxin fold structures (Figure 3—figure supplement 2A). The tree is in

agreement with sequence analyses, showing that the Prp3 ssRNA-binding domain is most similar to

AcyP and BLUF domains. For example, residues 335–467 of yPrp3CTF (Figure 3—figure supplement 2B)

spatially align with cow AcyP (PDB ID 2ACY; Figure 3—figure supplement 2C) with a RMSD of 2.5 Å

over 90 common Cα atoms (Z-score 10.1) and show a comparable similarity to the BLUF domain of the

BlrB photoreceptor from Rhodobacter sphaeroides (PDB ID 2BYC; RMSD of 2.0 Å for 84 common Cα
atoms; Z-score of 10.0; Figure 3—figure supplement 2D). On the other hand, the Prp3 domain is only

distantly related to other ferredoxin fold proteins that bind RNAs, such as RRMs (Figure 3—figure

supplement 2F,G) or ribosomal proteins S6, S10, and L10. The closest nucleic acid-binding relative

of the Prp3 ssRNA-binding domain is the IS608 transposase domain, which recognizes DNA

(Figure 3—figure supplement 2H).

In vivo effects of Prp3 variants defective in U4/U6 di-snRNA binding
To test the importance of the observed yPrp3-yU4/U6 interactions for the function of yPrp3 in vivo, we

used a haploid yeast strain, in which the chromosomal copy of the PRP3 gene was deleted and the
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essential protein was produced from a counter-selectable URA3-marked plasmid. We then shuffled

plasmids carrying mutant prp3 genes into this strain, selected against the URA3 plasmid and

monitored the effects of yPrp3 variants on cell viability, snRNP levels and pre-mRNA splicing.

yPrp3 proteins bearing mutations R304A, R322A or both (in the basic peptide preceding DUF1115)

as well as variants bearing R399A or F441A exchanges (yU6 3′-overhang-binding DUF1115 domain)

led to mild temperature sensitive (ts) growth (Figure 5A). A R399A/F441A double mutant strongly

exacerbated this effect (Figure 5A). These observations are consistent with the mutated residues

Figure 5. Consequences of yPrp3 variants in vivo. (A) Growth of yeast strains producing the indicated yPrp3 variants

at various temperatures. Serial dilutions of liquid cultures were spotted on YPD agar plates and incubated at the

indicated temperatures for 1–2 days. (B) In vivo splicing assays, monitoring levels of U3 pre-snoRNAs in yeast strains

producing wt yPrp3 or the indicated yPrp3 variants. Cells were grown at 37˚C for 5 hr before total RNA was extracted

and U3 mature or pre-snoRNAs were detected by primer extension using a radiolabeled DNA oligonucleotide

complementary to a region in U3 exon 2. (C, D)Northern blotting of cellular extracts of wt (top) or the indicated prp3

mutant yeast strains (middle and bottom). Cellular extracts were separated on 10–30 % (v/v) glycerol gradients.

Even-numbered gradient fractions (indicated above the blots) were probed with radiolabeled DNA oligomers

complementary to snRNA regions. Positions of various snRNPs on the gradients are indicated below the blots.

(D) Quantification of the data shown (C). (E) Western blots of the same gradients. Odd numbered gradient fractions

(indicated above the blots) were probed with anti-ySnu114 (top) and anti-yPrp3 (bottom) antibodies. Positions of

various snRNPs on the gradients are indicated below the blots. Dotted boxes—yPrp3 signals in the U4/U6•U5
tri-snRNP fractions.

DOI: 10.7554/eLife.07320.012
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contributing to functionally important yPrp3-yU4/U6 interactions, as seen in our binding assays and

yPrp3CTF -yU4/U6stem II+10nt crystal structure. To trace the origin of the growth defects, we monitored

the effects of the mutations on splicing in vivo at 37˚C, using endogenous U3 (pre-)snoRNA as a

reporter. Slight accumulation of unspliced U3 pre-snoRNAs was seen in strains producing the R304A,

R399A, R304A/R322A or R399A/F441A variants of yPrp3 compared to the wt (Figure 5B), indicating

that the observed growth defects likely root in inefficient splicing. Finally, monitoring snRNP levels

by Northern blotting of cellular extracts spread out on a glycerol gradient showed that the levels of

U4/U6 di-snRNP and of isolated U5 snRNP were increased at the expense of U4/U6•U5 tri-snRNP in

strains producing Prp3 variants R304A/R322A and R399A/F441A (Figure 5C,D). At the same time,

Western blotting revealed reduced levels of yPrp3 associated with U4/U6•U5 tri-snRNP in the mutant

strains (Figure 5E). These results suggest that reduced tri-snRNP levels are the cause of the reduced

splicing activity in the mutant strains and that efficient yPrp3 binding to U4/U6 di-snRNAs via its

C-terminal region is important for U4/U6•U5 tri-snRNP stability.

Discussion

An evolutionarily conserved, composite ds/ssRNA-binding region in Prp3
Here, we showed that Prp3 orthologs contain a C-terminal U4/U6 di-snRNA binding region that

encompasses a DUF1115 domain and a preceding peptide rich in basic residues. Our crystal structure

and targeted mutational analyses demonstrate that the DUF1115 domain acts as a ssRNA-binding

domain that specifically recognizes the first 10 nts of the U6 3′-overhang. While our structural analysis

did not reveal how the preceding peptide is involved in U4/U6 binding, several pieces of evidence

indicate that it binds along U4/U6 stem II: The peptide is important for full binding of Prp3 C-terminal

portions to U4/U6 (Figure 1C,D) but it is not a structural element of the DUF1115 domain and thus

does not act via stabilizing the RNA-binding fold of DUF1115. Single Arg-to-Ala exchanges in the

peptide lead to reduced RNA binding (Figure 1C,D), indicating that these residues may directly

contact the RNA. RNA constructs with shortened stem II or in which a conserved non-canonical base

pair was converted to a Watson-Crick pair show reduced binding to Prp3CTF (Figure 1E,F), which

cannot be explained by the observed DUF1115 domain contacts (exclusively to the U6 3′-overhang).
Finally, Prp3CTF, but not the DUF1115 domain, inhibits Brr2-mediated U4/U6 unwinding (Figure 2A,B),

suggesting that the peptide stabilizes contacts between U4 and U6, presumably by binding the stem

II duplex.

Residues in both the DUF1115 domain and the preceding basic peptide of Prp3 as well as nts in

U4/U6, which we identified as being important for stable complex formation, are evolutionarily highly

conserved, suggesting that the composite ds/ss U4/U6 di-snRNA-binding region of Prp3 is present in

all eukaryotes. DUF1115 exhibits a ferredoxin-like core similar to AcyP/BLUF proteins but evolutionarily

remote from other nucleic acid-binding domains in the ferredoxin superfamily. As we failed to detect

a DUF1115-like domain by sequence comparisons in hundreds of other RNA-binding proteins recently

identified in transcriptome-wide screens (Baltz et al., 2012; Castello et al., 2012), DUF1115 most likely

represents a spliceosome-specific ssRNA-binding domain. Due to the pronounced reorientation that the

U6 3′-overhang experiences on the surface of the Prp3 DUF1115 domain, the domain likely is an

important architectural element in the U4/U6 di-snRNP and/or the U4/U6•U5 tri-snRNP.

