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In this review article we describe spin-dependent transport in materials with spin-orbit
interaction of Rashba type. We mainly focus on semiconductor heterostructures, how-
ever we consider topological insulators, graphene and hybrid structures involving super-
conductors as well. We start from the Rashba Hamiltonian in a two dimensional electron
gas and then describe transport properties of two- and quasi-one-dimensional systems.
The problem of spin current generation and interference effects in mesoscopic devices
is described in detail. We address also the role of Rashba interaction on localisation
effects in lattices with nontrivial topology, as well as on the Ahronov-Casher effect in
ring structures. A brief section, in the end, describes also some related topics including
the spin-Hall effect, the transition from weak localisation to weak anti localisation and
the physics of Majorana Fermions in hybrid heterostructures involving Rashba materials
in the presence of superconductivity.
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I. INTRODUCTION

All the modern electronic devices are based on a clas-
sical paradigm of negative carriers — electrons — and
positive charge carriers — holes. This leaves completely
unused an additional degree-of-freedom carried by both
carriers: the spin. Spintronics explores phenomena that
interlink the spin and the charge degree-of-freedom. It
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is the field where traditional solid-state physics and ma-
terial research have created their strongest bond, with
each taking alternate leading roles. From our perspec-
tive, spintronics can be mainly divided into two distinct
subfields: metal and semiconductor spintronics (Žutić
et al., 2004; Sinova and Žutić, 2012).

Metallic spintronic devices originate from the discov-
ery of giant magnetoresistance (GMR) in 1988 (Baibich
et al., 1988; Binasch et al., 1989) and the subsequent de-
velopment of the spin valve (Dieny et al., 1991). The
GMR effect can be understood by assuming that any
spin current is carried by two “types" of carriers, spin-up
and spin-down. The two-channel picture of spin trans-
port proposed by Mott explains the behaviour of magne-
toresistive devices (Camley and Barnaś, 1989), including
GMR and tunnelling magnetoresistance (TMR) (Mood-
era et al., 1995), as well as spin injection into met-
als (Johnson and Silsbee, 1988).

In the GMR effect, two ferromagnetic layers sandwich
a non-ferromagnetic metal layer of nanometer thickness.
When the magnetisation of the two ferromagnetic layers
is parallel, the valve is in a low resistance state (open).
When the two are antiparallel, the valve is in a high re-
sistance state (closed). The TMR effect rather than the
GMR one, takes place when a metallic spacer is substi-
tuted by an insulating barrier. In TMR at room tem-
perature, the spin-vale effect increases by a factor of ten
with respect to GMR. This is the basic principle of hard
disk read heads and magnetic random access memories.
These are some of the most successful technologies of the
past decades, with scaling trends outdoing even comple-
mentary metal-oxide-semiconductor, the technology for
constructing integrated circuits. Albert Fert and Peter
Grünberg have been awarded the Physics Nobel Price in
2007 for their studies on the GMR effect.

Semiconductor spintronics, on the other hand, has
the potential to be integrated seamlessly with nowadays’
semiconductor electronics. It is progressing along a sim-
ilar path as metallic spintronics and has achieved a re-
markable success in the past decade. The spin-field ef-
fect transistor (spin-FET) was proposed in 1990 (Datta
and Das, 1990) as a development to the GMR set-up
where the two ferromagnets are left collinear and the “on"
and “off" status is achieved by rotating the injected spin
when travelling through the two contacts. This geometry
does not require a magnetic field for switching the rela-
tive magnetisation of the two ferromagnets, thus reduc-
ing spurious magnetic fields into the electronic circuits.
The spin-FET is an electronic analog of an electro-optical
modulator for photons. A ferromagnet injects spin po-
larised carriers into a semiconductor channel. Here, due
to the modulation of the spin-precession length, it is pos-
sible to vary the spin orientation. This modulated spin
signal is then detected by a second ferromagnet. The
spin precession length is varied via top- and back-gate
voltages that tune the strength of the spin-orbit inter-

action (SOI) of Rashba (R) type (Rashba, 1960; Yu A.
Bychkov and Rashba, 1984). The RSOI originates from
the lack of inversion symmetry along the growth direc-
tion of the semiconductor heterostructure that is hosting
a two-dimensional electron gas (2DEG) (de Andrada e
Silva et al., 1994, 1997). It can be tuned by changing
the shape of the confining potential via the application
of an external electric field (Nitta et al., 1997; Schäpers
et al., 1998; Grundler, 2000; Miller et al., 2003; Meier
et al., 2007). However, the conductivity mismatch prob-
lem (Johnson and Silsbee, 1988; Schmidt et al., 2000)
between a ferromagnet and a low-dimensional semicon-
ductor has hindered, for a long time, an efficient injec-
tion of spin polarised currents. Progress for solving this
problem came with the research on ferromagnetic semi-
conductors (Ohno, 1998). Nevertheless, only recently it
has been possible to implement completely the function-
ality of the spin-FET first in Ref. (Koo et al., 2009), and
after, with minor changes, in Ref. (Chuang et al., 2014).

Semiconductor spintronics is also relevant because it
has permitted to observe other coherent phenomena,
such as the Aharonov-Casher (AC) effect (Aharonov and
Casher, 1984) in ring-type and other loop structures (Yau
et al., 2002) so as proposed by many groups (Nitta
et al., 1999; Frustaglia and Richter, 2004; Bercioux et al.,
2005a; Capozza et al., 2005; Lucignano et al., 2007). The
Aharonov-Casher effect is the analog of the Aharonov-
Bohm (AB) effect (Aharonov and Bohm, 1959) for parti-
cles with an angular momentum in an external electrical
field (Richter, 2012). In the case of carriers in a semi-
conductor 2DEG, the RSOI permits the coupling of the
electron spin with the external electric field. Other phe-
nomena, e.g., the spin-Hall effect (D’yakonov and Perel’,
1971; Hirsch, 1999; Murakami et al., 2003; Sinova et al.,
2004), have been predicted and observed in semiconduc-
tors (Kato et al., 2004; Sih et al., 2005a; Wunderlich
et al., 2005a,b; Sih et al., 2006a) before their observa-
tion in metals (Valenzuela and Tinkham, 2006). A key
role in the success of semiconductor spintronics is the
tunability of the RSOI via external gating.

The material in this review article is presented in the
following form: in Sec. II we present a summary of the
materials with sizable RSOI effects, these range from the
standard semiconductor heterostructures, carbon-based
materials, topological insulators (TIs) to Weyl semimet-
als (WSs). In Sec. III, in order to introduce some basic
transport property of carriers in systems with RSOI, we
revise the spectral properties of 2DEGs and graphene
with RSOI, in addition we spend some effort to under-
line the basic difference in the presence of a further lat-
eral confinement, thus moving from the two-dimensional
(2D) to the quasi-one-dimensional-case (quasi-1D). Af-
ter, we introduce the concept of spin-double refraction
that is a phenomenon taking place in a hybrid struc-
ture composed of region with RSOI sandwiched between
two regions without RSOI. In Sec. IV we give a defini-
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tion of pure spin currents and propose a derivation of
a formula for a spin current in the standard Landauer-
Büttiker approach, furthermore we introduce two pro-
posals for generating pure spin currents — based on the
ratchet and the pumping effect. Next, we give an in-
depth analysis of the spin-FET by Datta and Das and an
explanation of its working principle, finally we present a
recent experiment showing a possible realisation of such
a transistor. In Sec. V we give a complementary look
at the effects induced by RSOI, specifically we will anal-
yse its effects as non-Abelian gauge field. Particularly,
we look at non-Abelian effects in quantum networks and
quantum rings. In Sec. VI we give a very brief and gen-
eral overview over other aspects of the physics associated
to the RSOI, specifically we look at the spin-Hall effect
(SHE) in Sec. VI.A, than, in Sec. VI.B, we will see how
RSOI can modify the weak localisation (WL) into weak
anti-localisation (WAL) in a disordered system. Finally
in Sec. VI.C we will quickly review the vibrant field of the
quest of Majorana quasi particles in quantum wires with
RSOI, magnetic field and superconductivity. In Sec. VII
we present our outlook for this growing field of condensed
matter physics.

II. MATERIALS WITH RASHBA SPIN-ORBIT
INTERACTION

On a very general basis, SOI routes down to the rela-
tivistic correction to hydrogen-like atoms (Bransden and
Joachain, 2003; Sakurai and Napolitano, 2014). It reads

HSO = − 2~
(2mc)2

s · (E(r)× p) (1)

=
1

r

dV (r)

dr
s · (r × p)

where p is the momentum operator and s = (sx, sy, sz)
is a vector of Pauli matrices describing the spin S = ~

2s
operator. By considering a Coulomb electrostatic poten-
tial V (r) = −Ze

2

r we have that the strength of this rel-
ativistic correction goes as Ze2

r3 , thus proportional to the
atomic number Z (Bransden and Joachain, 2003; Saku-
rai and Napolitano, 2014). From the relativistic correc-
tion expressed in Hamiltonian (1) we learn that materials
characterised by a higher atomic number will present in
general a stronger SOI, this will be the case for TIs and
Weyl- and Dirac-semimetals.

A. Semiconductors heterostructures

In this review we shall mostly discuss the physics of
low-dimensional semiconductor heterostructures. The
simplest example is a 2DEG. This is commonly realised
in III-V semiconductor heterostructures by modulating

the doping density along the growth direction — usu-
ally (001) (Bastard, 1988; Seeger, 2004). In solids, SOI
can have different nature depending on the crystal sym-
metries (Samokhin, 2009), however in this review arti-
cle we shall mostly deal with the two main indepen-
dent sources of SOI in III-V semiconductors, namely the
RSOI, due to the lack of structural inversion symmetry
(SIA) (de Andrada e Silva et al., 1994, 1997) and a Dres-
selhaus (D) term due to a lack of bulk inversion symmetry
(BIA) (Dresselhaus, 1955). The three-dimensional (3D)
SOI correction to the free electronic Hamiltonian due to
BIA reads:

H3D
DSOI ∝ px

(
p2
y − p2

z

)
sx + py

(
p2
z − p2

x

)
sy

+ pz
(
p2
x − p2

y

)
sz . (2)

In order to achieve the effective Hamiltonian acting on
the electrons confined in the 2DEG we have to inte-
grate along the growth direction with the constraint that
〈pz〉 = 0, while 〈p2

z〉 6= 0 is a sample dependent constant.
Therefore we have

HDSOI = β (pysy − pxsx) + γ
(
pxp

2
ysx − pyp2

xsy
)

(3)

where γ is a material dependent constant, and β depends
on 〈p2

z〉. The first term contains the so called linear DSOI
whereas the second one describes the cubic one (Winkler,
2003). Usually the latter can be disregarded as 〈p2

z〉 �
px, py in a 2DEG.

Due to charging effects, the quantum well confining
electrons in two dimensions is never perfectly flat, there-
fore at the interface between the two differently doped
semiconductors, a potential gradient arises ∇V = E.
This effective electric field couples with the electrons mo-
tion as

HRSOI ∝ (E × p) · s . (4)

Considering a quantum well along the (001) growth di-
rection E = Ezz, the RSOI is rephrased as:

HRSOI =
α

~
(s× p) · z =

α

~
(pysx − pxsy) , (5)

where α depends on the material and on the confin-
ing potential. By simple inspection one can notice that
Rashba Hamiltonian (5) and linear Dresselhaus SOI (3)
are equivalent under the unitary transformation rotating
the spin Pauli matrices sx → sy, sy → sx and sz → −sz
therefore the spectral properties of electrons subject to
RSOI or linear DSOI are exactly the same (Lucignano
et al., 2008). It is important to notice that through a
simple mathematical manipulation we can recast RSOI
in the form s ·Beff(p) where Beff ∝ (z×p) is an effective
magnetic field rotating the carrier spin in the plane of the
2DEG.

Despite this formal equivalence, the role to RSOI has
been investigated with much more attention in the last
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FIG. 1 (a) Schubnikov-de Haas oscillations as function of the
gate voltages (Nitta et al., 1997); (b) ted conduction band
diagram and electron distribution. Panels (a) and (b) cour-
tesy of Ref. [Nitta et al., 1997]; (c) Experimental magneto-
conductance, ∆σ = σ(b) − σ(0) (circles), offset for clarity,
along with three-parameter fits (solid line) for several gate
voltages. Inset: Experimental magneto-conductance data for
the most negative gate voltage, showing pure weak localiza-
tion. (d) Density and mobility as function of Vg, extracted
from longitudinal and Hall voltage measurements; (e) Exper-
imental conductivity, showing strong dependence on Vg. Pan-
els (c)-(e) courtesy of Ref. [Miller et al., 2003].

decades for two main reasons. First, in conventional III-
V 2DEGs α > β. Second, more interestingly, from few
decades α can be easily tuned by gating the heterostruc-
ture (de Andrada e Silva et al., 1994, 1997) to some hun-
dreds of meV nm. The spin precession length can be
expressed as

`SO =
π

kSO
=

π~2

αm∗
,

in III-V quantum wells it ranges from hundreds of nm
to few µm, thus comparable with typical dimensions
achievable in the fabrication of modern mesoscopic de-
vices. The RSOI was first predicted in bulk semicon-
ductors by Rashba (Rashba, 1960). Later Bychkov and
Rashba (Yu A. Bychkov and Rashba, 1984) proposed to
use the Hamiltonian (5) in order to explain some mag-
netic properties of semiconductor heterostructures (Stein
et al., 1983; Stormer et al., 1983). In figure 1(b) we
show the shape of the quantum well and of the elec-
tron density profile showing the position of the 2DEG.
The lack of inversion symmetry in semiconducting 2DEG
heterostructures is at the origin of the RSOI. Therefore a
change in the asymmetry can also lead to a change in the
strength of the RSOI. For example, by applying a gate
voltage is possible to modify the profile of the potential
confining the 2DEG with a secondary effect of changing
the strength of the RSOI. Thus, in a first approxima-
tion the coupling constant α depends on the gate voltage
α→ α(V ).

A change in the strength of the α, thus, can produce
a change in the beating pattern of the Schubnikov-de

Haas oscillations (de Andrada e Silva et al., 1994, 1997)
[c.f. Figure 1(a)]. This effect was first observed by the
group of Nitta (Nitta et al., 1997) and after by other
groups (Schäpers et al., 1998; Grundler, 2000). An-
other method for probing the variation of the coupling
constant is to observe the transition from WL to weak
WAL (Miller et al., 2003; Akkermans and Montambaux,
2007)1, see for instance figure 1(c)-(e).

B. Quantum wires

By applying a further confinement to a 2DEG it is pos-
sible to confine the electrons in a quasi-1D structure —
a quantum wire. A detailed investigation of the RSOI in
InGaAs/InP quantum wires of different width has been
put forward by Schäpers et al. [Schäpers et al., 2004,
2006]. Quantum wires can also be made out of InAs,
GaAs, InSb or other materials (Nilsson et al., 2009; Nadj-
Perge et al., 2012; Estévez Hernández et al., 2010). Re-
cently, quantum wires with sizable RSOI are attracting
a lot of interest as they are the fundamental building
block for many proposals aiming at the observation of
Majorana quasi particles in condensed matter physics.
In these setups the interplay between RSOI, supercon-
ductivity and magnetic fields (Oreg et al., 2010; Lutchyn
et al., 2010) is pivotal.2

C. Carbon–based materials

FIG. 2 (Colours online) Spin-resolved photoemission spectra
along ΓK in the vicinity of the Fermi energy. (a) Overview
spectra and (b) π states at arbitrary offset. Courtesy of
Ref.[Varykhalov et al., 2008].