Prp3 binding helps explain defects associated with U6 snRNA variants
The mode of Prp3 binding to U4/U6 di-snRNAs revealed herein helps to rationalize a large body of

mutational analyses on U6 snRNAs in yeast and human. Previously, the functional importance of

various U6 snRNA regions was studied by site-directed mutagenesis. hU6 snRNA bearing a C62G

mutation, which converts the C-U mismatch in U4/U6 stem II into a G-U wobble pair, supported only

low levels of splicing (Wolff and Bindereif, 1993). Likewise, the corresponding C69G mutation in yU6

snRNA led to reduced splicing activity (Ryan and Abelson, 2002). We showed that a yU4/U6 stem II

construct bearing the C69G mutation exhibits reduced binding to yPrp3 and according to our

structural model this region of the U4/U6 di-snRNAs is recognized by the peptide preceding the Prp3

DUF1115 domain. Therefore, a defect in Prp3 binding may underlie the splicing defects of these U6

snRNA mutations in yeast and human.

Residues of the highly conserved UGA motif located in the terminus of U6 stem II and beginning

of the 3′-overhang were shown to be important for U4/U6•U5 tri-snRNP stability and splicing.
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Deletion of nts U74-G75-A76 in hU6 snRNA (corresponding to residues U80-G81-A82 in yU6)

reduced the levels of U4/U6•U5 tri-snRNP and assembled spliceosomes to less than 10% of wt and

abrogated splicing activity (Wolff and Bindereif, 1992). An A76C variant of hU6 snRNA showed

reduced interaction with U4 snRNA, concomitant with reduced spliceosome assembly and low

splicing activity (Wolff and Bindereif, 1995). Furthermore, yU6 snRNA bearing a U80G exchange

almost completely abolished formation of U4/U6 di-snRNPs and U4/U6•U5 tri-snRNPs and was

defective in splicing (Fabrizio et al., 1989; Ryan and Abelson, 2002; Ryan et al., 2002). The G81C

point mutation in yU6 snRNA strongly blocked splicing in vitro (Madhani et al., 1990; Ryan and

Abelson, 2002) and caused a substantial accumulation of free U6 snRNP deficient in U4/U6 di-

snRNP assembly (Ryan and Abelson, 2002). The effects of some of these mutations were suggested

to root in a stabilization of intra-molecular base pairing in U6 snRNA. However, our observation that

G81C and A82C exchanges in yU6 snRNA led to weak binding of yPrp3 in vitro suggests that

aberrant Prp3 binding may also contribute to these phenotypes. The continuous stacking of nts in

the transition region between stem II and the U6 3′-overhang seen in our structure may properly

orient these elements for stable Prp3 binding.

3′-truncated yU6 snRNAs containing residues 1–94, 1–91 or 1–88 allowed reconstitution of 35–40 %

of wt splicing activity, while only 20% and 4% of the wt splicing activity were regained with yU6 snRNA

molecules further shortened to residues 1–86 or 1–85, respectively, and yU6 snRNAs containing only

residues 1–81 or 1–80 fully blocked splicing (Madhani et al., 1990; Ryan et al., 2002). The phenotypes

associated with the deletion of distal yU6 3′-overhang residues likely originate from the removal of

binding sites for the Prp24 assembly chaperone and the LSm protein complex. However, the

exacerbated effects when yU6 snRNA was shortened to 86 nts or less correlate very well with our finding

of reduced yPrp3 binding to yU4/U6 constructs bearing sequentially shortened U6 3′-overhangs or the
C85A and G86C point mutations. Reduced Prp3 binding may also contribute to the reduced

hU4/U6 di-snRNP levels seen previously in the presence of hU6 snRNA bearing a C79U exchange

in the 3′-overhang (Wolff and Bindereif, 1995), as we observed weak yPrp3 interaction with a

yU4/U6 bearing a variant residue at the analogous position (C85A).

Mechanism of Prp3-dependent U4/U6•U5 tri-snRNP stability
The binding of the U4/U6-specific proteins Snu13, Prp31 and the Prp3-Prp4(-CypH) complex to U4/U6

di-snRNAs is highly interdependent. Snu13 binds a K-turn motif in the U4 5′SL (Nottrott et al., 1999;

Vidovic et al., 2000), serving as an assembly initiating protein for the subsequent incorporation of the

other components (Nottrott et al., 2002). An explanation for the ordered binding of Snu13 and

Prp31 was provided by structural studies that showed how hSnu13 and the hU4 5′SL provide a

composite binding platform for the hPrp31 Nop domain (Liu et al., 2007, 2011), while the mechanism

by which hSnu13 leads to enhanced interaction of hPrp3 with U4/U6 di-snRNAs (Nottrott et al.,

2002) remained enigmatic. Our results indicate that Prp3 contacts RNA elements along stem II, that is,

in the vicinity of the U4/U6 3-way junction. Snu13 binds one branch of the 3-way junction (the U4 5′SL),
which could exert a stabilizing effect on the 3-way junction and stem II and lead to improved binding of

Prp3. This effect could be further enhanced by Prp31, whose U4/U6 contacts extend into the lower part of

stem II (Schultz et al., 2006). It is also conceivable that the Prp3 stem II-binding peptide directly contacts

Snu13 and/or Prp31 on the RNAs and that the latter two proteins even modulate how the peptide

interacts with stem II.

Our in vivo analyses of the effects of yPrp3 mutations that interfere with stable yU4/U6 binding in vitro,

show that the yPrp3-yU4/U6 interactions we observe in our complex structure are important for U4/U6•U5
tri-snRNP stability and, likely as a consequence, for pre-mRNA splicing. The role of Prp3 in mediating tri-

snRNP stability can be understood from our present data, showing that the C-terminal portions of Prp3

maintain interactions with the U4/U6 di-snRNAs, and previous yeast 2-hybrid (Y2H) analyses, showing that

Prp3 contacts the U5 snRNP proteins Prp6 and Snu66 (Liu et al., 2006). By combining these functions,

Prp3 apparently acts as a bridge, linking the U4/U6 di-snRNP and the U5 snRNP via Prp3-RNA interactions

on the U4/U6 side and Prp3-protein interactions on the U5 side (Figure 6A).

Possible role of Prp3 in U4/U6 reassembly after splicing
After their release from the spliceosome, U4 and U6 snRNAs have to be re-decorated with proteins and

reassembled into a di-snRNP before they can participate in further rounds of splicing. This recycling

requires the Prp24 protein in yeast and the related SART3 protein in human. Recently, a crystal structure
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Figure 6. Models for splicing-associated functions of Prp3. (A) Function of Prp3 as a bridge in the U4/U6•U5 tri

snRNP. U4/U6 di-snRNP—orange; U5 snRNP—red; snRNAs—black sticks; U4/U6 stem II and U6 3′-overhang—gold

and orange sticks. Prp3 uses its C-terminal region to bind U4/U6 stem II and the U6 3′-overhang on the U4/U6 di-

snRNP side (this work) and interacts with proteins Prp6 or Snu66 on the U5 snRNP side (Liu et al., 2006). (B) Structure

of yPrp24 in complex with yU6 snRNA (Montemayor et al., 2014). yPrp24 RRM 1–4 domains—white, light gray, dark

gray and black, respectively. Regions of yU6 forming stem I, stem II and the 3′-overhang in yU4/U6 are shown in

different blue colors. Cold-sensitive A62G mutation and its paired nucleotide, C85—magenta. (C) Model for the

function of Prp3 during U4/U6 di-snRNP reassembly after splicing. (i) Upon release from the spliceosome, U6 snRNA

is bound by Prp24 and LSm proteins. (ii) Recruitment of Prp3 and association with its cognate U6 regions, which are

partially exposed in the Prp24-U6 complex. Emerging Prp3-U6 interactions initiate detachment of U6 snRNA from

Prp24. (iii) Incorporation of pre-assembled U4 snRNP may complete Prp24 displacement and assembly of U4/U6 di-

snRNP. U4 incorporation may be aided by Prp3 stabilizing the emerging stem II and by the cooperative binding of

Snu13, Prp31 and Prp3 to U4/U6 di-snRNAs.

DOI: 10.7554/eLife.07320.013
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of near full-length Prp24 in complex with a large portion of U6 snRNA was elucidated (Montemayor

et al., 2014). While not contained in the Prp24-U6 structure, the distal 3′-end of U6 snRNA is available

in that complex for binding the LSm proteins (Figure 6B), consistent with the observation of a stable

Prp24-LSm-U6 snRNA complex in yeast (Vidal et al., 1999). In contrast, U6 regions that form stem I, stem

II and the U6 3′-overhang in the assembled U4/U6 di-snRNP are sequestered in an internal U6 stem loop

(ISL) and by Prp24-U6 interactions (Figure 6B). As Prp24 does not harbor an NTP-dependent RNA

helicase activity, the question arises how the U6 ISL can be unwound and U6 handed over from Prp24 to

U4 snRNP. Notably, regions of U6 snRNA that form stem II and the U6 3′-overhang in the U4/U6 di-snRNP

(i.e., Prp3-binding elements) are largely exposed on the surface of the Prp24-U6 snRNA complex

(Figure 6B). Furthermore, the Prp24-U6 structure represents an artificially stabilized situation, obtained

after introducing a cold-sensitive A62G mutation in U6, which impedes unwinding of the U6 ISL

(Fortner et al., 1994) by sequestering C85 in a non-natural Watson–Crick base pair (magenta in

Figure 6B). We have shown here that C85 is a crucial contact residue of Prp3, which also latches

onto the surrounding nts in the context of U4/U6 di-snRNP via its DUF1115 domain. Thus in the wt

situation, the U6 ISL on Prp24 can most likely “breathe” in the region surrounding C85, whereby this

region could become available for Prp3 binding. Consistent with this idea, chemical probing studies

showed that these Prp3-binding nts are only weakly protected in the Prp24-LSm-U6 snRNA particle

(Karaduman et al., 2006). We therefore suggest that binding of Prp3 to its cognate U6 3′-overhang
region traps and subsequently extends and stabilizes spontaneous local unwinding of the internal

stem loop (ISL) on the Prp24-LSm-U6 snRNA complex (Figure 6C).

We envision that Prp24 displacement is completed by entry of a pre-assembled U4 snRNP

(Figure 6C). Prp3 could also support this step by stabilizing the emerging U4/U6 stem II via its stem

II-binding peptide. Furthermore, the cooperativity we detect in binding of Snu13, Prp31 and Prp3 to

U4/U6 di-snRNA may help to complete assembly of the U4/U6 di-snRNP. Taken together, our results

support an important role of Prp3 in the handover of U6 snRNA from Prp24 to U4 snRNP during

U4/U6 di-snRNP reassembly after splicing.

Materials and methods

Protein production and purification
DNA encoding full-length hPrp3 or the hPrp3C fragment (residues 195–683) with C-terminal His6-tags

were PCR-amplified from pGADT7-hPRP3 (Liu et al., 2006) and subcloned into vector pMAL-c2t, in

which the Factor Xa cleavage site following the N-terminal MBP tag of pMAL-c2x (New England

Biolabs, Ipswich, MA) was replaced by a TEV cleavage site. The inserts of these and all other plasmids

were verified by sequencing. A DNA fragment encoding hPrp3N (residues 1–442) was cloned into

pETM-41 (EMBL, Heidelberg, Germany) for production of the protein bearing an N-terminal His6-MBP

fusion. Plasmids were transformed into Escherichia coli BL21 (DE3)-RIL cells (Stratagene, La Jolla, CA)

and expressed at 16–18˚C using the auto-induction method (Studier, 2005). Target proteins were

double affinity purified using Ni-NTA beads and amylose resin followed by gel filtration using

a Superdex 200 26/60 column (GE Healthcare, Munich, Germany) in 20 mM Tris–HCl, pH 7.5, 200 mM

NaCl, 2 mM DTT. RNase A (Qiagen, Hilden, Germany) was included in the initial purification steps for

digestion of host RNAs.

DNA fragments encoding hPrp3CTF (residues 484–683) or yPrp311−462 were introduced via BamHI

and XhoI restriction sites into pGEX-6P (GE Healthcare) for production as N-terminal, PreScission-

cleavable GST fusion proteins. GST-hPrp3CTF and GST-yPrp311−462 were produced at 18˚C in E. coli

BL21(DE3)-RIL cells using the auto-induction method and purified using glutathione-Sepharose beads

(GE Healthcare). The fusion proteins were eluted from beads in buffer containing 10 mM reduced

L-glutathione and further purified via a Superdex 75 16/60 gel filtration column (GE Healthcare) in

20 mM Tris–HCl, pH 7.5, 200 mM NaCl, 2 mM DTT.

DNA constructs encoding yPrp3CTF (residues 296–469), yPrp3DUF1115 (residues 325–469) or ySnu13

were amplified from PRP3 or SNU13 synthetic genes (GENEART AG, Regensburg, Germany),

respectively, and subcloned into pETM-11 (EMBL, Heidelberg). Mutant versions of pETM-11-PRP3CTF

were generated by site-directed mutagenesis using the QuikChange II kit (Agilent Technologies,

Santa Clara, CA). The plasmids were transformed into E. coli BL21 (DE3)-RIL cells and expressed at

18–25˚C for two days using the auto-induction method. N-terminally His6-tagged proteins were

affinity purified using 1 ml or 5 ml HisTrap FF columns (GE Healthcare). 1 M LiCl buffer was included in
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the wash step to remove unspecifically bound nucleic acids. His6-tagged proteins used in some EMSA

and unwinding assays were directly applied to a Superdex 75 16/60 column in 10 mM Tris–HCl, pH

7.0, 150 mM NaCl, 2 mM DTT. For EMSA titrations, ITC and crystallization, TEV protease was used to

remove the N-terminal His6-tag before the size-exclusion chromatography step. Production of

selenomethionine (SeMet)-substituted His6-yPrp3
CTF in BL21 (DE3)-RIL cells was carried out in M9

minimal medium supplemented with trace metals and vitamins (van den Ent and Lowe, 2000). At an

OD595 of 0.6, 50 mg/l of SeMet (Fisher Scientific, Hampton, NH), 100 mg/l of lysine, threonine and

phenylalanine and 50 mg/l of leucine, isoleucine and valine were added. After 15 min, the

temperature was reduced to 20˚C and 0.32 mM IPTG was added for induction overnight. SeMet-

substituted protein was purified in the same way as the native protein.