1 More details about this phenomenon will be given in Sec. VI.B.
2 Some more analysis of Majorana physics is reported in Sec. VI.C.
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The RSOI has been predicted also for single
layer graphene (SLG), using simple symmetry argu-
ments (Kane and Mele, 2005a,b). A more rigorous
calculation has been proposed by Huertas-Hernando et
al. (Huertas-Hernando et al., 2006), where a modulation
via atomic Stark effect and curvature effects were con-
sidered. However, due to the small atomic number of
the carbon atoms [see equation (1)] the strength of the
coupling α is very small in the SLG structure. There
are proposal for overcoming this obstacle and increasing
the strength of the SOI, by coating the graphene surface
with ad-atoms thus inducing a spin-dependent hopping
mediated by the surface impurities. This is the case, for
example, of SLG deposited on a Ni substrate and in-
tercalated with Au atoms. Spin-resolved angle resolved
photoemission spectroscopy measurements have shown a
sizable RSOI of the order of some meV (Varykhalov et al.,
2008; Dedkov et al., 2008; Li et al., 2011; Marchenko
et al., 2012). Similar proposal have been advanced also
for hydrogen impurities (Castro Neto and Guinea, 2009).
The modification to the energy spectrum of SLG due
to RSOI are shown in figure 2. Large RSOI has been
also proposed by using rotating magnetic fields (Klino-
vaja and Loss, 2013).

The RSOI in SLG is described by a Hamiltonian very
similar to (5), the main difference is that it depends only
on the pseudo-spin and not on the momentum operators.
To the lowest order in the momentum expansion:

HSLG
SO =

λ

2
(s× σ)z , (6)

where s are the Pauli matrices describing the electron
spin and σ its pseudo-spin. Here the pseudo-spin is the
internal degree of freedom describing the presence of two
inequivalent carbon atoms in the honeycomb lattice of
SLG (Neto et al., 2009).

The RSOI has been predicted also in bi-layer graphene,
due to the interaction with a substrate of and an external
electric field (Gelderen and Smith, 2010; Guinea, 2010;
Konschuh et al., 2012; Mireles and Schliemann, 2012),
however so far it is has not been measured.

In order to conclude this overview of carbon-based ma-
terials with RSOI, relevant effects are predicted also for
carbon nanotubes (CNTs) (Martino et al., 2002; Martino
and Egger, 2005; Izumida et al., 2009). In Refs. [Kuem-
meth et al., 2008 and Jespersen et al., 2011] the RSOI
interaction strength is measured in CNT quantum dots.

D. Topological insulators

Topological insulators are band insulators hosting spin
polarised edges states within the bulk gap (Hasan and
Kane, 2010; Qi and Zhang, 2011; Ando, 2013).

The original idea about this new state of matter was
put forward by Kane and Mele in two seminal research

papers published in 2005 (Kane and Mele, 2005a,b).
They showed that a specific type of SOI in SLG can lead
to the opening of a gap in the spectrum and that edge
states exists within this gap when considering a ribbon
geometry. In figure 3 we can observe the gap opened
by the intrinsic SOI (Huertas-Hernando et al., 2006) and
the edge states within the gap. In two-dimensions, this
phenomenon is also known as quantum spin-Hall effect
(QSHE). It can be thought as two copies (one per spin)
of the integer quantum Hall effect (IQHE). The main dif-
ference is that, contrary to the magnetic field, SOI does
not break time-reserval symmetry. Thus, here, there are
two counter propagating helical edge states opposed to
the single chiral edge state of the quantum Hall fluid. As
in the case of the IQHE, the edge states are characteris-
tics only of the finite size systems. It is also possible to
introduce a specific topological numbers named Z2 that
defines the robustness of these edge states (Kane and
Mele, 2005a).

Up to now, such phenomenon has not been observed
in SLG, however shortly after the seminal works of
Kane and Mele, a proposal for observing the QSHE
in HgTe/CdHgTe quantum wells was put forward by
Bernevig et al. [Bernevig et al., 2006 and Bernevig and
Zhang, 2006], whose prediction was readily confirmed by
König et al. [König et al., 2006]. Since than, there is
a huge quest for discovering new 2D TIs. One of the
most interesting is represented by InAs/GaSb quantum
well (Liu et al., 2008; Knez et al., 2011) which is very at-
tractive as it is achievable using the standard and, very
well known, III-V semiconductor technology.

Contrary to the case of IQHE, the paradigm of the
QSHE can be extended to 3D. This work has been mainly
carried out by Fu and Kane [Fu et al., 2007 and Fu and
Kane, 2007]. Since their seminal works, a race for discov-
ering new 3D TIs is open. Recent overviews on these ma-
terials can be found in one of the several review articles
that has been published on the topic (Hasan and Kane,
2010; Qi and Zhang, 2011; Ando, 2013). Among them
the paper by Ando (Ando, 2013) contains an interesting
table summarising all known 2D and 3D TI discovered
up to 2013.

Most of the research work is devoted to analyse the
spectral properties of such material—mainly via angle-
resolved photoemission spectroscopy. Only few experi-
ments show the transport properties of this new class of
materials. Mainly because most of the 3D TI are not
proper insulators due to a non negligible current flowing
through impurity states (Bardarson and Moore, 2013).
A very interesting set of transport experiments has been
performed in films of Bi2Se3 (Qu et al., 2011) prepared
with a special two-dimensional geometry (c.f. figure 4).
In this work the authors show a sizable tunability of
RSOI in 3D TI. The effects of this tunability are clearly
observed in the interference pattern of the Aharonov-
Bohm (AB), the Altshuler-Aronov-Spivak (AAS) and the
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FIG. 3 (Colours online) Edge states of the quantum spin-Hall
effect in zig-zag graphene nano ribbons, the bulk states are
given by the solid-orange lines, the spin-polarised states are
the dashed-blue lines.

Aharonov-Casher (AC) effects (Akkermans and Montam-
baux, 2007; Altland and D., 2010; Nazarov and Blanter,
2013). This is very interesting because it would allow to
realise novel functionalities such as possible non-Abelian
operations on spins.

E. Weyl semimetals

Weyl semimetals also known as “topological semimet-
als” are zero gap semiconductors with a Fermi level very
close to the centre of the gap that is at zero energy as
in the case of SLG and TIs. The effective Hamiltonian
describing the low energy states close to the Fermi level
in WSs is represented by a 2 × 2 Hamiltonian that is
linear in the momentum — as for TI and SLG — but
it is an actual 3D model, thus containing all the three
Pauli matrices. The simplest model Hamiltonian in k p
approximation reads:

H± = ±vFp · s , (7)

where vF is the Fermi velocity, and p and s are the vectors
of the momentum and of the Pauli matrices, respectively.
By inspection of equation 7 we evince that a generic per-
turbation cannot gap the energy spectrum. Its energy
spectrum reads E±(p) = ±vF|p|. This is usually correct
for an even number of nodal points where the expansion
(7) is allowed. At each node we can associate a chiral-
ity, this measures the relative handedness of the three
momenta and the Pauli matrices associated in the Weyl
equation — the chirality ±1 for the Hamiltonians H±,
can also be thought as a source of Berry curvature car-
ried by the WS nodes. This is a general property of Weyl
fermions realised in band structures: their net chirality

a b

c

d

FIG. 4 (Colours online) (a): SEM image of the square-ring
device realised in Bi2Se3; (b): Illustration of the AB effect in-
terference (red trajectories) and AAS interference (solid and
dotted green loops) for charges in a square ring. The exis-
tence of RSOI creates an effective magnetic field BSO pointing
towards/ or from the center of the ring for counterclockwise
(CCW)/clockwise (CW) propagation modes, which influences
spin precession and generates an AC phase in addition to the
AB and AAS phases. (c) A1(θ) and A2(θ) as a function of
θ. Here θ = 2αm∗L/~2 is spin precession angle over a dis-
tance L and A1(θ) = (cos4 θ + 4 cos θ sin2 θ + cos 2θ)/4 and
A2(θ) = (sin2 θ + cos 2θ)/4 are the modulation of the wave
function as a function of θ (c.f. Ref. (Qu et al., 2011) for more
details). The former varies roughly at twice frequency of the
latter. (d): ∆R − Vg curves at fixed magnetic fields marked
by the lines and arrows of corresponding colours. The spin
precession angle is modulated by 4π by varying Vg from the
interval 2.16 to 2.77 V marked by the two stars. The dashed
lines help illustrating the opposite phases between the green
and blue curves in the AAS region. Courtesy of Ref. [Qu
et al., 2011].

must in fact cancel3. Note that it is usually assumed that
bands are individually nondegenerate. This requires that
either the time-reversal symmetry or the inversion sym-
metry (parity) is broken. In order to realise the minimal
case of just a pair of opposite chirality Weyl nodes, time-
reversal symmetry must be broken (Wan et al., 2011).

The idea of WS was first theoretically proposed by Mu-
rakami in 2007 [Murakami, 2007] and later it was further
elaborated by Wan et al. in 2011 [Wan et al., 2011].
Based on ab-initio band calculations, it was proposed
that pyrochlore iridates, such as Y2Ir2O7, in the anti-
ferromagnetic phase, may realise such a WS [Wan et al.,
2011 and Yang and Kim, 2010]. A recent review on the
spectral properties of this type of system is reported by
Vafek and Vishwanath [Vafek and Vishwanath, 2014] and
on the transport properties by Hosur and Qi [Hosur and
Qi, 2013].

3 This can be understood in terms of the fermion doubling theo-
rem (Nielsen and Ninomiya, 1981).
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III. SPIN TRANSPORT IN RSOI MATERIAL

Before describing the role of RSOI in the spin-
dependent transport, it is important to understand how
it modifies the spectral properties of a free electron in a
2DEG.

A. General properties of the RSOI in semiconductors

We consider a 2DEG in the (x, y)–plane in the presence
of the RSOI (5) and with effective electron massm∗. The
full Hamiltonian of the system is

H0 =
p2

2m∗
+
α

~
(s× p)z. (8)

The eigenvalues read

E±(k) =
~2k2

2m∗
± αk =

~2

2m∗
(k ± kSO)

2 −∆SO, (9)

where k = |k| =
√
k2
x + k2

y is the modulus of the electron

momentum, kSO = αm∗

~2 is the RSOI coupling constant

with the dimension of a momentum and ∆SO =
(
αm∗

~

)2

.
Usually the last term of (9) is neglected because it is sec-
ond order in α. Moreover, even if included, it would lead
to a rigid shift of the bands, thus renormalising the chem-
ical potential µ. The eigenvectors of the Hamiltonian (8)
relative to the spectrum (9) are plane waves:

Ψ±(r) =
eik·r√

2

(
1

±ie−iθ

)
, (10)

where θ = arctan(ky/kx) is the polar angle between the
momentum vector and the kx direction. It is important
to note that the spin states (10) are always perpendicu-
lar to the motion direction. In fact, if an electron moves
along x direction the spinor part of the eigenvectors be-
come (1; i) and (1;−i) that is the spin up and spin down
are along the y direction. By contrast, if the electron
moves along the y direction, the eigenvectors become
(1; 1) and (1;−1) that is the spin up and spin down state
in the x direction [see figure 5(b)].

In figure 5(c)-(e) we report the ky-section of the energy
spectrum vs the momentum for a 2DEG in different phys-
ical situations. In 5(c) we considered a free particle in a
2DEG. In this case the spectrum is twofold degenerate
in spin. In the presence of a magnetic field B [see panel
5(d)], the spin degeneracy is lifted out by the Zeeman
effect and the gap separating spin up and spin down is
equal to 2g∗µBB, where g∗ is the effective gyromagnetic
ratio and µB is the Bohr’s magneton. When the RSOI
is present 5(e), the spin degeneracy is lifted out except
for ky = 0. In this situation the degeneracy is removed
without the opening of gaps. The semiclassical particle
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FIG. 5 (Colours online) Properties of the Rashba energy spec-
trum. (a) Portion of the energy spectrum of the Hamiltonian
(8). (b) The Fermi contours relative to the Hamiltonian (8),
the spin states are shown as well. (c) Section of the energy
spectrum for a free electron. (d) Section of the energy spec-
trum for an electron in presence of a magnetic field, e.g. Zee-
man splitting. (e) Section of the energy spectrum for an elec-
tron in presence of RSOI.

velocities are given by

v±(k) =
1

~
∂E±(k)

∂k
=

~k
m∗
± αk =

~
m∗

(k ± kSO)k. (11)

If we consider the quantum-mechanical velocity operator

ṙ =
i
~

[H0, r] (12)

and the expression (10) for the eigenstates, it is straight-
forward to show that its matrix elements are given by

〈Ψ±(k)| ṙ |Ψ±(k′)〉 = δ(k − k′) v±(k) . (13)

That is the semiclassical velocities v±(k) are, as usual,
the diagonal elements of the velocity operator. In the
presence of the RSOI, the velocity operator is not sim-
ply the momentum divided by the effective mass as for
free electrons and the Fermi surface splits into two sur-
faces shown in figure 5(b). One can easily observe that
counter propagating electrons have opposite spins. Spin
and momentum are locked to each other. This will have
importance consequences in the following. Parametrising
the wave vectors as k = k (cosϕ, sinϕ) the two Fermi
surfaces are described by the following equation:

kF
±(EF) = ∓α m

∗

~2
+

√(
α m∗

~2

)2

+
2m∗

~2
EF . (14)

Here the double sign corresponds to the two dispersion
branches (9).
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B. Rashba SOI in quantum wires: subbands hybridisation

By further confining a 2DEG along one direction (we
choose y in the following) we can realise a quantum
wire. In this case we cannot solve analytically the sys-
tem Hamiltonian, as we have done for the simple case
of a 2DEG. Different theoretical models have been used
to describe confinement effects. A very convenient rep-
resentation consists in assuming a transversal confining
potential in the y directions, and let the electrons propa-
gate along the the x direction. Such choice is particularly
convenient when expressing the matrix elements of the
SOI (Moroz and Barnes, 1999; Governale and Zülicke,
2002; Perroni et al., 2007). The Hamiltonian reads:

H = H‖ +H⊥ +Hmix , (15)

with the following terms:

H‖ =
p2
x

2m∗
− ~kSO

m∗
σypx (16a)

H⊥ =
p2
y

2m∗
+ V (y) (16b)

Hmix =
α

~
σxpy . (16c)

Where V (y) is a infinite well potential of width W . Ne-
glecting Hmix, the terms in equations (16a) and (16b) do
commute, therefore the eigenvalues and eigenvectors can
be easily expressed as:

E‖+⊥(n, σy, kx) =
~2

2m∗

(
k2
x +

π2n2

W 2

)
− ~2kSOkx

m∗
〈σy〉

(17)

ψnσykx(x, y) = φn(y)ψkx(x)|σy〉 (18)

where φn(y) are the n-th eigenfunctions of the potential
V (y) that are a either a sine or a cosine functions and
ψkx(x) simple plane waves shifted by the RSOI, here 〈σy〉
can get the values ±1. The term Hmix induces mixing
between these states and gives rise to a deformation of
the electronic bands and to anti-crossings in the energy
spectrum.