Full-length yBrr2 bearing an N-terminal His6-tag was produced using a recombinant baculovirus in

insect cells as described for hBrr2 (Santos et al., 2012). Briefly, a 800 ml infected High FiveTM cell

pellet was resuspended in 50 mM HEPES, pH 8.0, 600 mM NaCl, 2 mM β-mercaptoethanol, 0.05%

NP-40, 20% glycerol, 10 mM imidazole, supplemented with protease inhibitors (Roche, Penzberg,

Germany) and lyzed by sonication using a Sonopuls Ultrasonic Homogenizer HD 3100 (Bandelin). His6-

yBrr2 was captured from the cleared lysate on a 5 ml HisTrap FF column (GE Healthcare) and eluted

with a linear gradient from 10 to 250 mM imidazole. The eluted protein was diluted to a final

concentration of 80 mM sodium chloride and loaded on a Mono Q 10/100 GL column (GE Healthcare)

equilibrated with 50 mM Tris–HCl, pH 8.0, 50 mM NaCl, 5% glycerol, 2 mM β-mercaptoethanol. His6-

yBrr2 was eluted with a linear 50 to 600 mM sodium chloride gradient and further purified by gel

filtration on a Superdex 200 26/60 column (GE Healthcare) in 40 mM Tris–HCl, pH 8.0, 200 mM NaCl,

20% glycerol, 2 mM DTT.

RNA production and purification
Full-length yU4 and yU6 snRNAs were synthesized by in vitro transcription using T7 RNA polymerase

and PCR-generated templates. The transcripts were purified using the RNeasy Midi Kit (Qiagen). RNA

duplexes were prepared by combining 30 nM of [32P]-5′-end labeled U4 snRNA with a fivefold molar

excess of unlabeled U6 snRNA in annealing buffer (40 mM Tris–HCl, pH 7.5, 100 mM NaCl). The

solution was heated to 80˚C for 2 min and cooled to 25˚C over 90 min. 12.5 mM MgCl2 were added to

the solution at 70˚C. The annealed duplex was separated from ss U4 and U6 snRNAs by 6% native

PAGE. The duplex was eluted from the gel, phenol-chloroform extracted, ethanol precipitated and

resuspended in annealing buffer. yU4/U6fused was prepared by in vitro transcription and purified via

a Mono Q column, followed by gel electrophoresis on an 8% denaturing (7 M urea) polyacrylamide

gel, eluted and precipitated by isopropanol. All other RNAs were chemically synthesized (Dharmacon,

Lafayette, CO). Complementary oligonucleotides were annealed before use by resuspension in H2O,

mixing, heating to 95˚C for 2 min, slow cooling to room temperature followed by incubation on ice.

Electrophoretic mobility shift assays
Typically, [32P]-5′-end labeled RNAs were mixed with recombinant proteins in 20 mM Tris–HCl, pH 7.0,

150 mM NaCl, 2 mM DTT, 0.5 μg/μl tRNA. For EMSAs involving hPrp3FL, hPrp3N and hPrp3C, samples

were incubated in 10 mM Tris–HCl, pH 7.5, 200 mM NaCl, 2 mM DTT, 0.33 μg/μl tRNA and 0.2 μg/μl
heparin. For hPrp3CTF the same buffer with 67 ng/μl heparin was used. RNP complexes were allowed

to form for 30 min at 4˚C and then separated on a 5–6 % (60:1) polyacrylamide gel.

For EMSA titrations of yPrp3CTF variants and yPrp3DUF1115, proteins lacking the N-terminal His6-tag

were employed. EMSA experiments were performed as described above (pre-incubation in 20 mM

HEPES, pH 6.8, 150 mM NaCl, 0.33 μg/μl tRNA) with the indicated concentrations of proteins.

Radioactive bands were visualized by autoradiography and quantified with the Image Quant 5.2

software (GE Healthcare). Apparent Kd values were obtained by fitting the resulting data points to

a single exponential Hill equation (fraction bound = A[protein]n/([protein]n + Kd
n); A, fit maximum of

RNA bound; n, Hill coefficient) (Ryder et al., 2008) using GraphPad Prism (GraphPad Software, Inc.,

La Jolla, CA).

For monitoring binding cooperativity of yPrp3CTF and yPrp3CTF with Snu13 and Prp311−462,

[32P]-5′-end labeled RNA oligonucleotides were mixed with recombinant proteins in 20 mM HEPES-

NaOH, pH 7.5, 200 mM NaCl, 3 mM DTT, 0.33 μg/μl tRNA, 67 ng/μl acetylated BSA, 13 ng/μl
heparin at 4˚C for 30 min and separated on a 4% (30:1) polyacrylamide gel. Radioactive bands were

visualized by autoradiography using a phosphoimager (Molecular Dynamics, Sunnyvale, CA).
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Isothermal titration calorimetry
Proteins without affinity tags were used for ITC experiments. Proteins and RNA were buffer exchanged

to 20 mM HEPES, pH 6.8, 150 mM NaCl by dialysis and their concentrations were determined via the

absorbances at 280 and 260 nm, respectively. yPrp3CTF variants (50 μM) or yPrp3DUF1115 (200 μM) were

used as titrants, yU4/U6stem II+13nt (fused by a GAGA tetraloop; 300 μl at 5 μM or 25 μM) as the analyte.

Measurements were conducted at 20˚C on a MicroCalTM iTC200 (GE Healthcare), with 16 injections of

2.5 μl each with 180 s intervals between injections. Titrant heats of dilution were subtracted and data

were fit using MicroCal Origin 7 (GE Healthcare).

U4/U6 di-snRNA unwinding assays
1.75 nM yU4/U6 di-snRNAs without or with 20 μM of yPrp3 variants were pre-incubated with RNA at

30˚C for 3 min in 40 mM Tris–HCl, pH 7.5, 50 mM NaCl, 8% glycerol, 0.5 mM MgCl2, 100 ng/μl
acetylated BSA, 1 U/μl RNasin, 1.5 mM DTT before the addition of 50 nM yBrr2. The reactions were

initiated by adding 1 mM ATP/MgCl2 and further incubated at 30˚C for 0–90 min. Aliquots were taken

at the indicated time points and reactions were stopped with one volume of 40 mM Tris–HCl, pH 7.4,

50 mM NaCl, 25 mM EDTA, 1% SDS, 10% glycerol, 0.05% xylene cyanol, 0.05% bromophenol blue.

Samples were loaded on a 6% native PAGE and run at 10 W for 2 hr. RNA bands were visualized by

autoradiography and quantified with the Image Quant 5.2 software. Data were fit to a single

exponential equation (fraction unwound = A{1-exp(-ku t)}); A, amplitude of the reaction; ku, apparent

first-order rate constant for unwinding; t, time using GraphPad Prism (GraphPad Software, Inc.).

Plasmid shuffling, cell viability, and in vivo splicing assays
The wt yPRP3 gene was PCR-amplified from plasmid EWB2235, cloned into vector pRS314 and used to

introduce the desired mutations by the QuikChange site-directed mutagenesis strategy (Stratagene). Wt

and mutant plasmids were transformed into yeast strain EWY2845 (prp3::LEU2; his3Δ200; leu2-3112; lys2-

810; trp1-1; ura3-52 [PRP3/YCp50]; kindly provided by John L. Woolford, Jr., Carnegie Mellon University,

Pittsburgh, USA) that harbors the PRP3 gene on a counter-selectable URA3 plasmid. Transformants were

selected in a medium lacking tryptophan, followed by three times streaking on 5-FOA plates at 25˚C to

counter-select the URA3 plasmid. Growth phenotypes of the yeast cells were assessed by spotting about

5 × 105 cells and tenfold serial dilutions on YPD agar plates and incubating at 16˚C, 30˚C or 37˚C for 1–2

days. To analyze the effect of prp3 mutations on splicing in vivo, the yeast cells producing wt or variant

forms of yPrp3 were used to inoculate YPD medium at an OD600 of 0.05 and the cultures were further

incubated at 37˚C for 5 hr. For monitoring the levels of unspliced and spliced U3 (pre-)snoRNAs, 8 μg of

total RNA from each sample were used for primer extension as described (Mozaffari-Jovin et al., 2013).