Anti-crossings occur between sub-bands corresponding
to transverse eigenstates with different n [figure 6(a)].
While simple one dimensional (1D) models predict a rigid
spin-momentum locking with in–plane spin perpendicu-
lar to the momentum along the wire direction, multi-
band models predict that only electrons with momen-
tum far away from anti-crossings have the spin essen-
tially perpendicular to the momentum, i.e. 〈Sy〉 ∼ ±1

2
and k ∼ kxx. This is well shown in figure 6(b), where
we can see the expectation value of 〈Sy〉 as a function
of the longitudinal momentum kx — it changes form − 1

2
to 1

2 for kx changing from negative to positive values.
The same picture applies to the other sub-bands. Here
we shall focus on the role played by the number of sub-
bands used for evaluating the system properties. The
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FIG. 6 (Colours online) (a) Band structure of quantum wires
with square well potential along the confining direction. The
coloured lines refer to the first three sub-bands in the case of
a wire with three modes whereas the dotted-black lines refer
to the same wire but only considering two modes. (b) Spin
polarisation 〈Sy〉 as a function of the transversal momentum
for the first sub-band in the case of a two band model (red-
solid and red-dashed lines). (c) Spin polarisation 〈Sy〉 as a
function of the transversal momentum for the second sub-
band in the case of a two band model (red-solid and red-
dashed lines). Both in panel (b) and (c) the spin polarisation
is evaluated using a truncated Hilbert space containing 50
modes (blue-solid and blue-dashed lines).

Hamiltonian (15) cannot be diagonalized exactly, but a
partial analytical/numerical solution can be obtained by
truncating the Hilbert space associated to the modes pro-
duced by V (y). Diagonalizing the Hamiltonian (15) for
N � 1 modes produces a result that is substantially cor-
rect for the lowest N − 1 modes but not for the mode
N . This is observed, e.g., in the spectral properties and
in the spin polarisation. The spectrum is shown in fig-
ure 6(a), we have in colours-solid lines for N = 3 and
in black-dashed lines for N = 2. We see that the first
sub-bands in both cases (N = 3 and N = 2) are quite
similar apart from a negative energy shift (Perroni et al.,
2007). However, the situation is very different when we
consider the second sub-bands, these greatly differ in the
two cases — due to the presence of the third mode for
the case N = 3. Considering the spin polarisation the
effect is more visible. In figure 6(b) the spin polarisa-
tions for the first sub-bands for N = 2 (red lines) and
N = 50 (blue lines) are shown, the behaviours are simi-
lar in both cases but around kx ∼ 0. The error produced
by Hilbert space truncation is shown in 6(c), here it is
shown the spin polarisation for the second sub-bands (red
lines), for N = 2. We observe a mirroring of the results
reported in 6(b). However, the most correct result with
N = 50 (blue lines) contradicts completely N = 2.

The message here is that when solving a problem of
quantum transport in a confined geometry a sufficient
number of sub-bands should be taken into account in or-
der to avoid systematic errors due to the truncation of
the Hilbert space (Moroz and Barnes, 1999; Governale
and Zülicke, 2002; Perroni et al., 2007). The same con-
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clusions are obtained by changing the shape of the con-
fining potential V (y) from square potential one to har-
monic oscillator one (Moroz and Barnes, 1999; Governale
and Zülicke, 2002) or by introducing a further periodic
modulation along the longitudinal direction x (Smirnov
et al., 2007). The sub-band hybridisation that we have
shown before can give rise to dip into the conductance
of quantum wires with RSOI as shown in several works
both analytically (Moroz and Barnes, 1999; Perroni et al.,
2007) and numerically (Sánchez and Serra, 2006) and can
also be interpreted in terms of a Landau-Zener transition
when analysing the conductance of a quantum point con-
tact (Eto Mikio et al., 2005).

C. General properties of the Rashba SOI in graphene

If we restrict ourself to the case of a single valley ap-
proximation, the effects of RSOI on SLG via Hamiltonian
(6) change with respect to what we have seen in the case
of a 2DEG in Sec. III.A. The complete Hamiltonian for
the SLG with RSOI reads:

HK = vFσ · p+
α

2
(s× σ)z

= vF (σxpx + σypy) +
α

2
(sxσy − sxσy) . (19)

The energy eigenstates are plane waves ψ ∼ Φ(k)eik·r

with Φ a four-component spinor and eigenvalues given
by (vF = ~ = 1)

E±,ε(k) = ±α
2

+ ε

√
k2
x + k2

y +
α2

4
, (20)

where index ε = ± specifies the particle/hole branches of
the spectrum. The energy dispersion, as a function of kx,
at fixed ky = 0, is illustrated in figure 7 with and without
RSOI. As we can see here, the RSOI gives rise to a finite

-1.0 -0.5 0.0 0.5 1.0
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FIG. 7 (Colours online) Energy spectrum of graphene for
ky = 0 as a function of k along the x axis. The dashed lines
correspond to the linear dispersion for α = 0, the solid and
the dotted lines to the case of finite RSOI. The lines with the
same colours correspond to the same spin state.

curvature of the linear energy spectrum and lifts the spin
degeneracy. Two opposite spin bands get gapped while
the other two are still degenerate at k ∼ 0. However,
contrary to the case of 2DEGs, the energy spectrum is
not shifted along the momentum axis as in equation (9).
This is related to the fact that the RSOI Hamiltonian
does not depend on the electron momentum but only on
its pseudo-spin, to the lowest order in the momentum
expansion. Nevertheless, this approximation no longer
holds if we expand RSOI Hamiltonian to higher orders, as
they explicitly depend on the electron momentum. Their
main effect, for strong RSOI, is to produce the appearing
of extra Dirac cones (tridiagonal wrapping Ref. [Zarea
and Sandler, 2009; Rakyta et al., 2010; and Lenz et al.,
2013]).

The eigenstates of the Hamiltonian (19), are expressed
by the spinors Φ±,ε(k):

ΦT
±,ε(k) = 1

2
√

cosh θ±
× (e−iφ−εθ±/2, εeεθ±/2,±iεeεθ±/2,±ieiφ−εθ±/2),

where �T denotes transposition and

sinh θ± = ± α
2k , (21)

eiφ =
kx+iky

k , (22)

with k =
√
k2
x + k2

y. The spin operator components

are expressed as Sj = 1
2sj ⊗ I2. Their expectation values

on the eigenstates Φ±,ε read

〈Sx〉 = − ε sinφ

2 cosh θ±
, (23a)

〈Sy〉 =
ε cosφ

2 cosh θ±
, (23b)

〈Sz〉 = 0, (23c)

which shows that the product ±ε coincides with the sign
of the expectation value of the spin projection along the
in–plane direction perpendicular to the direction of prop-
agation. For vanishing RSOI, the eigenstates Φ±,ε reduce
to linear combinations of eigenstates of Sz. Similarly, the
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expectation value of the pseudo-spin operator σ is given
by

〈σx〉 = ε cosφ
cosh θ±

, (24a)

〈σy〉 = ε sinφ
cosh θ±

. (24b)

Since the RSOI in SLG does not depend on momentum,
the velocity operator still coincides with the pseudo-spin
operator: v = ṙ = i[H, r] = σ. Thus, the velocity ex-
pectation value in the state Φ±,ε is given by equations
(24a) and (24b). Alternatively, it can be obtained from
the energy dispersion as

vε = ∇kEε =
εk√

k2 + α2

4

. (25)

If we considered also the intrinsic SOI, the effective Fermi
velocity would acquire a more complex dependence from
the RSOI (Lenz et al., 2013; Bercioux and De Martino,
2010).

Sub-band hybridisation due to RSOI also occurs in
graphene nano-ribbons. However, its manifestation de-
pends on the type of boundary (Neto et al., 2009): zig-
zag (Zarea and Sandler, 2009) or armchair (Lenz et al.,
2013). The most peculiar effects are observed in the case
latter. Here in fact, the RSOI couples not only different
modes but introduces also a finite coupling inside each
sub-band. It is due to the presence of two inequivalent
carbon atoms in the unit cell of a SLG nano ribbon and
is completely different from the case of a quantum wire
with RSOI of the previous section (Lenz et al., 2013).

D. The spin double refraction

The physics of an interface between a 2DEG with and
without SOI is very similar to that of the optical bire-
fringence (Born and Wolf, 1999) and is a direct conse-
quence of the two possible Fermi velocities for the two
modes (11). In the following we consider a 2DEG in the
(x, y)–plane characterised by an effective electron mass
m∗ and an interface along the y direction separating a
region without SOI (N-region) and a region with it (SO
region). Elastic scattering at the interface allows for con-
servation of the total energy and of the momentum par-
allel to the interface — ky in our case. As we have seen in
the previous section, the Fermi surface for an energy EF is
constituted of two circles with radius (14). An incoming
particle from the N region is characterised by the mo-

mentum kN and the incidence angle φ = arctan

(
kN
y

kN
x

)
.

Momentum conservation implies that

kSO
+ sin θ+ = kSO

− sin θ− = kN sinφ , (26)

where we have introduced kSO
± = kF

±(EF) and θ± are the
propagation angles in the SO region for the two different
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FIG. 8 (Colours online) Spin Refraction angles θ± as a func-
tion of the incoming particle angle φ. Panel (a) and (b) case
parameters of two modes always open. Panel (c) and (d) case
parameters where the critical angle of mode (-), φ−c is bigger
than π/2. In Panels (b) and (c) the red-dashed line is the
mode (-) whereas the blue-solid line is the mode (+).

modes. An incoming particle from the normal region
propagates into the SO region along two different modes
with indices ±. In Refs. [Perroni et al., 2007; Ramaglia
et al., 2003; Khodas et al., 2004; and Ramaglia et al.,
2004] this phenomenon is named spin-double refraction.
From equation (26) we can obtain an expression for the
two refraction angles:

θ± = arcsin

(
kN

kSO
±

sinφ

)
. (27)

If the refraction angle is equal to π
2 , than the correspond-

ing mode will not propagate forward, thus it is closed. Of
course, there are two critical angles φ±c corresponding to
the closure of the corresponding modes in the SO region
defined by the relation:

φ±c = arcsin

(
kSO
±
kN

)
. (28)

According to equation (14): kSO
+ < kSO

− so that φ+
c < φ−c .

Furthermore, considering that kSO
+ is always smaller than

kN, the mode (+) will be always open. The previous re-
sults are based only on kinematic considerations and are
independent by the nature of the SOI. The key ingredient
is the presence of an interaction that splits the 2D Fermi
surface in two circles. For example, the same physics
would be possible at an interface between a normal re-
gion and a region with a strong Zeeman splitting, assum-
ing that the Fermi energy allows the propagation along
the two modes in the region with the magnetic field.

Some care is required when writing down the Hamilto-
nian for this scattering problem. Indeed the two regions
(N and SO) are obtained by considering an inhomoge-
neous coupling constant for the RSOI α(x). As a con-
sequence, α(x) does not commute with the momentum
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operator [α(x), px] 6= 0. Thus the Hamiltonian describing
the two regions has to read:

HN-SO =
p2

2m∗
+
α(x)

~
(sxpy − sypx)

− isy
1

2m∗
∂α(x)

∂x
+ Vintδ(x). (29)

where the second to last terms reestablish the hermitic-
ity (Messiah, 2014). In the simplest approximation we
can consider α(x) = αΘ(x − xint), where Θ(x) is the
Heaviside step function. The last term mimics the
presence an SOI interface, according to the standard
approach describing interfaces with delta potentials of
strength Vint (Blonder et al., 1982). A more realistic de-
scription has to account also for possible changes of the
effective electron mass m∗ → m∗(x) = m∗NΘ(xint − x) +
m∗SOΘ(xint + x) in the two regions, more details can be
found in Ref. [Perroni et al., 2007 and Ramaglia et al.,
2003]. When considering the presence of a second inter-
face, where the RSOI vanishes again, the refraction an-
gles for the two modes will be the same and equal to the
incoming one φ (Khodas et al., 2004; Ramaglia et al.,
2004). However this double interface structure cannot
produce a spin polarisation when the incoming particles
are unpolarised. This is due to the fact that in order to
produce a spin polarisation we need to violate the On-
sager relation for a two terminal system (Adagideli et al.,
2012; Gorini et al., 2012). Violation is possible if and only
if time reversal symmetry is broken, this implies, e.g., the
application of a magnetic field.

The same physics is possible also in the case of SLG,
the main difference is that the RSOI in this case does not
contain the momentum operator (6). As a consequence
we do not need the extra term in the full Hamiltonian
as in equation (29). A complete analysis of the spin-
double refraction for the case of graphene is reported in
Ref. (Bercioux and De Martino, 2010) where a transfer
matrix method is presented, which is useful for study-
ing the spin-dependent transport in hybrid structures in
SLG, as a periodic RSOI potential (Lenz and Bercioux,
2011; Costa et al., 2013).

IV. PURE SPIN CURRENT GENERATION IN RSOI
MATERIAL

A very crucial point in spintronics is the creation of
pure spin currents. Over the last 20 years, many meth-
ods for creating pure spin currents have been proposed.
We will focus mainly on ratchet and pumping methods
that have received also experimental verification. Here
we define what is a spin current and discuss a method
for evaluating it in terms of the Landauer-Büttiker for-
malisms (Scheid et al., 2007a). A pure spin current is
defined as a particle flow carrying finite spin polarisation
without an associated charge current.

A simple example follows: Suppose, for instance, that a
charge Q and spin polarisation Spq moves from a contact
p to q during the time t ∈ [0, T ] and in the next period
t ∈ [T, 2T ] the same amount of charge Q, but a different
spin polarisation Sqp, moves from contact q to p. The
net charge transported between p and q, in the time t ∈
[0, 2T ] is zero, but the net spin polarisation is ∆S =
Spq − Sqp.

In order to evaluate the spin-current we considerN non
ferromagnetic contacts injecting spin-unpolarised current
into the leads. We use, as customary, a local coordinate
system for the lead under investigation, where x is the
coordinate along the lead in the direction of charge prop-
agation due to an applied bias in linear response and y
is the transverse coordinate. In each lead, at a fixed en-
ergy E, several conducting modes are open. The wave
function for each mode reads

Ψ±E,ns(x, y) =
1√
kn(E)

e±ikn(E)xχn(y)Σ(s) , (30)

here we have introduced the transverse eigenfunctions of
the lead of width W :

χn(y) =

√
2

W
sin
(nπy
W

)
∀n ∈ N

with the eigenenergy En = ~2

2m∗

(
nπ
W

)2 and Σ(s) is the
spin eigenfunction. The superscript ± of Ψ refers to
the motion direction along the lead axis with the wave-
vector kn =

√
2m∗(E − En)/~2. We use the scattering

approach for deriving the current formula: the ampli-
tudes of the states inside the leads are related via the
scattering matrix S(E), determined by the Hamiltonian
of the coherent conductor. The scattering state inside
the q-th lead reads

ϕqE(x, y) =
∑
ns

[
aqns(E)Ψ+

E,ns(x, y) + bqns(E)Ψ−E,ns(x, y)
]
,

with (s = ±). It consists of incoming states Ψ+ entering
the coherent conductor from the contact q and outgoing
states Ψ− leaving the coherent conductor into the contact
q. The amplitudes of incoming ajns and outgoing bins
states are related each other via the scattering relation

bin′s′(E) =

N∑
j=1

∑
n∈j

∑
s=±1

Si,jn′s′,ns(E)ajns(E), (31)

where the scattering matrix S(E) has the following struc-
ture for an N terminal system:

S(E) =


r1,1(E) t1,2(E) · · · t1,N (E)
t2,1(E) r2,2(E) · · · t2,N (E)

...
...