Analysis of snRNP levels
Yeast cells expressing wt or ts variants of yPrp3 were grown in YPD medium at 30˚C. Whole cell

extract prepared from each strain was incubated at 37˚C (the non-permissive temperature for the Prp3

ts variants) for 30 min, diluted with equal volume of G100 buffer (20 mM HEPES-KOH, pH 7.0, 100 mM

KCl, 0.2 mM EDTA) and fractionated by ultracentrifugation on a 12 ml 10–30 % (v/v) glycerol gradient

in G100 buffer. Subsequent to ultracentrifugation at 37,000 rpm for 15 hr in a Sorvall TST41.14 rotor,

the distribution of spliceosomal U4, U5 and U6 snRNPs across the gradient fractions was monitored by

Northern blotting and quantified as described previously (Mozaffari-Jovin et al., 2013). The association

of yPrp3 with tri-snRNP was analyzed by Western blotting of gradient fractions and immunostaining

using antibodies against yPrp3 and ySnu114 and the Amersham ECL detection kit (GE Healthcare).

Crystallographic procedures
Crystallization was performed using the sitting-drop vapor-diffusion method at 18˚C. Protein yPrp3CTF was

concentrated to 15 mg/ml in 10 mM Tris–HCl, pH 7.5, 200 mM NaCl, 1 mM DTT. The best crystals were

obtained by mixing 1 μl of protein solution with 0.2 μl of 0.1 M yittrium (III) chloride hexahydrate or

praseodymium (III) acetate hydrate and 0.8 μl of reservoir solution (0.1 M succinic acid, pH 7.0, 16.4% PEG

3350). Protein yPrp3325−469 was concentrated to 15 mg/ml in 10 mM HEPES, pH 6.8, 100 mM NaCl, 2 mM

DTT. The best crystals were obtained using a 1:1 mixture of protein solution and reservoir buffer consisting

of 0.1 M HEPES, pH 7.5, 10% PEG 8000. Prior to data collection, both types of crystals were cryoprotected

in reservoir solution supplemented with 27% (v/v) ethylene glycol and flash-cooled in liquid nitrogen.
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yU4/U6stem II+10nt was slowly added to the SeMet-substituted yPrp3CTF in a 1:1 molar ratio and

incubated at 4˚C for 15 min. The mixture was then chromatographed on a Superdex 75 16/60 column

in 10 mM Na HEPES, pH 6.8, 1 mM DTT. Peak fractions containing the yPrp3CTF-yU4/U6stem II+10nt

complex were pooled and concentrated to 7.5 mg/ml. Crystals were grown by mixing 1 μl of complex

solution with 0.2 μl of 0.5 M sodium fluoride and 0.8 μl of reservoir solution (0.22 M DL-malic acid, pH

6.8, 16.5% PEG 3350). For diffraction data collection, crystals were transferred to a 1:1 mixture of

Paratone-N and paraffin oil as a cryoprotectant and flash-cooled in liquid nitrogen.

All X-ray diffraction data were collected at 100 K on beamline BL14.2 at the BESSY II storage ring

(Berlin, Germany). Data were processed with the HKL package (Minor et al., 2006) or XDS (Kabsch,

2010). The structure of yPrp3CTF was solved by a praseodymium (III) multiple anomalous dispersion

experiment as described (Puehringer et al., 2012) and refined against the higher resolution data from

an yttrium (III)-derivatized crystal. The structures of yPrp3DUF1115 and of a yPrp3CTF-yU4/U6stem II+10nt

complex were solved by molecular replacement using structure coordinates of yPrp3CTF as search

models with the programs MOLREP (Vagin and Teplyakov, 2010) and PHASER (McCoy, 2007),

respectively. Models were manually completed and adjusted with COOT (Emsley et al., 2010) and

the structures were refined using REFMAC5 (Murshudov et al., 2011) and phenix.refine (Afonine

et al., 2012). To preserve A-form geometry in the stem II portion of the yPrp3CTF-yU4/U6stem II+10nt

structure, an A-form duplex was used as a reference model and the A-form geometry was restrained

during the refinement. Electrostatic surface potentials were calculated with APBS (Unni et al., 2011).

All structure figures were created using PyMOL (http://www.pymol.org/).

Phylogenetic analyses
For phylogenetic analyses, a representative set of protein structures containing ferredoxin-like folds was

assembled using the SCOP database (Murzin et al., 1995). Pairwise structural similarity Z-scores were

calculated for all structures and the yPrp3 ssRNA-binding domain using DaliLite (Holm and Park, 2000).

The Z-score reciprocals were used to build a UPGMA tree with the neighbor tool of the PHYLIP package

(Felsenstein, 1989). The tree was visualized with Evolview (Zhang et al., 2012) and annotated manually.

Data deposition
Coordinates and diffraction data have been deposited with the Protein Data Bank (www.pdb.org)

under accession codes 4YHU (yPrp3CTF), 4YHV (yPrp3DUF1115) and 4YHW (yPrp3CTF-yU4/U6stem II+10nt)

and will be released upon publication.

Acknowledgements
We thank Nicole Holton, Freie Universität Berlin, for help with ITCmeasurements and Grzegorz Chojnowski,

International Institute of Molecular and Cell Biology, for help with RNA structure comparisons. We thank

Jelena Jakovljevic and John L Woolford, Jr, Carnegie Mellon University, Pittsburgh, USA, for yeast strain

EWY2845 and plasmid EWB2235. We acknowledge access to beamline BL14.2 of the BESSY II storage ring

(Berlin, Germany) via the Joint Berlin MX-Laboratory sponsored by the Helmholtz Zentrum Berlin für

Materialien und Energie, the Freie Universität Berlin, the Humboldt-Universität zu Berlin, the Max-Delbrück

Centrum, and the Leibniz-Institut für Molekulare Pharmakologie. MT was supported by a fellowship from

the Boehringer Ingelheim Fonds. This work was funded by the Deutsche Forschungsgemeinschaft (SFB 740

toMCW; SFB 860 to RL), the Bundesministerium für Bildung und Forschung (grant 05K10KEC toMCW), the

European Research Council (grant RNA +P = 123D to JMB) and the Foundation for Polish Science (to JMB).

Additional information

Funding

Funder Grant reference Author

Deutsche
Forschungsgemeinschaft (DFG)

SFB 740 Markus C Wahl

Bundesministerium für Bildung
und Forschung (Federal Ministry
of Education and Research)

05K10KEC Markus C Wahl

Liu et al. eLife 2015;4:e07320. DOI: 10.7554/eLife.07320 19 of 23

Research article Biochemistry | Biophysics and structural biology

http://www.pymol.org/
http://www.pdb.org
http://dx.doi.org/10.7554/eLife.07320


Funder Grant reference Author

European Research
Council (ERC)

RNA+P=123D Janusz M Bujnicki

Foundation For Polish Science
(Fundacja na rzecz Nauki
Polskiej)

“Ideas for Poland”
fellowship

Janusz M Bujnicki

Boehringer Ingelheim
Fonds (BIF)

None Matthias Theuser

Deutsche
Forschungsgemeinschaft (DFG)

SFB 860 Reinhard
Lührmann

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions

SL, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; SM-J, JW,

KFS, MT, SD-H, PF, JMB, Acquisition of data, Analysis and interpretation of data; RL, MCW,

Conception and design, Analysis and interpretation of data, Drafting or revising the article

Additional files

Major datasets
The following datasets were generated:

Author(s) Year Dataset title
Dataset ID
and/or URL

Database, license, and
accessibility information

Liu S, Wahl MC 2015 yPrp3CTF http://www.rcsb.org/pdb/search/
structidSearch.do?
structureId=4YHU

Publicly available at the RCSB
Protein Data Bank (Accession no:
4YHU).

Liu S, Wahl MC 2015 yPrp3DUF1115 http://www.rcsb.org/pdb/search/
structidSearch.do?
structureId=4YHV

Publicly available at the RCSB
Protein Data Bank (Accession no:
4YHV).

Liu S, Wahl MC 2015 yPrp3CTF-yU4/
U6stem II+10nt

http://www.rcsb.org/pdb/search/
structidSearch.do?
structureId=4YHW

Publicly available at the RCSB
Protein Data Bank (Accession no:
4YHW).

References
Achsel T, Brahms H, Kastner B, Bachi A, Wilm M, Lührmann R. 1999. A doughnut-shaped heteromer of human Sm-
like proteins binds to the 3′-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro. The EMBO
Journal 18:5789–5802. doi: 10.1093/emboj/18.20.5789.

Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev
A, Zwart PH, Adams PD. 2012. Towards automated crystallographic structure refinement with phenix.refine. Acta
Crystallographica. Section D, Biological Crystallography 68:352–367. doi: 10.1107/S0907444912001308.

Anthony JG, Weidenhammer EM, Woolford JL Jr. 1997. The yeast Prp3 protein is a U4/U6 snRNP protein
necessary for integrity of the U4/U6 snRNP and the U4/U6.U5 tri-snRNP. RNA 3:1143–1152.

Ayadi L, Callebaut I, Saguez C, Villa T, Mornon JP, Banroques J. 1998. Functional and structural characterization of
the prp3 binding domain of the yeast prp4 splicing factor. Journal of Molecular Biology 284:673–687. doi: 10.
1006/jmbi.1998.2183.

Baltz AG, Munschauer M, Schwanhausser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew
K, Milek M, Wyler E, Bonneau R, Selbach M, Dieterich C, Landthaler M. 2012. The mRNA-bound proteome and
its global occupancy profile on protein-coding transcripts. Molecular Cell 46:674–690. doi: 10.1016/j.molcel.
2012.05.021.

Barton GJ. 1993. ALSCRIPT - a tool for multiple sequence alignments. Protein Engineering 6:37–40. doi: 10.1093/
protein/6.1.37.

Beggs JD. 2005. Lsm proteins and RNA processing. Biochemical Society Transactions 33:433–438. doi: 10.1042/
BST0330433.

Bell M, Schreiner S, Damianov A, Reddy R, Bindereif A. 2002. p110, a novel human U6 snRNP protein and U4/U6
snRNP recycling factor. The EMBO Journal 21:2724–2735. doi: 10.1093/emboj/21.11.2724.

Liu et al. eLife 2015;4:e07320. DOI: 10.7554/eLife.07320 20 of 23

Research article Biochemistry | Biophysics and structural biology

http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4YHU
http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4YHU
http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4YHU
http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4YHV
http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4YHV
http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4YHV
http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4YHW
http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4YHW
http://www.rcsb.org/pdb/search/structidSearch.do?structureId=4YHW
http://dx.doi.org/10.1093/emboj/18.20.5789
http://dx.doi.org/10.1107/S0907444912001308
http://dx.doi.org/10.1006/jmbi.1998.2183
http://dx.doi.org/10.1006/jmbi.1998.2183
http://dx.doi.org/10.1016/j.molcel.2012.05.021
http://dx.doi.org/10.1016/j.molcel.2012.05.021
http://dx.doi.org/10.1093/protein/6.1.37
http://dx.doi.org/10.1093/protein/6.1.37
http://dx.doi.org/10.1042/BST0330433
http://dx.doi.org/10.1042/BST0330433
http://dx.doi.org/10.1093/emboj/21.11.2724
http://dx.doi.org/10.7554/eLife.07320


Bessonov S, Anokhina M, Krasauskas A, Golas MM, Sander B, Will CL, Urlaub H, Stark H, Lührmann R. 2010.
Characterization of purified human B act spliceosomal complexes reveals compositional and morphological
changes during spliceosome activation and first step catalysis. RNA 16:2384–2403. doi: 10.1261/Rna.2456210.

Bessonov S, Anokhina M, Will CL, Urlaub H, Lührmann R. 2008. Isolation of an active step I spliceosome and
composition of its RNP core. Nature 452:846–850. doi: 10.1038/nature06842.

Bindereif A, Green MR. 1987. An ordered pathway of snRNP binding during mammalian pre-mRNA splicing
complex assembly. The EMBO Journal 6:2415–2424.

Bochkarev A, Bochkareva E, Frappier L, Edwards AM. 1998. The 2.2 angstrom structure of a permanganate-
sensitive DNA site bound by the Epstein-Barr virus origin binding protein, EBNA1. Journal of Molecular Biology
284:1273–1278. doi: 10.1006/jmbi.1998.2247.

Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T,
Steinmetz LM, Krijgsveld J, Hentze MW. 2012. Insights into RNA biology from an atlas of mammalian mRNA-
binding proteins. Cell 149:1393–1406. doi: 10.1016/j.cell.2012.04.031.

Cheng SC, Abelson J. 1987. Spliceosome assembly in yeast. Genes & Development 1:1014–1027. doi: 10.1101/
gad.1.9.1014.

Chojnowski G, Walen T, Bujnicki JM. 2014. RNA Bricks-a database of RNA 3D motifs and their interactions.Nucleic
Acids Research 42:D123–D31. doi: 10.1093/Nar/Gkt1084.

Deckert J, Hartmuth K, Boehringer D, Behzadnia N, Will CL, Kastner B, Stark H, Urlaub H, Lührmann R. 2006. Protein
composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under
physiological conditions. Molecular and Cellular Biology 26:5528–5543. doi: 10.1128/MCB.00582-06.

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids
Research 32:1792–1797. doi: 10.1093/Nar/Gkh340.

Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallographica.
Section D, Biological Crystallography 66:486–501. doi: 10.1107/S0907444910007493.

Fabrizio P, Dannenberg J, Dube P, Kastner B, Stark H, Urlaub H, Lührmann R. 2009. The evolutionarily conserved
core design of the catalytic activation step of the yeast spliceosome. Molecular Cell 36:593–608. doi: 10.1016/j.
molcel.2009.09.040.

Fabrizio P, McPheeters DS, Abelson J. 1989. In vitro assembly of yeast U6 snRNP: a functional assay. Genes &
Development 3:2137–2150. doi: 10.1101/gad.3.12b.2137.

Felsenstein J. 1989. PHYLIP—phylogeny inference package. Cladistics 5:164–166.
Fortner DM, Troy RG, Brow DA. 1994. A stem/loop in U6 RNA defines a conformational switch required for
premessenger RNA splicing. Genes & Development 8:221–233. doi: 10.1101/Gad.8.2.221.

Gonzalez-Santos JM, Wang A, Jones J, Ushida C, Liu J, Hu J. 2002. Central region of the human splicing factor
Hprp3p interacts with Hprp4p. The Journal of Biological Chemistry 277:23764–23772. doi: 10.1074/jbc.
M111461200.

Holm L, Park J. 2000. DaliLite workbench for protein structure comparison. Bioinformatics 16:566–567. doi: 10.
1093/bioinformatics/16.6.566.