. . .
...

tN,1(E) tN,2(E) · · · rN,N (E)

 .
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Here the sub-matrix rj,j(E) is a square matrix of dimen-
sionality M j(E), corresponding to the number of open
channels in lead j at energy E connected to a reservoir
with chemical potential µj — it already includes the
spin degree of freedom. The matrix rj,j(E) contains
the scattering amplitudes of incoming channels of lead j
being reflected back into outgoing channels of the same
lead. The sub-matrix ti,j(E) is aM i(E)×M j(E) matrix
that contains the scattering amplitudes for transmission
between incoming channels from lead j and outgoing
channels of lead i.

In order to evaluate the spin-current we considerN non
ferromagnetic contacts injecting spin-unpolarised current
into the leads. We use, as customary, a local coordinate
system for the lead under investigation, where x is the
coordinate along the lead in the direction of charge prop-
agation due to an applied bias in linear response and y
is the transverse coordinate. In each lead, at a fixed en-
ergy E, several conducting modes are open. The wave
function for each mode reads

Ψ±E,ns(x, y) =
1√
kn(E)

e±ikn(E)xχn(y)Σ(s) , (32)

here we have introduced the transverse eigenfunctions of
the lead of width W :

χn(y) =

√
2

W
sin
(nπy
W

)
∀n ∈ N

with the eigenenergy En = ~2

2m∗

(
nπ
W

)2 and Σ(s) is the
spin eigenfunction. The superscript ± of Ψ refers to the
motion direction along the lead axis with the wave-vector
kn =

√
2m∗

~2 (E − En). We use the scattering approach
for deriving the current formula: the amplitudes of the
states inside the leads are related via the scattering ma-
trix S(E), determined by the Hamiltonian of the coher-
ent conductor. The scattering state inside the q-th lead
reads

ϕqE(x, y) =
∑
ns

[
aqns(E)Ψ+

E,ns(x, y) + bqns(E)Ψ−E,ns(x, y)
]
,

with (s = ±). It consists of incoming states Ψ+ entering
the coherent conductor from the contact q and outgoing
states Ψ− leaving the coherent conductor into the contact
q. The amplitudes of incoming ajns and outgoing bins
states are related each other via the scattering relation

bin′s′(E) =

N∑
j=1

∑
n∈j

∑
s=±1

Si,jn′s′,ns(E)ajns(E), (33)

where the scattering matrix S(E) has the following struc-
ture for an N terminal system:

S(E) =


r1,1(E) t1,2(E) · · · t1,N (E)
t2,1(E) r2,2(E) · · · t2,N (E)

...
...

. . .
...

tN,1(E) tN,2(E) · · · rN,N (E)

 .

Here the sub-matrix rj,j(E) is a square matrix of dimen-
sionality M j(E), corresponding to the number of open
channels in lead j at energy E connected to a reservoir
with chemical potential µj — it already includes the spin
degree of freedom. The matrix rj,j(E) contains the scat-
tering amplitudes of incoming channels of lead j being
reflected back into outgoing channels of the same lead.
The sub-matrix ti,j(E) is a M i(E)×M j(E) matrix that
contains the scattering amplitudes for transmission be-
tween incoming channels from lead j and outgoing chan-
nels of lead i.
The wave function of the scattering state inside lead i,
where only the incoming channel (ns) ∈ j is populated
(aj
′

n′s′ = δj′,jδn′,nδs′,s), reads for j = i:

ϕiE,ns(x, y) =Ψ+
E,ns(x, y)

+
∑

(n′s′)∈i
ri,in′s′,ns(E)Ψ−E,n′s′(x, y), (34)

and, correspondingly, for j 6= i

ϕiE,ns(x, y) =
∑

(n′s′)∈i
ti,jn′s′,ns(E)Ψ−E,n′s′(x, y). (35)

For a generic spin wave function Φ(x, y) the spin current
IS(x) passing a cross section (x = const) of a lead is given
by:

IS(x) =

∫
dyΦ∗(x, y)JSΦ(x, y). (36)

Here, we have used the most common definition of the
spin current operator (Rashba, 2006). This is defined
with respect to an arbitrary quantisation axis u, than
the operator JS reads:

JS =

(
~
2
s · u

)[
~

2m∗i

(
∂

∂x

∣∣∣∣
→
− ∂

∂x

∣∣∣∣
←

)]
. (37)

In this operator we have the spin operator projected
along the u quantisation direction times that standard
quantum mechanical current. Here, as customary, the
partial derivatives act on the expressions to their right
and left (as indicated by the arrows), respectively. By
acting this the former operator on the scattering state
(34) we obtain for the spin current (36) inside lead inσ

Ij=iS;E,ns(x ∈ i) =
~2

2m∗

s− ∑
(n′s′)∈i

s′
∣∣∣ri,in′s′,ns(E)

∣∣∣2
 ,

where (n, s ∈ j, j = i). For the other scattering state (35)
we find the corresponding expression (n, s ∈ j, j 6= i)

Ij 6=iS;E,ns(x ∈ i) = − ~2

2m∗
∑

(n′s′)∈i
s′
∣∣∣ti,jn′s′,ns(E)

∣∣∣2 .
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Each channel is populated according to the Fermi-Dirac
distribution f(E;µn) of the respective contact n, the
statical average of the total spin current in lead i reads

〈IS(x ∈ i)〉 =
m∗

2π~2

∫ ∞
0

dE[
N∑
j=1

∑
(ns)∈j

f(E;µj)I
j
S;E,ns(x ∈ i)

]
(38)

= − 1

4π

∫ ∞
0

dE
[
f(E;µi)R

i,i
S (E)

+
∑
q 6=i

f(E;µq)T
i,q
S (E)

]
where the spin resolved transmission and reflection are
defined as

T i,qS (E) =
∑
s′=±

(
T i,q+,s′ − T

i,q
−,s′
)

Ri,iS (E) =
∑
s′=±

(
Ri,i+,s′ −R

i,i
−,s′
)
,

with

T i,qs,s′(E) =
∑
n∈i

∑
n′∈q

∣∣∣ti,qns,n′s′(E)
∣∣∣2 , (39)

Ri,is,s′(E) =
∑
n∈i

∑
n′∈i

∣∣∣ri,ins,n′s′(E)
∣∣∣2 . (40)

Probability conservation implies that the scattering ma-
trix has to be unitary [S(E)]†S(E) = S(E)[S(E)]† = I,
than the following relation holds:∑

(n′s′)∈i

∣∣∣ri,ins,n′s′(E)
∣∣∣2 +

∑
q 6=i

∑
(n′′s′′)∈q

∣∣∣ti,qns,n′′s′′(E)
∣∣∣2 = 1.

By using the symmetry relation between the spin trans-
mission and reflection (c.f. Ref. [Scheid et al., 2007a]), it
is straightforward to show that

Ri,iS (E) +
∑
q 6=i

T i,qS (E) = 0 .

In view of Eq. (38) we eventually find for the spin current
in lead i

IS(x ∈ i) =
1

4π

∫ ∞
0

dE
∑
q 6=i

[f(E;µi)−f(E;µq)]T
i,q
S (E).

(41)
Equilibrium spin currents can locally exist in systems
with SOI as shown for 2DEGs (Rashba, 2003) and in
mesoscopic systems (Nikolić et al., 2006), however equa-
tion (41) clearly shows that at thermal equilibrium (µj =
µ ∀j ∈ {1, N}) the spin current vanishes inside leads
without SOI and/or magnetic field. This absence of equi-
librium spin currents in the leads has been shown for sys-
tems with preserved time-reversal symmetry (Kiselev and

Kim, 2005). An expression very similar to (41) has been
used to investigate the SHE (Hankiewicz et al., 2004;
Ren et al., 2006; Bardarson et al., 2007; Brüne et al.,
2012). In the presence of SOI or magnetic fields it is
nontrivial to write down a continuity equation for the
spin current, the problem has been addressed in several
articles (Nikolić et al., 2006; Sun and Xie, 2005; Shi et al.,
2006; An et al., 2012).

A. Pure spin current generators

In this section we describe two mechanisms that can
be used for generating a pure spin current.

1. Spin Ratchet

A particle ratchet (Reimann, 2002; Hänggi and March-
esoni, 2009) is a system with broken inversion (left/right)
symmetry that generates a net currents upon external
ac-driving in the absence of a net (time-averaged) bias
potential. Ratchets have much in common with cur-
rent rectifiers, though there are differences, in particular
in the dissipative case (Reimann, 2002). The theoreti-
cal concept of ratchets, originally introduced for classi-
cal dynamics, was later extended to the quantum dis-
sipative regime (Reimann et al., 1997). The main dif-
ference between ratchets and rectifiers is that quantum
ratchets exhibit current reversal upon changing, e.g., the
temperature or energy (Hänggi and Marchesoni, 2009;
Reimann et al., 1997). Such quantum ratchets were ex-
perimentally realised in semiconductor heterostructures
in a chain of asymmetric ballistic electron cavities in the
low-temperature regime, with a dynamics was close to
coherent (Linke et al., 1999). Also the charge current re-
versal phenomenon has been demonstrated (Linke et al.,
2002).

A spin ratchet is a quantum ratchet with lack of bro-
ken spatial symmetry — in order to get a zero charge
current — and a finite RSOI ensuring a breaking of the
spin symmetry thus allowing for a finite spin current.
Theory predicts spin ratchets to work both in the ballis-
tic regime (Scheid et al., 2007b, 2010; Ang et al., 2015)
and in the dissipative one (Smirnov et al., 2008a,b, 2009).
A set-up for the ballistic ratchet has been also proposed
by using periodically disposed magnetic stripes instead
of electrostatic barriers and RSOI (Scheid et al., 2007a,
2006).

A ballistic spin ratchet is mainly constituted by a
quasi-one dimensional channel with a set of symmetric
barriers and RSOI [see figure 9(a)]. The lack of bro-
ken symmetry implies the absence of a net charge cur-
rent. In order to understand the presence of a finite spin
current we show here the same argument proposed in
Refs. [Scheid et al., 2007b, 2010]. A key ingredient is
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the sub-band hybridisation that we have introduced in
Sec. III.A.

We consider a wire with two open transverse modes
(N = 1, 2) and a smooth symmetric potential barrier
U(x) in the two bias or rocking situations (V ≷ 0), see fig-
ure 9(b). Upon adiabatically traversing the barrier from

x

U
(x
)

V>0
V0

FE

C
V=0
V<0

BA

(a) (b)

V

A B C

U(x)+V

FIG. 9 (Colours online) Panel (a): Sketch of the system of
symmetric periodic equally spaced barriers used for the bal-
listic spin ratchet. Panel (b): Illustration of the spin polarisa-
tion mechanism for transmission through a strip with a single
adiabatic symmetric potential barrier U(x) (solid line) in the
two rocking situations (dashed and dotted line). At points
A, B and C the position-dependent energy dispersion relation
En(kx) is sketched with respect to the Fermi energy EF (hor-
izontal line) for two transverse modes and RSOI-induced spin
splitting of each mode. Courtesy of Ref. [Scheid et al., 2007b]

region A via B to C [see lower part of figure 9(b)], the
electron energy spectrum En(kx) split by RSOI is shifted
rigidly upward and downward by the adiabatic potential
barrier U(x). For fixed Fermi energy EF, the initial shift
causes a depopulation of the upper levels (N = 2) and
a spin-dependent repopulation of the lower one (N = 1)
while moving from B to C. If EF is traversing an anti-
crossing between successive modes (see the region indi-
cated by the dashed window in figure 9(b), there is a
certain probability P for electrons to change their spin
state. This causes an asymmetry between spin-up and
spin-down states for the repopulated levels (Eto Mikio
et al., 2005). The related transition probability can be
computed in a Landau-Zener framework. In the case of
a transverse parabolic confinement of frequency ω0, this
probability reads (Eto Mikio et al., 2005; Scheid et al.,
2007b):

P (±V0)=1− exp

{
−πkSOω0Σ−1

z

∂x[U(x, z)± V0g(x, z)]

}
. (42)

Here Σz denotes the difference in the polarisation of the
two modes involved, and the function g(x, z) describes
how the potential drops inside the system. In principle
g(x, z) is obtained by solving the Boltzmann equation,
however its exact form is irrelevant in order to understand
the working principle of the spin ratchet. The spin trans-
mission is proportional to P (V ) and thus different for the
two rocking situations V ≷ 0. Hence, the ratchet spin
current 〈IS(V )〉 is finite, also for the case of a symmetric
barrier. A quantitative explanation of the spin ratchet
effect for a system of multiple barriers [figure 9(a)] is be-
yond this model. An experimental verification of the spin

Fe Contacts Fe Contacts

Schottky    Gate

InAlAs

InGaAs
2DEG

x y

z

Vg

FIG. 10 (Colours online) The spin-field effect transistor pro-
posed by Datta and Das [Datta and Das, 1990].

ratchet effect was proposed in Ref. [Costache and Valen-
zuela, 2010]. However, in this experiment the breaking
of the spin symmetry was achieved by combining a su-
perconductor with a magnetic field.

2. Spin Pumping

Adiabatic charge pumping (Brouwer, 1998) consists of
the transport of charge obtained — at zero bias voltage
— through the periodic modulation of some parameters
in the scattering region, e.g. some voltages.

In 2003, Governale et al. [Governale et al., 2003] pro-
posed an updated of the scheme of charge pumping ex-
tended to the spin, following a suggestion by Mucciolo
et al. [Mucciolo et al., 2002]. The pumping scheme con-
sists of an electrostatic barrier that is changed periodi-
cally in time and a gate, as second pumping parameter,
to tune the strength of RSOI (Governale et al., 2003).
They showed that, neglecting sub-band hybridization,
the charge current is zero whereas the spin current is
finite. However, in a more realistic case in which many
modes are opened, and consequently coupled by RSOI,
the charge current is finite but two order of magnitude
smaller than the spin one. A prototypal spin pump-
ing system has been realised in a GaAs quantum dot in
Ref. [Watson et al., 2003], in which an ingenious method
for detecting spin currents is presented. Similar pump-
ing mechanisms have been proposed for graphene with
RSOI (Bercioux et al., 2012), and TIs (Citro et al., 2011;
Inhofer and Bercioux, 2013; Hofer and Büttiker, 2013;
Hofer et al., 2014).

B. Datta and Das spin Field Effect Transistor

The spin momentum locking due to the RSOI is one
of the key ingredients used in 1990 for the proposal of
a spin-FET by Datta and Das [Datta and Das, 1990].
It is believed that spin-FET has the advantages of low
energy consumption and fast switching speed since it
does not involve creating or eliminating the electrical
conducting channels during the switching, required by
traditional FETs. This spin-FET is the electronic analog
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of an electro-optic modulator. The electro-optical effect
makes the dielectric constant of a medium different along
the two perpendicular directions (e.g., y, z).

Let us assume to have photons with a polarisation at
45o with respect to the y axis (in the y–z plane) (Born
and Wolf, 1999). They can can be represented as a linear
combination of z- and y-polarised photons:(

1
1

)
45o

=

(
1
0

)
z

+

(
0
1

)
y

. (43)

Because of the anisotropy of the dielectric constant,
as the light passes through the electro-optic mate-
rial of length L, the two components acquire different
phase shifts k1L and k2L. Thus the light emerging
from the electro-optic material can be represented as(
eik1L, eik2L

)T. It is collected by an analyser polarised
along the 45o direction. Therefore the output power is
given by

P0 ∝
∣∣∣∣(1 1)

(
eik1L

eik2L

)∣∣∣∣2 = 4 cos2 (k1 − k2)L

2
. (44)

The light output is modulated with a gate voltage that
controls the differential phase shift ∆θ = (k1 − k2)L.

The analog electronic device based on the RSOI is
shown in figure 10. In the original proposal by Datta and
Das, the polariser and the analyser were suggested to be
implemented via ferromagnetic contacts (as Fe) (John-
son and Silsbee, 1988). In such materials the density of
states for electrons with a specific spin orientation — at
the Fermi energy — greatly exceeds that for the opposite
direction. A contact magnetised in the x direction prefer-
entially injects and detects electrons spin polarised along
positive x which is represented as a linear combination
of the positive z-polarised | ↑〉 and negative z-polarised
electrons |↓〉: (

1
1

)
x

=

(
1
0

)
z

+

(
0
1

)
z

(45)

Finally, the analogue of the electro-optic material is
realised by employing a 1D quantum wire with RSOI.
Within a single band model, RSOI causes the | ↑〉 and
|↓〉 electrons with the same energy to have different wave
vectors k↑ and k↓ [see figure 5(e)]. Let us consider an
electron travelling in the x direction with kz = 0 and
kx 6= 0. The eigenenergies for the corresponding 1D case
are given equation 9 with ky = 0.

Using equations (9)-(14), it is possible to recover a re-
lation for the phase shift between the two spins:

∆θ = (k↑ − k↓)L =
2mαL

~2
(46)

which is proportional to α.
The above analysis was originally limited to a single-

mode quantum wire. However, as we have learnt in the

FIG. 11 Schematic of the tight-binding model for the system.
In the shaded areas the spin-orbit interaction if finite tSO 6= 0.
Courtesy of Ref. [Mireles and Kirczenow, 2001].

Sec. III.B, in the presence of multiple modes, physics
changes.

A fully numerical multi-mode analysis of the spin-FET
was proposed by Mireles and Kirczenow (Mireles and
Kirczenow, 2001). They investigate the effect of the
strength of the RSOI on the spin-transport properties
of narrow quantum wires of width W . This is a quasi-
one-dimensional wire, i.e., assumed to be infinitely long
in the propagation direction (see figure 11).

The nearest-neighbour tight-binding Hamiltonian the
RSOI (5) takes the form

Htb
SO(y) = −tSO

∑
s,s′

∑
〈`,`′〉y

∑
〈j,j′〉x

(
c†`,m,s′ (isy)s,s′ c`′,m,s − c

†
`,j,s′ (isx)s,s′ c`′,j′,s

)
(47)

where the summation is intended over next-neighbours
〈. . .〉x,y, tSO = α

2 a is the isotropic next-neighbour transfer
RSOI hopping term (where a is the lattice constant), and
c†`,j,s the electron creation operator on the site (`, j) with
spin state s (s =↑, ↓).

The wire is divided in three main regions. In two of
these [I and III in figure 11], which are near the ferromag-
netic source and drain, the parameter tSO is set to zero.

In the middle region (II) the RSOI is finite (tSO 6= 0).

The spin-dependent transport problem is solved
numerically through the use of the spin-dependent
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Lippman-Schwinger equation4

|Ψ〉 = |Φ〉+G0(E)Ĥtb
SO|Ψ〉, (48)

where |Φ〉 is the unperturbed wave function, i.e. an
eigenstate of the kinetic lattice Hamiltonian H0 with-
out RSOI, and G0(E) = (E + iε −H0)−1 is the Green’s
functions for the system in the absence of any kind of
scattering.

A simple criterion for distinguishing the cases of weak
and strong RSOI is introduced in Ref. (Mireles and Kir-
czenow, 2001). The contribution of the mixing of the
spin sub-bands should be negligible as long the sub-bands
spacing ∆EW = E0

m − E0
n is much larger than the sub-

band intermixing energy

〈φn,s|HSOI|φm,s′〉
E0
m − E0

n

� 1 (49)

where |φn,s〉 are the unperturbed electron wavefunctions.
However, if the confinement energy and/or the RSOI are
of the same order as the energy shift introduced by the
sub-band mixing contribution, then the above condition
is about one or larger. In this case one can introduce

βSO ≈
(
πa
W

)2(
πa
W

)
+ akF

= βc
SO, (50)

where βSO = tSO

|t| , and kF is the Fermi wave number. The
critical value βc

SO defines a weak RSOI regime if βSO <
βc

SO and a strong coupling regime if βSO > βc
SO (Mireles

and Kirczenow, 2001).
In figure 12 the behaviour of the spin-resolved conduc-

tance as function of the RSOI parameter tSO is shown.
In figure 12(a) the incident Fermi energy is fixed to 0.5
(k ≈ 0.7a−1) and W = 6a = 60 nm, which gives a crit-
ical value βc

SO = 0.22. This value of βSO separates the
sinusoidal behaviour of G↑↓ for βSO ≤ 0.22 from its be-
haviour for βSO > 0.22 where the confinement energy is
of the order of the sub-band mixing energy. The effect is
clearer for a wider wire (W = 120 nm) [see figure 12(c)]
for which the critical value of βSO is 0.07. To show that
the non-sinusoidal behaviour is due mainly to the sub-
band mixing, in the figure 12(b) and 12(d) we report
the spin-conductance as function of tSO with the same
parameter of figure 12(a) and 12(c) respectively but in
the unphysical situation of αy 6= 0 and αx = 0, respec-
tively. It is evident that the sinusoidal behaviour is recov-
ered. The modification of spin-FET due to the inclusions
of many transversal modes has been also investigated in
Ref. [Jeong and Lee, 2006].

4 Nowadays a lot of numerical computation, also for systems
with RSOI, is performed via recursive Green’s function method;
among the free codes one of the most used is KWANT (Groth
et al., 2014).

FIG. 12 Spin-orbit coupling strength dependence of the bal-
listic spin conductance; solid line is G↑, dashed line G↓: (a)
Narrow wire of W = 6a and uniform RSOI (αx = αy =
2atSO). (b) Same as in (a) but with αx = 0 and αy = 2atSO;
perfect oscillations are seen for all tSO. (c) Same as in (a)
with W = 12a. (d) Modulation for W = 12a, with αx = 0
and αy = 2atSO. The sub-band mixing clearly changes the
otherwise perfectly sinusoidal spin-conductance modulation.
Courtesy of Ref. [Mireles and Kirczenow, 2001].

So far, several obstacles have been found on the way of
the realisation of the spin-FET (Datta and Das, 1990).
The main one is related to the injection of spin polarised
currents. For example, it has been shown that in dif-
fusive transport regime, for typical ferromagnets only a
current with a small polarisation can be injected into a
semiconductor 2DEG with long spin-flip length even if
the conductivity of semiconductor and ferromagnet are
equal (Schmidt et al., 2000). This situation is dramat-
ically exacerbated when ferromagnetic metals are used;
in this case the spin polarisation in the semiconductor is
negligible.

A possible solution to this problem was proposed by
employing dilute magnetic semiconductor (Ohno, 1998)
as source and drain contacts. In these systems a few
percent of the cations in the III-V or II-VI semiconduc-
tors compounds are randomly substituted by magnetic
ions, usually Mn, which have local magnetic moments.
The effective coupling between these local moments is
mediated by free carriers in the host semiconductor com-
pound (holes for p-doped materials and electrons for n-
doped one) and can lead to ferromagnetic long-range or-
der. Curie temperatures Tc close to 100 K have been
found in bulk (Ga,Mn)As systems (Ohno, 1998).



17

(a) (b)

FIG. 13 (Colours online) (a) Gate voltage modulation of spin
FETs having different channel lengths, with T = 1.8 K and I
= 1 mA. The symbols indicate experimental data. The solid
lines are the fits obtained from V = A cos(2m∗αL~−1 + ϕ).
Data are offset for clarity. Baseline voltages are 1.032 mV
and 0.715 mV for L = 1.25 µm and 1.65 µm, respectively; (b)
Temperature dependence of oscillatory conductance with L =
1.25 µm and I = 1 mA. As temperature increases, the mean
free path decreases and transport characteristics change from
ballistic to diffusive. Courtesy of Ref. [Koo et al., 2009].

Using the properties of the dilute magnetic semicon-
ductor, all-semiconductor spin-FET have been proposed
in which the conducting channel is provided by a two-
dimensional hole gas (Pala et al., 2004).

The first experimental realisation of the spin-FET has
been done in 2009 by the Johnson’s group (Koo et al.,
2009). Instead of using the configuration initially sug-
gested by Datta and Das (Datta and Das, 1990), in this
experiment a nonlocal measurement scheme has been
used (Johnson and Silsbee, 1988; Jedema et al., 2001,
2002; Lou et al., 2007). This allows to perform a bet-
ter measurement of the charge and spin signals. The
quantum wire was realised in a InAs heterostructure
with strong RSOI with the ferromagnetic contacts re-
alised with Ni81Fe19 permalloy on the top. Figure 13(a)
shows the oscillation of the output voltage of the spin-
FET as a function of the gate voltage that is changing
the strength of the RSOI for two different length of the
distance between the two ferromagnetic contacts. As re-
ported in equation (46) the phase shift between the two
spin channels is proportional to the distance between the
two ferromagnets. Therefore, for the longer case (red-
solid data) we observe a shift of the length on the half
period of oscillations. Figure 13(b) shows the oscillation
for a fixed distance between the ferromagnetic contacts
but at different temperatures. We observe a signature
of coherent oscillations up to 40 K. At higher tempera-
tures inelastic scattering become more pronounced and
coherent effects are washed out (Koo et al., 2009). An-
other experimental realization was also lately reported in
Ref. [Chuang et al., 2014].

V. INTERFERENCE EFFECTS AND BERRY PHASE

A. Rashba interaction as SU(2) gauge field: application to
quantum networks

In this section we explore RSOI as a SU(2) non-Abelian
gauge field. We start by recasting the RSOI in the Hamil-
tonian (8) as a SU(2) vector potential:

H0 =
1

2m

[
p+

m∗α
~

(z × s)
]2

−
(
m∗α
~

)2

=
1

2m∗
(p+As)

2 −
(
m∗α
~

)2

(51)

comparing the two lines of (51) we recognise As =
m∗α
~ (z × s). In this form the Rashba Hamiltonian re-

sembles that of a particle in a magnetic field, thus al-
lowing for a straightforward connection with the physics
of the AB effect (Aharonov and Bohm, 1959). In the
case of a SU(2) vector potential, it is known as AC ef-
fect (Aharonov and Casher, 1984). In analogy to AB
effect, we can introduce a phase field that reads:

ψAC ≡
2π

φ0

∮
As · dr = 2π

φSOI

φ0
, (52)

where φSOI is the flux associated to the RSOI effective
field and φ0 = hc

e the flux quantum. When travelling
through a closed path an electron gains a non-Abelian
phase due to the presence of the RSOI. This extra phase
can give rise to interference phenomena. By contrast
to the phase gained in a perpendicular magnetic field
— that depends only on the area enclosed by the par-
ticle path— here the actual path covered by the elec-
tron plays an important role. In the standard AB set-up
the magnetic field can be tuned in order to move from a
full destructive to a full constructive interference. In the
case of AC the role of the magnetic field is played by the
RSOI that can be modulated modifying α, i.e. by gating
the heterostructure. The AC effect has been observed in
semiconductor heterostructure (Bergsten et al., 2006), in
HgTe rings (König et al., 2006) and TI interferometric
structures (Qu et al., 2011) (c.f. figure 4). The inter-
play between the AB and the AC effect, and the mutual
effect of an Abelin and non-Abelin gauge field has been
investigated in Ref. [Nagasawa et al., 2012, 2013].

In order to understand the fundamental difference be-
tween the AB and the AC effect, we propose here a very
simple gedankenexperiment for a square interferometer.
Let Rpq be the phase gained by the wave function Ψ(r)
— travelling from a point p to a point q. It reads

RSU(2)
pq = exp

{
−i
∫ q

p

s · (z × dl)kSO)

}
(53a)

RU(1)
pq = exp

{
−i2π
φ0

∫ q

p

A · dl
}

(53b)
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FIG. 14 (Colours online) (a): Scheme of the interferometer
for addressing the difference between an Abelian and a non-
Abelian phase. (b): Normalised transmission probability T ∝
Tr[ΓΓ†] for the interferometer in the left panel in the case of
the action of a SU(2) gauge field (53a).

depending on whether we are considering a U(1) or SU(2)
gauge field, where A is the vector potential associated to
a magnetic field B. We now consider the closed path in
figure 14(a) and explicitly consider the phases gained by
the electron travelling along each of its arm. The four
arms of the interferometer have the same length `pq = L
(pq ∈ {AB,AC,BD,CD}), the angle at its base is θ, and
its area is S. In order to obtain destructive interference
the sum of the phases gained along consecutive arms has
to be zero:

Γ = RβBD · R
β
AB +RβCD · R

β
AC = 0 (54)

with β ∈ {SU(2),U(1)}.
By using the Gauss’ theorem and defining the mag-

netic field flux as φ = |B|S = (∇×A)S, we obtain that
in the case of a U(1) phase the destructive interference is
verified when the condition φ

φ0
= 1

2 is met for every the
value of the angle θ. Here, the condition for the destruc-
tive interference is straightforward because the phases
(53b) are c-numbers.

In the case of the non-Abelian phase field the phases
(53a) are linear combination of Pauli matrices. There-
fore a solution for the condition (54) is obtained by look-
ing at the transmission probability — proportional (to
lowest order) to Tr[ΓΓ†]. This quantity is shown in the
figure 14(b), we can see that the condition of zero trans-
mission probability is obtained if θ = π

2 and kSOL = π
2 .

To summarise, while in the case of a U(1) gauge field we
can obtain destructive interference for each geometrical
realisation of the interferometer [see figure 14(a)], in the
SU(2) case a specific geometric arrangement of the loop
is required.