Jung A, Domratcheva T, Tarutina M, Wu Q, Ko WH, Shoeman RL, Gomelsky M, Gardner KH, Schlichting L. 2005.
Structure of a bacterial BLUF photoreceptor: Insights into blue light-mediated signal transduction. Proceedings
of the National Academy of Sciences of USA 102:12350–12355. doi: 10.1073/pnas.0500722102.

Kabsch W. 2010. XDS. Acta Crystallographica. Section D, Biological Crystallography 66:125–132. doi: 10.1107/
S0907444909047337.

Karaduman R, Fabrizio P, Hartmuth K, Urlaub H, Lührmann R. 2006. RNA structure and RNA-protein interactions in
purified yeast U6 snRNPs. Journal of Molecular Biology 356:1248–1262. doi: 10.1016/j.jmb.2005.12.013.

Konarska MM, Sharp PA. 1987. Interactions between small nuclear ribonucleoprotein particles in formation of
spliceosomes. Cell 49:763–774. doi: 10.1016/0092-8674(87)90614-3.

Konarska MM, Vilardell J, Query CC. 2006. Repositioning of the reaction intermediate within the catalytic center
of the spliceosome. Molecular Cell 21:543–553. doi: 10.1016/j.molcel.2006.01.017.

Konforti BB, Koziolkiewicz MJ, Konarska MM. 1993. Disruption of base pairing between the 5′ splice site and the
5′ end of U1 snRNA is required for spliceosome assembly. Cell 75:863–873. doi: 10.1016/0092-8674(93)90531-T.

Korneta I, Magnus M, Bujnicki JM. 2012. Structural bioinformatics of the human spliceosomal proteome. Nucleic
Acids Research 40:7046–7065. doi: 10.1093/nar/gks347.

Kramer A, Keller W, Appel B, Lührmann R. 1984. The 5′ terminus of the RNA moiety of U1 small nuclear
ribonucleoprotein particles is required for the splicing of messenger RNA precursors. Cell 38:299–307. doi: 10.
1016/0092-8674(84)90551-8.

Laskowski RA, Hutchinson EG, Michie AD, Wallace AC, Jones ML, Thornton JM. 1997. PDBsum: a Web-based
database of summaries and analyses of all PDB structures. Trends in Biochemical Sciences 22:488–490. doi: 10.
1016/S0968-0004(97)01140-7.

Liu S, Ghalei H, Lührmann R, Wahl MC. 2011. Structural basis for the dual U4 and U4atac snRNA-binding specificity
of spliceosomal protein hPrp31. RNA 17:1655–1663. doi: 10.1261/rna.2690611.

Liu S, Li P, Dybkov O, Nottrott S, Hartmuth K, Lührmann R, Carlomagno T, Wahl MC. 2007. Binding of the human
Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP. Science 316:115–120. doi: 10.1126/
science.1137924.

Liu S, Rauhut R, Vornlocher HP, Lührmann R. 2006. The network of protein-protein interactions within the human
U4/U6.U5 tri-snRNP. RNA 12:1418–1430. doi: 10.1261/rna.55406.

Madhani HD, Bordonne R, Guthrie C. 1990. Multiple roles for U6 snRNA in the splicing pathway. Genes &
Development 4:2264–2277. doi: 10.1101/gad.4.12b.2264.

Liu et al. eLife 2015;4:e07320. DOI: 10.7554/eLife.07320 21 of 23

Research article Biochemistry | Biophysics and structural biology

http://dx.doi.org/10.1261/Rna.2456210
http://dx.doi.org/10.1038/nature06842
http://dx.doi.org/10.1006/jmbi.1998.2247
http://dx.doi.org/10.1016/j.cell.2012.04.031
http://dx.doi.org/10.1101/gad.1.9.1014
http://dx.doi.org/10.1101/gad.1.9.1014
http://dx.doi.org/10.1093/Nar/Gkt1084
http://dx.doi.org/10.1128/MCB.00582-06
http://dx.doi.org/10.1093/Nar/Gkh340
http://dx.doi.org/10.1107/S0907444910007493
http://dx.doi.org/10.1016/j.molcel.2009.09.040
http://dx.doi.org/10.1016/j.molcel.2009.09.040
http://dx.doi.org/10.1101/gad.3.12b.2137
http://dx.doi.org/10.1101/Gad.8.2.221
http://dx.doi.org/10.1074/jbc.M111461200
http://dx.doi.org/10.1074/jbc.M111461200
http://dx.doi.org/10.1093/bioinformatics/16.6.566
http://dx.doi.org/10.1093/bioinformatics/16.6.566
http://dx.doi.org/10.1073/pnas.0500722102
http://dx.doi.org/10.1107/S0907444909047337
http://dx.doi.org/10.1107/S0907444909047337
http://dx.doi.org/10.1016/j.jmb.2005.12.013
http://dx.doi.org/10.1016/0092-8674(87)90614-3
http://dx.doi.org/10.1016/j.molcel.2006.01.017
http://dx.doi.org/10.1016/0092-8674(93)90531-T
http://dx.doi.org/10.1093/nar/gks347
http://dx.doi.org/10.1016/0092-8674(84)90551-8
http://dx.doi.org/10.1016/0092-8674(84)90551-8
http://dx.doi.org/10.1016/S0968-0004(97)01140-7
http://dx.doi.org/10.1016/S0968-0004(97)01140-7
http://dx.doi.org/10.1261/rna.2690611
http://dx.doi.org/10.1126/science.1137924
http://dx.doi.org/10.1126/science.1137924
http://dx.doi.org/10.1261/rna.55406
http://dx.doi.org/10.1101/gad.4.12b.2264
http://dx.doi.org/10.7554/eLife.07320


McCoy AJ. 2007. Solving structures of protein complexes by molecular replacement with phaser. Acta
Crystallographica. Section D, Biological Crystallography 63:32–41. doi: 10.1107/S0907444906045975.

Minor W, Cymborowski M, Otwinowski Z, Chruszcz M. 2006. HKL-3000: the integration of data reduction and
structure solution–from diffraction images to an initial model in minutes. Acta Crystallographica. Section D,
Biological Crystallography 62:859–866. doi: 10.1107/S0907444906019949.

Montemayor EJ, Curran EC, Liao HH, Andrews KL, Treba CN, Butcher SE, Brow DA. 2014. Core structure of the U6
small nuclear ribonucleoprotein at 1.7-angstrom resolution. Nature Structural & Molecular Biology 21:544–551.
doi: 10.1038/Nsmb.2832.

Mount SM, Pettersson I, Hinterberger M, Karmas A, Steitz JA. 1983. The U1 small nuclear RNA-protein complex
selectively binds a 5′ splice site in vitro. Cell 33:509–518. doi: 10.1016/0092-8674(83)90432-4.

Mozaffari-Jovin S, Wandersleben T, Santos KF, Will CL, Lührmann R, Wahl MC. 2013. Inhibition of RNA
helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science 341:80–84. doi: 10.1126/
science.1237515.

Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA. 2011.
Refmac5 for the refinement of macromolecular crystal structures. Acta Crystallographica. Section D, Biological
Crystallography 67:355–367. doi: 10.1107/S0907444911001314.

Murzin AG, Brenner SE, Hubbard T, Chothia C. 1995. SCOP—a structural classification of proteins database for the
investigation of sequences and structures. Journal of Molecular Biology 247:536–540. doi: 10.1016/S0022-2836
(05)80134-2.