These effects can have interesting implications in the
transport properties of nontrivial quantum networks. In
the following, we shall focus on a very special type of lat-
tice structure: the T3 lattice [c.f. figure 15(b)], whose unit
cell contains three inequivalent sites (Sutherland, 1986).
Its spectrum is composed of two dispersive bands that are
equivalent to the one of the honeycomb lattice and a flat
band at zero energy that is due to the presence of lattice
sites with uneven coordination number (Bercioux et al.,

x

y

(b)

H
A

B
(a)

ℓ0
1v

2v

AB H

(c) (d)

B, E

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8
0 0.2 0.4 0.6 0.8 1

⟨G
⟩ k

 (e
2 h-1

)

!/!0

kSOL π-1

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

⟨G
⟩ k

 (
e2
h-
1 )

!/!0

kSOL π-1

FIG. 15 (Colours online) (a) Sketch of diamond chain, this is
the one-dimensional version of the T3 lattice. (b): Sketch of
the T3 lattice, it is a Bravais lattice with a unit cell containing
three inequivalent sites: A, B and H, the latter has coordi-
nation number higher that the other two (Sutherland, 1986).
(c): averaged conductance for the diamond chain as a func-
tion of the magnetic flux ratio (lower x-axis, blue solid-line)
and as a function of the dimensionless RSOI (upper x-axis,
red-dashed line) (Courtesy of Ref. [Bercioux et al., 2005b]).
(d): averaged conductance normalised to the number of leads
for the T3 lattice as a function of the magnetic flux ratio
(lower x-axis, blue solid-line) and as a function of the dimen-
sionless RSOI (upper x-axis, red-dashed line) (Courtesy of
Ref. [Bercioux et al., 2005b]). In (c) and (d) B and E are the
applied magnetic field and the electric field, respectively.

2009, 2011). In the presence of a perpendicular magnetic
field — when the ratio φ

φ0
= 1

2 — the spectrum reduces
to three flat bands (Vidal et al., 1998). This localisa-
tion effect is a consequence of the AB effect taking place
within each of the plaquette contained in the T3 lattice
[in yellow in figure 15(b)]. The same effect is observed in
its quasi-1D analog, the diamond chain [c.f. figure 15(a)]
for the φ

φ0
= 1

2 (Vidal et al., 2000a).
Can the same physics be driven also by the RSOI? The

question has been addressed by one of the authors using
the method of quantum networks (Naud et al., 2001).
Full localisation due RSOI is possible only in the dia-
mond chain (Bercioux et al., 2004) [figure 15(c)] and is
forbidden, for the arguments illustrated above, in the case
of the T3 lattice (Bercioux et al., 2005b) — figure 15(d).
In figure 15(c) and 15(d) we show the conductance of
the diamond lattice and the T3 lattice, respectively, as
a function of the magnetic flux and RSOI. We observe
that in the case of the diamond chain 15(c), both effects
induce a complete localisation equivalent to zero conduc-
tance. However, in the case of the T3 lattice 15(d), only
the magnetic field can induce (almost) complete locali-
sation. The residual conductance comes from the con-
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ducting state along the lattice boundary due to the Hall
effect. However it can be reduced to zero by injecting
electrons through the centre of the lattice (Vidal et al.,
2000b). Signatures of this AB caging effect have been
observed also experimentally (Naud et al., 2001; Abilio
et al., 1999). The diamond chain lattice model with RSOI
and AB field has been also proposed as a system for pro-
ducing a spin filter (Hatano et al., 2007; Aharony et al.,
2008, 2011; Matityahu et al., 2013a,b).

B. Interference in quantum rings

Mesoscopic quantum rings allow to have direct access
to the phase of the electron wavefunction, when their
size is smaller than the coherence length. Interference
effects have been observed in metal quantum rings many
years ago (Washburn and Webb, 1992). Since electrons
are spinful particles, the spin part of the wavefunction is
influenced by the magnetic field via the Zeeman term in
the Hamiltonian. A more subtle effect arises when there
is a magnetic field non-orthogonal to the plane of the or-
biting particle (e.g. the effective magnetic field due to
the RSOI) because, as a consequence of the orbital mo-
tion, its spin dynamics is instantaneously governed by a
time-dependent Hamiltonian (Anandan, 2002; Saarikoski
et al., 2014). This time dependence ends up in an ex-
tra phase acquired by the particle wavefunction which
is named after Berry [Berry, 1984 and Aharonov and
Anandan, 1987], who put in foreground its topological
properties when the orbits are closed.

During the last years, the effects of RSOI on the AB
oscillations have been observed in semiconductor based
quantum rings by several groups (Yau et al., 2002; Nitta
et al., 2003; Meijer et al., 2004; Morpurgo et al., 1998).
As said before, in the presence of both orthogonal mag-
netic field and RSOI, the total effective momentum de-
pendent magnetic field is tilted with respect to the ver-
tical direction. The resulting Berry phase influences the
interference pattern.

In Refs. [Capozza et al., 2005 and Lucignano et al.,
2007] one of the authors studied the conductance and the
spin transport in a quantum ring in the presence of RSOI
and magnetic field, accounting also for dephasing at the
contacts. The AB resonance in the Fourier transform of
the magneto-conductance displays satellite peaks due to
the RSOI (see figure 16) that have been experimentally
observed (Habib et al., 2007). During the last years, sev-
eral theoretical techniques have been employed to study
quantum rings. In Refs. [Loss et al., 1990 and Engel and
Loss, 2000], an imaginary time path integral approach is
developed to study the conductance of a strictly 1D quan-
tum ring, and its conductance fluctuations in the diffusive
limit. In Ref. [Tserkovnyak and Brataas, 2007] a real time
path integral approach is applied in the limit of negligible
Zeeman splitting. Several research articles discussed the

conductance properties and the spin dependent transport
of quantum rings in the 1D ballistic limit, by means of
a spin dependent scattering matrix approach (Frustaglia
and Richter, 2004; Bercioux et al., 2005a; Molnár et al.,
2004; Citro et al., 2006; Ramaglia et al., 2006). In the ab-
sence of the magnetic flux, the conductance shows quasi-
periodic oscillations in the RSOI strength, which can be
modified by switching the magnetic field on. Numerical
calculations (Frustaglia and Richter, 2004; Souma and
Nikolić, 2004; Wu and Cao, 2006) have shown that in the
2D case there are only quantitative modifications of the
1D results that do not qualitatively affect the physics.
Thus, in the following, we will just focus on the 1D limit.

The model Hamiltonian, describing a half integer
spin particle, in an orthogonal magnetic field and with
RSOI (Meijer et al., 2002), reads

H[p, r,S] =
1

2m

(
p+

e

c
A0

)2

− ωc Sz +HRSOI (55)

HRSOI =
2α

~2

[
z×
(
p+

e

c
A0

)]
·S ,

where A0(r) = B
2 (−y, x, 0) is the vector potential gener-

ating the uniform field B, normal to the ring surface, and
ωc = g∗eB

2mc is the cyclotron frequency. We fix the vector
potential in the symmetric gauge. We present, here, fully
general results as they depend on the ratio α

~ωcR
which

can be tuned by acting on α. We assume a single channel
ring as a 1D circle of radius R, connected to two leads.
Accordingly, the position of the particle on the ring is
parametrised by the angle ϕ. The vector potential has
just the azimuthal component Aϕ = φ

2πR , where φ is the
magnetic flux threading the ring.

FIG. 16 (Colours online) a): Sketch of a quantum ring. The
magnetic field B drives the AB effect, while the electric field
can tune the RSOI. b) Fourier transform of the magneto con-
ductance. By increasing ROI two satellite peaks rise close to
the AB peak. They can be attributed to the Berry phase
acquired by the electron during its motion. Courtesy of
Ref. [Capozza et al., 2005].
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In order to study the conduction properties of the ring,
we need the propagation amplitude for an electron at
energy E0 entering the ring with spin polarisation s0 and
leaving it with spin polarisation sf . This is given by

A(sf ; s0|E0) =

∫ ∞
0

dtf
τ0

ei
E0tf

~ 〈rf , sf , tf |r0, s0, t0〉 , (56)

where 〈rf , sf , tf |r0, s0, t0〉 is the amplitude for a parti-
cle entering the ring at the point r0 and at the time t0
with spin polarisation s0 to exit at the point rf at the
time tf with spin polarisation sf . Here, τ0 = mR2

2~ is the
time scale for the quantum motion. In order to compute
〈rf , sf , tf |r0, s0, t0〉, we adopt a path integral represen-
tation for the orbital part of the amplitude. Since we
parametrise the orbital motion of the particle in terms
of the angle ϕ, we provide the appropriate Lagrangian,
Lorb, as a function of ϕ, ϕ̇. It reads

Lorb[ϕ(t), ϕ̇(t),σ] =
m

2
R2ϕ̇2(t)− φ

φ0
~ϕ̇(t)

+
α2 m

2~2
+

~2

8mR2
. (57)

The last two contributions in equation (57) are constants
that come from the RSOI term, and the Arthurs term,
which is required when a path integration is performed
in cylindrical coordinates. Since both contributions are
constant, they can be lumped into the incoming energy
E0 ∼ EF and therefore they will be omitted henceforth.

By taking into account the spin degree of freedom, as
well, we represent the propagation amplitude as

〈rf , sf , tf |r0, s0, t0〉 = 〈rf , sf |e−i
∫ tf
t0

dtH|r0, s0, t0〉

=

∫ ϕ(tf )=ϕf

ϕ(t0)=ϕ0

Dϕ e−i
∫ tf
0 dt [τ0ϕ̇2−qϕ̇] 〈sf |Uspin(tf , t0)|s0〉 ,

(58)

where q = φ
φ0
.

Uspin(tf , t0) = T exp

[
− i
~

∫ tf

t0

dτ Hspin(τ)

]
. (59)

is the full spin propagator, T is the time ordering oper-
ator, and Hspin(t) is the spin Hamiltonian that reads

Hspin(t) =
~
2

(
ωc 2γϕ̇e−iϕ(t)

2γϕ̇eiϕ(t) −ωc

)
, (60)

with γ = 2ατ0
~R .

For a ring device, at each lead one has to take into
account three possible scattering processes, consistently
with the conservation of the total current. This is de-
scribed in terms of a unitary S−matrix that, when the
two arms are symmetric, is given by

S =


− 1

2 (1 + r) 1
2 (1− r)

√
1
2 (1− r2)

1
2 (1− r) − 1

2 (1 + r)
√

1
2 (1− r2)√

1
2 (1− r2)

√
1
2 (1− r2) r

 . (61)

The numerical labelling of the S-matrix elements refer-
ring to the three terminals of each contact fork, are ex-
plained in figure 17(1a). Assuming, for simplicity, that
the scattering matrix is the same for both leads, equa-
tion (61) will hold both at the left-hand lead, and at the
right-hand lead of the ring.

1a

2a

2b

3

1

2

1’

2’

3’

FIG. 17 (Colours online) First and second order paths in-
cluded in the calculation of the transmission amplitude across
the ring, from left to right, including forward scattering only.
Numbers 1, 2, 3(1′, 2′, 3′) in figure 17a refer to the labelling of
the terminals in Eq.(61). Courtesy of Ref. [Lucignano et al.,
2007].

In particular, S3,3 = r is the reflection amplitude for
a wave coming from the left lead, S1(2),1(2) = − 1

2 (1 + r)
the reflection amplitude for a wave incoming from the up-
per/lower arm, S1(2),2(1) = 1

2 (1 − r) is the transmission
amplitude from the upper (lower) to the lower (upper)

arm and S1(2),3 = S3,1(2) =
√

1
2 (1− r2) is the transmis-

sion amplitude from the upper/lower arm to outside of
the ring. As the ring is assumed to be symmetric, the
same scattering matrix applies to the right lead where
we indicate with primed numbers the three terminals as
shown in figure 17. In figure 17 we show the simplest
paths of the electrons in the ring including only forward
scattering at the contacts. More involuted paths arise if
we account also for backscattering processes in which the
electron can get backscattered within the same ring’s arm
from which it is coming. For instance, the paths (2f) and
(2h), as well as (2g) and (2i) in figure 18, include looping
in opposite directions around the ring. Interference be-
tween clockwise and counterclockwise windings leads to
WL corrections. We denote these corresponding paths
— including also (2c) and (2d) — as “reversed paths”. In
our approach, all order paths are numerically generated
up to the convergency and the S−matrix (61) is imple-
mented in the numerical algorithm. Within Landauer’s
approach, the conductance G is given by

G =
e2

~
∑
s,s′

|A(s; s′|EF)|2 . (62)

Here we will consider the dependence on the external
magnetic field φ

φ0
and on the RSOI strength kSOR both

in the absence and in the presence of dephasing at the
contacts. To make the model more realistic, we allow for
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2f 2g

2i2h

2c 2d

FIG. 18 Second order paths of the transmission amplitude
from left to right including backscattering at the leads. Paths
(2f) and (2h), as well as (2g) and (2i) contribute to the weak
localization corrections. Courtesy of Ref. [Lucignano et al.,
2007].

higher order looping of the electron within the ring. In
Ref. [Capozza et al., 2005], only the paths of the kind
of figures 17(2a) and 17(2b) were included. Following
Ref. [Lucignano et al., 2007] we consider here also the
paths of the kind of figure 18 in which the electron can
be backscattered into the ring. We use here r = 0 in
the scattering matrix between the arms and the leads,
which means that no back-reflection in the incoming lead
is present.

The dephasing due to diffusiveness in the contacts is
accounted by adding a random phase z ∈ (−ζ, ζ) for
each scattering at the leads. In figure 19, we report the
conductance G as a function of φ

φ0
, with kSOR = 0 (left

column) or as a function of kSOR with φ
φ0

= 0 (right
column). These are averaged over N = 1000 realisations
of dephasing, and plotted for increasing window of phase
randomness (ζ = π/3, π, 2π from top to bottom). The
black curves refer to ideal contacts (including only the
paths of figure 17) while the red curves refer to realistic
contacts (including also the paths of figure 18).

The ring is rather insensitive to small dephasing at the
contacts however, by increasing the amount of dephasing
(middle and bottom left panels in figure 19) we find that
the sensitiveness is larger in the case of realistic contacts.
This is due to the fact that for realistic coupling, the
electrons in the ring can experience higher order paths,
since it scatters with the leads many times.

In the right panel of figure 19, we plot the dc-
conductance as a function of kSOR at φ = 0 for both ideal
contacts and realistic contacts (black and red lines in
each box), with an increasing phase randomisation (boxes

FIG. 19 (Colours online)Conductance as a function of φ/φ0

(left panels) and kSOR (right panels) for ideal (black curves)
and realistic (red curves) contacts. An increasing amount
of dephasing at the contacts is also included: from top to
bottom: ζ = π/3, π, 2π. Courtesy of Ref. [Lucignano et al.,
2007].

from top to bottom with ζ = π
3 , π, 2π), averaged over

N = 1000 disorder realisations. In the case of ideal con-
tacts and little dephasing (top right panel black curve),
we observe again quasi periodic oscillation of the con-
ductance reproducing, the localisation conditions at the
expected values of kSOR (Frustaglia and Richter, 2004;
Bercioux et al., 2005a; Capozza et al., 2005; Lucignano
et al., 2007; Molnár et al., 2004). When including higher
order processes, interference effects give rise to a slightly
different pattern. In the case of realistic contacts, we note
that the conductance of the ring is seriously affected by
dephasing. Indeed, large dephasing gives rise to random
oscillations that are not averaged out — thus washing out
the conductance oscillations. The effect takes place for
ζ ∼ π when time reversed paths are included, in contrast
to ζ ∼ 2π when the time reversed paths are absent. As
regular magneto-conductance oscillations are experimen-
tally observed (Yau et al., 2002; Nitta et al., 2003; Meijer
et al., 2004; Morpurgo et al., 1998) with little percentage
of contrast between maxima and minima, we conclude
that, in real samples, dephasing is ubiquitous.