Nottrott S, Hartmuth K, Fabrizio P, Urlaub H, Vidovic I, Ficner R, Lührmann R. 1999. Functional interaction of
a novel 15.5kD [U4/U6.U5] tri-snRNP protein with the 5′ stem-loop of U4 snRNA. The EMBO Journal 18:
6119–6133. doi: 10.1093/emboj/18.21.6119.

Nottrott S, Urlaub H, Lührmann R. 2002. Hierarchical, clustered protein interactions with U4/U6 snRNA:
a biochemical role for U4/U6 proteins. The EMBO Journal 21:5527–5538. doi: 10.1093/emboj/cdf544.

Oubridge C, Ito N, Evans PR, Teo CH, Nagai K. 1994. Crystal structure at 1.92 A resolution of the RNA-binding
domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372:432–438. doi: 10.1038/
372432a0.

Parker R, Siliciano PG, Guthrie C. 1987. Recognition of the TACTAAC box during mRNA splicing in yeast involves
base pairing to the U2-like snRNA. Cell 49:229–239. doi: 10.1016/0092-8674(87)90564-2.

Puehringer S, Hellmig M, Liu S, Weiss MS, Wahl MC, Mueller U. 2012. Structure determination by multiple-
wavelength anomalous dispersion (MAD) at the Pr LIII edge. Acta Crystallographica. Section F, Structural Biology
and Crystallization Communications 68:981–984. doi: 10.1107/S1744309112025456.

Rader SD, Guthrie C. 2002. A conserved Lsm-interaction motif in Prp24 required for efficient U4/U6 di-snRNP
formation. RNA 8:1378–1392. doi: 10.1017/S1355838202020010.

Raghunathan PL, Guthrie C. 1998. A spliceosomal recycling factor that reanneals U4 and U6 small nuclear
ribonucleoprotein particles. Science 279:857–860. doi: 10.1126/science.279.5352.857.

Ryan DE, Abelson J. 2002. The conserved central domain of yeast U6 snRNA: Importance of U2-U6 helix I-a in
spliceosome assembly. RNA 8:997–1010. doi: 10.1017/S1355838202025013.

Ryan DE, Stevens SW, Abelson J. 2002. The 5′ and 3′ domains of yeast U6 snRNA: Lsm proteins facilitate binding
of Prp24 protein to the U6 telestem region. RNA 8:1011–1033. doi: 10.1017/S1355838202026092.

Ryder SP, Recht MI, Williamson JR. 2008. Quantitative analysis of protein-RNA interactions by gel mobility shift.
Methods in Molecular Biology 488:99–115. doi: 10.1007/978-1-60327-475-3_7.

Santos KF, Mozaffari-Jovin S, Weber G, Pena V, Lührmann R, Wahl MC. 2012. Structural basis for functional
cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proceedings
of the National Academy of Sciences of USA 109:17418–17423. doi: 10.1073/pnas.1208098109.

Schultz A, Nottrott S, Hartmuth K, Lührmann R. 2006. RNA structural requirements for the association of the
spliceosomal hPrp31 protein with the U4 and U4atac snRNP. The Journal of Biological Chemistry 281:
28278–28286. doi: 10.1074/jbc.M603350200.

Stanek D, Neugebauer KM. 2006. The Cajal body: a meeting place for spliceosomal snRNPs in the nuclear maze.
Chromosoma 115:343–354. doi: 10.1007/s00412-006-0056-6.

Studier FW. 2005. Protein production by auto-induction in high-density shaking cultures. Protein Expres Purif 41:
207–234. doi: 10.1016/j.pep.2005.01.016.

Thunnissen MMGM, Taddei N, Liguri G, Ramponi G, Nordlund P. 1997. Crystal structure of common type
acylphosphatase from bovine testis. Structure 5:69–79. doi: 10.1016/S0969-2126(97)00167-6.

Unni S, Huang Y, Hanson RM, Tobias M, Krishnan S, Li WW, Nielsen JE, Baker NA. 2011. Web servers and services
for electrostatics calculations with APBS and PDB2PQR. Journal of Computational Chemistry 32:1488–1491.
doi: 10.1002/jcc.21720.

Vagin A, Teplyakov A. 2010. Molecular replacement with MOLREP. Acta Crystallographica. Section D, Biological
Crystallography 66:22–25. doi: 10.1107/S0907444909042589.

van den Ent F, Lowe J. 2000. Crystal structure of the cell division protein FtsA from Thermotoga maritima. The
EMBO Journal 19:5300–5307. doi: 10.1093/emboj/19.20.5300.

Verdone L, Galardi S, Page D, Beggs JD. 2004. Lsm proteins promote regeneration of pre-mRNA splicing activity.
Current Biology 14:1487–1491. doi: 10.1016/j.cub.2004.08.032.

Vidal VPI, Verdone L, Mayes AE, Beggs JD. 1999. Characterization of U6 snRNA-protein interactions. RNA 5:
1470–1481. doi: 10.1017/S1355838299991355.

Vidovic I, Nottrott S, Hartmuth K, Lührmann R, Ficner R. 2000. Crystal structure of the spliceosomal 15.5kD protein
bound to a U4 snRNA fragment. Molecular Cell 6:1331–1342. doi: 10.1016/S1097-2765(00)00131-3.

Liu et al. eLife 2015;4:e07320. DOI: 10.7554/eLife.07320 22 of 23

Research article Biochemistry | Biophysics and structural biology

http://dx.doi.org/10.1107/S0907444906045975
http://dx.doi.org/10.1107/S0907444906019949
http://dx.doi.org/10.1038/Nsmb.2832
http://dx.doi.org/10.1016/0092-8674(83)90432-4
http://dx.doi.org/10.1126/science.1237515
http://dx.doi.org/10.1126/science.1237515
http://dx.doi.org/10.1107/S0907444911001314
http://dx.doi.org/10.1016/S0022-2836(05)80134-2
http://dx.doi.org/10.1016/S0022-2836(05)80134-2
http://dx.doi.org/10.1093/emboj/18.21.6119
http://dx.doi.org/10.1093/emboj/cdf544
http://dx.doi.org/10.1038/372432a0
http://dx.doi.org/10.1038/372432a0
http://dx.doi.org/10.1016/0092-8674(87)90564-2
http://dx.doi.org/10.1107/S1744309112025456
http://dx.doi.org/10.1017/S1355838202020010
http://dx.doi.org/10.1126/science.279.5352.857
http://dx.doi.org/10.1017/S1355838202025013
http://dx.doi.org/10.1017/S1355838202026092
http://dx.doi.org/10.1007/978-1-60327-475-3_7
http://dx.doi.org/10.1073/pnas.1208098109
http://dx.doi.org/10.1074/jbc.M603350200
http://dx.doi.org/10.1007/s00412-006-0056-6
http://dx.doi.org/10.1016/j.pep.2005.01.016
http://dx.doi.org/10.1016/S0969-2126(97)00167-6
http://dx.doi.org/10.1002/jcc.21720
http://dx.doi.org/10.1107/S0907444909042589
http://dx.doi.org/10.1093/emboj/19.20.5300
http://dx.doi.org/10.1016/j.cub.2004.08.032
http://dx.doi.org/10.1017/S1355838299991355
http://dx.doi.org/10.1016/S1097-2765(00)00131-3
http://dx.doi.org/10.7554/eLife.07320


Wahl MC, Will CL, Lührmann R. 2009. The spliceosome: design principles of a dynamic RNP machine. Cell 136:
701–718. doi: 10.1016/j.cell.2009.02.009.
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