VI. RELATED PROBLEMS

A. Spin-Hall effect

The SHE is a phenomenon, associated to SOI — it can
be used to electrically generate or detect spin currents
in non-magnetic systems. This effect has been observed
both in metallic and semiconductor systems (for a review
see Ref. [Jungwirth et al., 2012 and Vignale, 2010]). In
this review, we will mainly focus on semiconductors, in
which RSOI plays a major role. The SHE predicts that
an unpolarised electric current can generate a transverse
spin current, whose spin is perpendicular to the plane
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of the two currents. It was predicted in two pioneering
articles by Dyakonov and Perel in 1971 [D’yakonov and
Perel, 1971a,b]. It is a consequence of the Mott scatter-
ing of electrons on unpolarised impurities, which results
in spatial separation of electrons with opposite spins. It is
closely related to the anomalous Hall effect — Hall effect
in ferromagnetic materials — originally observed by Hall
himself [Hall, 1881] and later explained by Karplus and
Luttinger [Karplus and Luttinger, 1954] and Nozieres and
Lewiner [Nozieres and Lewiner, 1973]. It does not require
magnetic field nor magnetism, in other words it does not
require broken time reversal symmetry (for a review see
[Nagaosa et al., 2010]). The SHE was hardly investigated
till Hirsch [Hirsch, 1999] and Zhang [Zhang, 2000] pro-
posed such phenomenon to the attention of the spintron-
ics community. Three main mechanisms have been pro-
posed to contribute to the SHE: namely the spin depen-
dent band structure of the material (the so called intrin-
sic mechanism) and the impurity scattering mechanisms,
i.e. the “skew scattering" and the “side jump", conven-
tionally addressed as extrinsic mechanisms. The extrinsic
mechanisms are the same responsible of the anomalous
Hall effect (Nagaosa et al., 2010): the skew scattering
originates from the different scattering angle due to a
spin-orbit impurity, depending on the electron spin and
angular momentum; while the side jump reflects the shift
in the trajectory of the backscattered electrons originat-
ing from the anomalous velocity operator in SOI systems
(Crépieux and Bruno, 2001). The intrinsic mechanism
was proposed by Murakami et al. [Murakami et al., 2003]
and by Sinova et al. [Sinova et al., 2004], it resorts on
the DSOI and RSOI in 2D III-V GaAs quantum wells.
This mechanism does not explicitly depend on impurities,
however these cannot be neglected as they are absolutely
essential to the establishment of the steady state current.
In principle, the spin Hall current can be calculated using
the Kubo formula. However, inclusion of vertex correc-
tions due to impurities, in the linear SOI model leads to a
vanishing spin Hall conductivity (Raimondi and Schwab,
2005; Dimitrova, 2005) in striking contrast to earlier cal-
culations not including vertex corrections (Sinova et al.,
2004). More complicated models (explicitly carried out
for transition metals) (Tanaka et al., 2008) overtake this
problem, giving rise to a finite spin Hall conductivity in
reasonable agreement with the experiments. Some pro-
posals require the presence of a magnetic field to give
rise to a finite spin Hall current even in the presence
of linear SOI and disorder (Lucignano et al., 2008; En-
gel et al., 2007; Lin et al., 2006; Milletarí et al., 2008;
Raimondi et al., 2006; Gorini et al., 2008). Among the
first successful experiments we here highlight the work
by Wunderlich et al. [Wunderlich et al., 2005c] that used
coplanar p-n diodes to detect circularly polarised electro-
luminescence at opposite edges of the spin Hall bar, and
the work by Kato et al. [Kato et al., 2004] that employed
a magneto-optical Kerr microscope to scan the spin po-

larisation across the Hall bar. The former ascribed their
finding to the intrinsic mechanism whereas the latter to
the extrinsic one. Since that time several interesting ex-
periments performing optical measurements for the spin
detection in the intrinsic and extrinsic SHE have been
performed (Matsuzaka et al., 2009; Nomura et al., 2005;
Sih et al., 2005b, 2006b; Stern et al., 2006, 2007, 2008;
Zhao et al., 2006; Okamoto et al., 2014). A detailed de-
scription of this physics is out of the purpose of this re-
views and we refer the readers to more specific review ar-
ticles on the SHE for more information (Jungwirth et al.,
2012; Vignale, 2010).

B. Diffusive limit: weak anti-localization

In the previous sections we have mainly described the
physics of ballistic mesoscopic systems, i.e. solid state de-
vices in which the lateral size of the sample L is smaller
than the coherence length Lφ and of the elastic mean free
path `e. In this regime, impurity scattering can be safely
disregarded, and the ballistic motion of electrons well
describes the physical scenario. However, in the meso-
scopic limit, it may happen that the lateral size of the
sample L, while being still smaller (or of the order of)
than the coherent length of the material L < Lφ, it is
larger than the elastic mean free path: L > `e. Impurity
scattering cannot be neglected and the electrons scatter
in the sample undergoing a quantum diffusive dynamics.
In a 2DEG at low temperature, quantum corrections to
the conductance are mostly due to interference effects
between two electrons scattered by the same impurity.
These propagate along the same closed trajectory but in
opposite directions — usually known as Cooperon correc-
tion. This process has its more spectacular manifestation
in the so called WL (see Ref. [Akkermans and Montam-
baux, 2007; Altshuler et al., 1980; and Kramer, B. and
MacKinnon, A., 1993]): it increases the effective scat-
tering cross-section and therefore leads to a suppression
of the conductivity. In the presence of a magnetic field
B perpendicular to the electron plane, the two waves
acquire a phase difference ∆ϕ = 2φBφ0

, where φB is the
magnetic flux through the area enclosed by the electron
trajectory, therefore quantum interference effects are sup-
pressed and the conductance increases to the classical
limit. Such a modification in conductivity, as a function
of the magnetic field, is known as positive magneto con-
ductivity (sometimes called negative magnetoresistance).
This quantum correction to the resistivity can be explic-
itly calculated evaluating the Cooperon diagram. For a
2DEG in perpendicular magnetic field

∆σ(B) ∝
∫ ∞

0

dt Zc(t, B)
[
e−

t
τφ − e−

t
τe

]
, (63)

where Zc(t) = φB
φ0

sinh−1
(

4πDtB
φ0

)
, where τφ and τe are

phase coherence time and electron relaxation timeand D
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is the 2D diffusion coefficient, respectively. In the limit
of very weak magnetic field (B � φ0

8πL2
φ
) the magnetore-

sistance results to be:

∆R(B) ∝ −∆σ(B)

σ2
0

, (64)

thus negative, and the resistivity correction can be shown
to be

∆σ(B)−∆σ(0) ∝
(
B

Bφ

)2

, (65)

where Bφ = φ0

8πL2
φ
is a characteristic magnetic field corre-

sponding to a flux quantum through an area of the order
of πL2

φ. Measuring the negative magneto-resistance by
applying a weak magnetic field is a very elegant way to
probe weak localization correction to the conductance.

In the presence of SOI the WL correction changes its
sign and the magnetoresistance results to be positive. In-
deed, Cooperon correction is multiplied by a factor

〈QSOI(t)〉 =
1

2

[
3e−

t
τSOI − 1

]
,

where τSOI sets the time scale of the SOI. For strong
SOI, the exponential factor can be neglected at any time
t, thus the factor 〈QSOI〉 changes its sign and tends to
− 1

2 . It results in a change of the sign of conventional
weak localization correction. This phenomenon, theo-
rised in Ref. (Hikami et al., 1980), is called WAL. It was
first observed in metal films in the presence of spin-orbit
impurities (Bergman, 1984, 1982) and has been inten-
sively studied in the recent past, both in 2DEGs (Miller
et al., 2003; Knap et al., 1996; Koga et al., 2002) and in
large quantum dots (Zumbühl et al., 2002; Aleiner and
Fal’ko, 2001) made out of III-V semiconductors in the
presence of RSOI [c.f. for instance figure 1(b)]. Recently,
weak WAL measurements have been used to quantify the
RSOI strength in oxide interfaces (Caviglia et al., 2010)
and TIs (Bardarson and Moore, 2013).

C. Quantum wires with RSOI, superconductivity and
magnetic field: The quest for Majorana Fermions

In his seminal article on the symmetric theory of elec-
tron and positron (Majorana, 1937), Ettore Majorana
predicted the existence of selfadjoint fermions, i.e. half
integer spin particles being their own antiparticle, as real
solutions of Dirac equation. Since the first Majorana’s
prediction, the quest for Majorana Fermions (MFs) as
elementary particles, in the high energy physics, is still
open. Experiments on the neutrinoless double beta de-
cay should unveil whether neutrinos are MFs or not, but
to the date there is no answer to this question.

On the contrary, electrons in solid, under particular
circumstances could recombine with holes — their rela-
tive anti-particles in the solid state language — in order
to form self-adjoint excitations, i.e. Majorana quasipar-
ticles.

Thus MFs (Kitaev, 2001, 2006) can appear as quasi-
particle excitations in solid state systems. For instance,
they are expected to show up as boundary states of the
Kitaev model: a toy-model Hamiltonian describing 1D
spineless p-wave superconductors.

Despite the fact that “solid state” MFs are not elemen-
tary particles, there is strong excitement in the condensed
matter community, and many efforts are being devoted
to their theoretical and experimental understanding. Of
course, finding a novel elementary excitation in solids
would have a fundamental significance on its own, how-
ever, in the case of MF there is strong interest also for
its possible applications. Indeed MFs, due to their non-
Abelian statistics (Read and Green, 2000; Ivanov, 2001;
Stern et al., 2004; Alicea et al., 2011) can be considered
as building blocks for topological quantum computation
and for other alternative decoherence free quantum com-
putational schemes (Nayak et al., 2008).

Several mechanisms and devices have been proposed
to isolate and detect MFs in meso/nano scaled devices
(c.f. Refs. [Alicea, 2012 and Beenakker, 2013] for ex-
haustive reviews on the topic). However, to the date,
while many efforts are focused on hybrid TI supercon-
ductor heterostructures (Veldhorst et al., 2012; Galletti
et al., 2014a,b), (one of) the most promising device re-
sorts on the use of III-V semiconducting nanowires with
strong RSOI, in the proximity with conventional super-
conductors and in the presence of a magnetic field along
the wire. This mechanism, early proposed in Refs. (Oreg
et al., 2010; Lutchyn et al., 2010) has been later experi-
mentally explored in Refs. [Das et al., 2012; Mourik et al.,
2012; and Churchill et al., 2013]. While strong hints of
MF physics have been highlighted in Ref. [Mourik et al.,
2012], other recent articles [Churchill et al., 2013; Lin-
der et al., 2010; Lee et al., 2012; Liu et al., 2012; Kells
et al., 2012; and Sun and Shah, 2015] offer alternative in-
terpretation of the observed zero bias anomaly in terms
of Kondo physics. Therefore an unambiguous “smoking-
gun” experimental proof of the presence of MFs still has
to come.

In the following, we will describe the theoretical back-
ground supporting the physics of MFs in quasi-1D nano
wires with RSOI, magnetic field and proximity induced
superconductivity. After that, we briefly review a recent
experimental result.

For sake of simplicity we assume a single active chan-
nel in the nanowire and set ~ = 1. The nanowire is along
the x direction, therefore the transverse dynamics, along
y direction, can be neglected. The Hamiltonian (15) de-
scribing the wire can be simplified as follows:
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HMF =
∑
σσ′

∫∞
−∞ ψ†σ(x)

(
p2x

2m∗ − αsypx + gµBBsx − µ
)
ψσ′(x) +

(
∆ψ†↑(x)ψ†↓(x) + h.c.

)
dx (66)

where we have also added a Zeeman term due to the
magnetic field B along the wire axis and the supercon-
ducting pairing potential ∆. The operator ψ†σ(x) creates
an electron of spin σ at the position x. One can notice
that the Hamiltonian (66) is not that of a 1D spineless
p-wave superconductor, indeed we can easily recognise
a local s-wave superconducting pairing and spinful elec-
trons. However, by analysing the action of the various
interaction terms in (66), we can show how to obtain
an optimal choice of the parameter regime that would
map (66) into the effective Hamiltonian of a 1D spinless
p-wave superconductor.

We choose Ψ(x) = [u↑(x), u↓(x), v↓(x),−v↑(x)] as a
Nambu spinor — where u/v are quasi electron/hole wave
functions of momentum k (De Gennes, 1999). Thus the
Bogolubov–de Gennes (BdG) Hamiltonian (66) in the
Ψ(x) basis, can be recast in the simple matrix form:

HBdG(k) =

(
k2

2m∗
+ iαksy − µ

)
τz + Ezsx + ∆τx (67)

where the τi Pauli matrices act in the Nambu space,
while si act in the spin space and we have introduced
the Zeeman energy Ez. In the absence of magnetic field
and superconductivity, the conventional spin-degenerate
parabolic band dispersion splits because of RSOI, into
two parabolas crossing at k = 0 [c.f. figure 5(e)]. The
Zeeman coupling, splits the two bands at k = 0 giving
rise to the two bands E+(k) and E−(k) in figure 20(a).
If the Fermi energy lies between the two bands, and the
temperature is low enough that the higher band cannot
be thermally populated, the system is effectively a 1D
spinless system. The spin degree-of-freedom has been
effectively quenched by the simultaneous action of the
RSOI and Zeeman splitting. Only a single pseudo spin
degree-of-freedom “−" is involved here. In addition we
have the s-wave superconducting pairing. Projecting the
full Hamiltonian onto the E−(k) band we can write down
an effective Hamiltonian

HP =
∑
k

(
E−(k)c†kck + ∆−(k)c†kc

†
k + h.c.

)
(68)

where ∆−(k) = iαkx∆(α2k2
x + E2

z )−1/2 is an effective
superconducting pairing with the desired p-wave symme-
try. Thus, the present problem is isomorphic to the Ma-
jorana wire considered by Kitaev [Kitaev, 2001]. That
guarantees the presence of MFs as boundary excitations.
However in the spirit of a review article, here we will not
provide an explicit proof of the presence of MFs as bound-
ary excitations of the wire, as it can be inferred by the
isomorphism to Kitaev model and can also be found in
Refs. [Oreg et al., 2010 and Lutchyn et al., 2010] but we

will provide the reader with simple symmetry arguments
to qualitatively justify this result.

k

E

µ/∆

E z/∆

Trivial

Topological

E-(k)

E+(k)

µ

(a) (b)

FIG. 20 (Colours online) (a) Free electrons band splitter by
the simultaneous application of RSOI and Zeeman splitting.
(b) Phase diagram of the model Hamiltonian (67).

Let us start by commenting on the spectrum. By
squaring twice Hamiltonian (67) we obtain the disper-
sion relation for the two bands

E2
±(k,∆) =E2

z + ∆2 + ξ2
k + (αk)2

± 2
√

(Ez∆)2 + (Ezξk)2 + (αkξk)2

where ξk = k2/2m− µ. The pairing ∆ plays two crucial
roles. It opens a gap at the outer wings of the dispersion,
where the Zeeman field is unimportant, and modifies the
gap forming near k = 0. The former role eliminates the
possibility of high-momentum gapless excitations, thus
leaving only the chiral states near k = 0 as low energy
excitation. The latter role allows us to tune the topolog-
ical phase transition essential for isolating MFs. One can
easily verify that the Hamiltonian (67) satisfies particle-
hole symmetry:

ΞHBdG(k)Ξ−1 = HBdG(−k) . (69)

Hence, for each eigenstate of positive energy HBdGψ =
Eψ it exists a corresponding eigenstate Ξψ of opposite
energy HBdG(Ξψ) = −E(Ξψ). A linear combination γ =
ψ + (Ξψ) is of course a selfadjoint Fermionic operator,
i.e. a MF, however it is not an Hamiltonian eigenvector,
unlike E = 0 (Chamon et al., 2010).

It can be shown that the presence of such zero energy
selfadjoint eigenstate is indeed related to the sign of the
gap at k = 0

E0 = |E+(k,∆)− E−(k,∆)|k=0 = |Ez −
√

∆2 + µ2|



25

conductance. Above ~400 mT, we observe a pair
of peaks. The color panel in Fig. 2B provides an
overview of states and gaps in the plane of energy
and B field from –0.5 to 1 T. The observed sym-
metry around B = 0 is typical for all of our data

sets, demonstrating reproducibility and the ab-
sence of hysteresis. We indicate the gap edges
with horizontal green dashed lines (highlighted
only for B < 0). A pair of resonances crosses
zero energy at ~0.65 Twith a slope on the order

of EZ (highlighted by orange dotted lines). We
have followed these resonances up to high bias
voltages in (20) and identified them as Andreev
states bound within the gap of the bulk NbTiN
superconducting electrodes (~2 meV). In con-
trast, the ZBP sticks to zero energy over a range
of DB ~ 300mTcentered around ~250mT. Again
at ~400 mT, we observe two peaks located at
symmetric, finite biases.

To identify the origin of these ZBPs, we need
to consider various options including the Kondo
effect, Andreev bound states, weak antilocal-
ization, and reflectionless tunneling versus a
conjecture of Majorana bound states. ZBPs due
to the Kondo effect (24) or Andreev states bound
to s-wave superconductors (25) can occur at
finite B; however, with changing B, these peaks
then split and move to finite energy. A Kondo
resonance moves with 2EZ (24), which is easy to
dismiss as the origin for our ZBP because of the
large g factor in InSb. (Note that even a Kondo
effect from an impurity with g = 2 would be dis-
cernible.) Reflectionless tunneling is an enhance-
ment of Andreev reflection by time-reversed
paths in a diffusive normal region (26). As in
the case of weak antilocalization, the resulting
ZBP is maximal at B = 0 and disappears when
B is increased; see also (20). We thus conclude
that the above options for a ZBP do not provide
natural explanations for our observations. We
are not aware of any mechanism that could ex-
plain our observations, besides the conjecture of
a Majorana.

To further investigate the zero-biasness of
our peak, we measured gate voltage depend-
ences. Figure 3A shows a color panel with volt-
age sweeps on gate 2. The main observation is
the occurrence of two opposite types of behav-
ior. First, we observe peaks in the density of
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Fig. 2. Magnetic field–dependent spectroscopy. (A) dI/dV versus V at 70 mK
taken at different B fields (from 0 to 490 mT in 10-mT steps; traces are offset
for clarity, except for the lowest trace at B = 0). Data are from device 1.
Arrows indicate the induced gap peaks. (B) Color-scale plot of dI/dV versus V

and B. The ZBP is highlighted by a dashed oval; green dashed lines indicate
the gap edges. At ~0.6 T, a non-Majorana state is crossing zero bias with a
slope equal to ~3 meV/T (indicated by sloped yellow dotted lines). Traces in
(A) are extracted from (B).
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Fig. 3.Gate-voltage dependence. (A) A 2D color plot of dI/dV versus V and voltage on gate 2 at 175 mT
and 60 mK. Andreev bound states cross through zero bias, for example, near –5 V (yellow dotted lines).
The ZBP is visible from –10 to ~5 V (although in this color setting, it is not equally visible everywhere).
Split peaks are observed in the range of 7.5 to 10 V (20). In (B) and (C), we compare voltage sweeps on
gate 4 for 0 and 200 mT with the ZBP absent and present, respectively. Temperature is 50 mK. [Note
that in (C) the peak extends all the way to –10 V (19).] (D) Temperature dependence. dI/dV versus V at
150 mT. Traces have an offset for clarity (except for the lowest trace) and are taken at different
temperatures (from bottom to top: 60, 100, 125, 150, 175, 200, 225, 250, and 300 mK). dI/dV outside
the ZBP at V = 100 meV is 0.12 T 0.01·2e2/h for all temperatures. A FWHM of 20 meV is measured
between the arrows. All data in this figure are from device 1.
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We use InSb nanowires (15), which are
known to have strong spin-orbit interaction and
a large g factor (16). From our earlier quantum-
dot experiments, we extract a spin-orbit length
lso ≈ 200 nm corresponding to a Rashba param-
eter a ≈ 0.2 eV·Å (17). This translates to a spin-
orbit energy scale a2m*/(2ħ2) ≈ 50 meV (m* =
0.015me is the effective electron mass in InSb,
me is the bare electron mass, and ħ is Planck’s
constant h divided by 2p). Importantly, the g
factor in bulk InSb is very large (g ≈ 50), yield-
ing EZ/B ≈ 1.5 meV/T. As shown below, we find
an induced superconducting gap D ≈ 250 meV.
Thus, for m = 0, we expect to enter the topo-
logical phase for B ~ 0.15 T where EZ starts to
exceed D. The energy gap of the topological
superconductor is estimated to be a few kelvin
(17), if we assume a ballistic nanowire. The
topological gap is substantially reduced in a dis-
ordered wire (18, 19). We have measured mean
free paths of ~300 nm in our wires (15), implying
a quasi-ballistic regime in micrometer-long wires.
With these numbers, we expect Majorana zero-
energy states to become observable below 1 K
and around 0.15 T.

A typical sample is shown in Fig. 1B.We first
fabricate a pattern of narrow (50-nm) and wider
(300-nm) gates on a silicon substrate (20). The
gates are covered by a thin Si3N4 dielectric be-
fore we randomly deposit InSb nanowires. Next,
we electrically contact those nanowires that
have landed properly relative to the gates. The
lower contact in Fig. 1B fully covers the bottom
part of the nanowire. We have designed the up-
per contact to only cover half of the top part of
the nanowire, avoiding complete screening of
the underlying gates. This allows us to change
the Fermi energy in the section of the nanowire
(NW) with induced superconductivity. We have
used either a normal (N) or superconducting (S)
material for the lower and upper contacts, re-
sulting in three sample variations: (i) N-NW-S,
(ii) N-NW-N, and (iii) S-NW-S. Here, we dis-
cuss our main results on the N-NW-S devices,
whereas the other two types, serving as control
devices, are described in (20).

To perform spectroscopy on the induced su-
perconductor, we created a tunnel barrier in the
nanowire by applying a negative voltage to a
narrow gate (dark green area in Fig. 1, B and C).
A bias voltage applied externally between the N
and S contacts drops almost completely across
the tunnel barrier. In this setup, the differential
conductance dI/dV at voltage V and current I is
proportional to the density of states at energy E =
eV (where e is the charge on the electron) relative
to the zero-energy dashed line in Fig. 1C. Figure
1D shows an example taken at B = 0. The two
peaks at T250 meV correspond to the peaks in the
quasi-particle density of states of the induced
superconductor, providing a value for the in-
duced gap, D ≈ 250 meV. We generally find a
finite dI/dV in between these gap edges. We ob-
serve pairs of resonances with energies symmetric
around zero bias superimposed on nonresonant

currents throughout the gap region. Symmetric
resonances likely originate from Andreev bound
states (21, 22), whereas nonresonant current in-
dicates that the proximity gap has not fully de-
veloped (23).

Figure 2 summarizes our main result. Figure
2A shows a set of dI/dV-versus-V traces taken at

increasingB fields in 10-mTsteps from 0 (bottom
trace) to 490 mT (top trace), offset for clarity. We
again observe the gap edges at T250 meV. When
we apply a B field between ~100 and ~400 mT
along the nanowire axis, we observe a peak at
V= 0. The peak has an amplitude up to ~0.05·2e2/h
and is clearly discernible from the background
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Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual device layout with a semiconducting
nanowire in proximity to an s-wave superconductor. An external B field is aligned parallel to the wire.
The Rashba spin-orbit interaction is indicated as an effective magnetic field, Bso, pointing perpendicular
to the nanowire. The red stars indicate the expected locations of a Majorana pair. (Bottom) Energy, E,
versus momentum, k, for a 1D wire with Rashba spin-orbit interaction, which shifts the spin-down band
(blue) to the left and the spin-up band (red) to the right. Blue and red parabolas are for B = 0; black
curves are for B ≠ 0, illustrating the formation of a gap near k = 0 of size Ez (m is the Fermi energy with
m = 0 defined at the crossing of parabolas at k = 0). The superconductor induces pairing between states
of opposite momentum and opposite spin, creating a gap of size D. (B) Implemented version of the-
oretical proposals. Scanning electron microscope image of the device with normal (N) and super-
conducting (S) contacts. The S contact only covers the right part of the nanowire. The underlying gates,
numbered 1 to 4, are covered with a dielectric. [Note that gate 1 connects two gates, and gate 4
connects four narrow gates; see (C).] (C) (Top) Schematic of our device. (Bottom) illustration of energy
states. The green rectangle indicates the tunnel barrier separating the normal part of the nanowire on
the left from the wire section with induced superconducting gap, D. [In (B), the barrier gate is also
shown in green.] An external voltage, V, applied between N and S drops across the tunnel barrier. Red
stars again indicate the idealized locations of the Majorana pair. Only the left Majorana is probed in
this experiment. (D) Example of differential conductance, dI/dV, versus V at B = 0 and 65 mK, serving
as a spectroscopic measurement on the density of states in the nanowire region below the
superconductor. Data are from device 1. The two large peaks, separated by 2D, correspond to the quasi-
particle singularities above the induced gap. Two smaller subgap peaks, indicated by arrows, likely
correspond to Andreev bound states located symmetrically around zero energy. Measurements are
performed in dilution refrigerators with the use of the standard low-frequency lock-in technique
(frequency = 77 Hz, excitation = 3 mV) in the four-terminal (devices 1 and 3) or two-terminal (device 2)
current-voltage geometry.
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(a) (b)

FIG. 21 (Colours online) (a): Experimental device. Electrons
from a normal metal are injected in the InSb nanowire which
is in contact with NbTiN superconductor. (b): Differential
conductance traces as a function of the magnetic field. As
soon as the topological criterion is satisfied, a zero bias peak
appears. Courtesy of Ref. [Mourik et al., 2012].

between the two excitation branches E±(k,∆). When the
Zeeman energy Ez closes such gap, we have a quantum
phase transition between two different physical regimes.
At Ez >

√
∆2 + µ2 the gap is a Zeeman gap while in

the opposite case the gap is due to superconductivity.
Explicit construction of the zero energy excitation in the
two cases shows that when the gap is magnetic, selfad-
joint zero energy excitations, i.e. MFs can appear at the
two boundaries of the wire. The phase diagram of such
system is shown in figure 20(b). Out of the topological
regime no MFs are expected, but the interesting physics
of anomalous Josephson effect sets in (Yokoyama et al.,
2014; Campagnano et al., 2014).

In Ref. [Mourik et al., 2012] electrons are injected from
a normal metal in an InSb nanowire in proximity with
a NbTiN superconductor [see figure 21(a)] and the dif-
ferential conductance is measured as a function of the
magnetic field. As proposed in Ref. [Flensberg, 2010]
electrons from the normal metal scatter against the zero
energy MF thus revealing a zero bias anomaly in the dif-
ferential conductance. In figure 21(b) we can see that as
soon as the magnetic field is large enough to satisfy the
topological criterion, a zero bias peak appears that is in-
terpreted as the resonant scattering of electrons through
the zero energy Majorana state. Experiments on these
kind of structures are very challenging: on the one hand
in order to satisfy the topological criterion, a sizable mag-
netic field is required, on the other hand, the same mag-
netic field can disrupt the very fragile superconductivity
induced in the semiconducting nanowire by the proxim-
ity effect (Potter and Lee, 2011). Everything has to be
finely tuned and the temperature has to be quite low,
usually below 100mK. That is why many other proposals
involving high critical temperature superconductors (Lu-
cignano et al., 2012, 2013) or completely different plat-
forms (Nadj-Perge et al., 2014; Hart et al., 2014) have
been investigated, too.

VII. CONCLUSIONS AND OUTLOOK

In this review, we have inspected some of the most in-
teresting theoretical and experimental results on spin de-
pendent quantum transport in mesoscopic systems in the
presence of RSOI. During the last decades a significant
number of theories and experiments have appeared. The
main goal of this review is to give an historical overview
of the field so to address the reader directly to a more spe-
cialistic literature. Rashba spin-orbit interaction turned
out to be an invaluable tool to have access and to manip-
ulate the electron spin degree of freedom, without break-
ing time reversal symmetry. From the applicative point
of view, RSOI has been intensively studied to generate
spin currents in semiconducting electron systems. Sev-
eral mechanisms and devices for producing pure spin cur-
rents have been put forward. Among them, here we have
focused our attention on quantum spin ratchet and spin
pumping.

The physics associated to the RSOI can have very ap-
plicative oriented aspects but can also be of stimulus
for addressing more fundamental issues of quantum me-
chanics, e.g., quantum interference effects. These have
been shown to be strongly affected by the RSOI, with
the novelty of the phase factors of non-Abelian nature.
We have seen how this additional phase can give rise to
unexpected phenomena, such as the localisation in net-
works with nontrivial connectivity, or the appearance of
anomalous peaks in the Fourier transform of the mag-
neto conductance in quantum rings. Recently, new and
exciting perspectives open, because RSOI is of funda-
mental relevance for the physics of topological insulators
and of Majorana fermions in hybrid superconducting-
semiconducting heterostructures that are currently at-
tracting a lot of interest not only in the condensed matter
community.

Besides charge and spin transport, SOI may have a rel-
evant role also in heat transport which is the subject of
spin caloritronics (Bauer et al., 2012). Here, the com-
bination of magnetic and non magnetic hybrid structure
can lead to anomalous behaviour in the Seebeck and/or
the Peltier coefficients (Gravier et al., 2006; Flipse et al.,
2012). Deviation from standard behavior has been ob-
served also in experiments on SLG (Zuev et al., 2009;
Wei et al., 2009). Furthermore, it is well known that
the most efficient media for creating thermoelectric de-
vices are based on materials with a very strong SOI as
HgTe, PbTe, Bi,Te, and Bi/Sb alloys, Ref. (Delves, 1965;
Biswas et al., 2012). However, a complete understand-
ing of the role of RSOI on these properties is still under
investigation (Alomar and Sánchez, 2014; Rameshti and
Moghaddam, 2015).

We are sure that in the future this field of research
will be still thriving. Most probably new electronic and
spintronic devices will come to the market with function-
ality that are associated to the physics of the RSOI. On
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the other side, as it happened for the case of the Majo-
rana quasiparticle research, RSOI could pave the way to
fundamental research in order to investigate exotic phe-
nomena that could get accessed by quantum simulators
realised in solid state systems (Feynman, 1982).
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