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5 APPENDIX 
 
5.1 DENSITY POROSITY FORMULA  
 

In order to be able to compute loads, we need information about the density of the sediments. 

Under normal conditions one can accept a constant density. But in applying for example in 

south China sea (BRAITENBERG ET AL. 2005) the problem resulted that the sediments reach up 

to a depth of kmd 12= . Here we can not assume a constant density. The density of the 

sediments increases with the depth. If it concerns oceanic sediments, then the concept of 

porosity plays an important role. Therefore in the following we will construct a formula 

taking porosity and density information from boreholes into account. 
 

Large extended sediment basins produce a long-wave gravity signal. This has an important 

influence on the calculation of the CMI depth variation. Therefore, it is necessary to 

determine first the gravity effect of the sediment basin and reduce this effect from the gravity 

signal. To compute the gravity effect the densities of the sediments are required. The density 

of the sediments increases with depth. Since porosity is also a function of depth, one can 

construct a formula to calculate the density of sediments (application in Chapter 3.1) by using 

the porosity. The general porosity formula is (e.g. SU ET AL. 1989) :  
 

            dbe ⋅−⋅Φ=Φ 0                                        (5.1.1) 

 

thereby is Φ  the porosity, d  the depth and 0Φ  is the initial porosity of the sediments at the 

surface. The parameter b  must be determined by calibration, e.g. from boreholes. The bulk 

density of a rock is composed of the density of the fluid fρ and the grain density sρ which is 

related to the porosity by: 

                                                sf ρρρ ⋅Φ−+⋅Φ= )1(                                (5.1.2)  

 

For example in South China Sea we can assume 3/1050 mkgf =ρ  and 

3/2700 mkgs =ρ .Using Eq. 5.1.1 and 5.1.2, a general density porosity formula results: 
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As boundary conditions in e.g. South China Sea we have porosity/depth data of IODP Leg 

184. Therefore results the idea to use the density values from borehole measurements - 

shown in Table 5.1.1. and to construct a new function. In the following the density values are 

used for construction of a depth-density function. If we would fit the data with a linear 

relation, then we would overestimate the density value for sediments at a depth kmd 10= . 

This means, that we would create a pseudo anomaly in large depth. Therefore is it essential to 

find a function in such way, that it approximates at greater depth a constant value, e.g. 
3/2800 mkgs =ρ . For the radical - logarithm function we observe a good fit with the data. 
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However, the exponential function is physically better explained and for this reason this 

function is favored (see Fig. 5.1.2). 

   
name of boreholes 

Site 1148 Site 1143 Site 1144B  

depth 

[m] min max min max min max 

100 1570 1650 1450 1600 1500 1600 
200 1650 1700 1500 1700 - - 
300 - - 1520 1700 1650 1700 
400 - - 1600 1750 - - 
500 - - - - 1800 1900 

d
en

sity [kg/m
³] 

 

Table 5.1.1) minimal and maximal density values from borehole measurements 

 
The exponential function is described by the following equation: 
 

                                           8.2)8.01(04.18.0)( 44.044.0 ⋅⋅−+⋅⋅= ⋅−⋅− zz eezρ                          (5.1.4) 

 

By comparison of Eq. 1.4.4 with Eq. 1.4.3 we conclude 8.0  for the initial porosity. This fits to 

the results from borehole measurements %80 . The data adjustment gives the density of the 

fluid with 3/1040 mkgf =ρ . This is comparable with borehole measurement of 

3/1050 mkgf =ρ . The grain density is through the data adjustment 3/2800 mkgs =ρ . 

According to the borehole measurements a density value of 3/2700 mkgs =ρ is obtained. 

 

 
Figure 5.1.2) Construction of a depth-density function using information from borehole 

measurements. A linear relation could not be found (see dark blue colored Graph). The 

radical - logarithm function has a good fit to the data (yellow color). However, the 

exponential function (light blue color) is better explained in the physical way. 
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In order to avoid producing a pseudo gravity anomaly at greater depth, it is better to use the 

value 3/2800 mkgs =ρ , since the exponential function converges to this density value in the 

infinite (if d  becomes infinitely large) and this density value fits also to the density value of 

the reference crust. The parameter b  was determined with 44.0=b . This function was 

insert into the slice program, which was introduced in the Chapter 1.4. 
 

5.2 COMPARISON OF FLEXURE CURVES 
 

5.2.1 FFT solution compared with logarithm and sine function  
 

In Chapter 2.5, the flexure curves calculated with the analytical solution are compared with 

the flexure curves derived by FFT methods. The following Figs. 5.2.1 to 5.2.4 illustrate the 

agreement of the flexure curves for a specific eT value and a certain factor.  

 

 
Figure 5.2.1) Comparison of flexure curve calculated for kmTe 10= . The flexure curve 

fits for a factor 51025.2 ⋅=fact . 

 
Figure 5.2.2) Comparison of flexure curve calculated for kmTe 20= . The flexure curve 

fits for a factor 5104 ⋅=fact . 
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Figure 5.2.3) Comparison of flexure curve calculated for kmTe 30= . The flexure curve 

fits for a factor 5104 ⋅=fact . 

 

 
Figure 5.2.4) Comparison of flexure curve calculated for kmTe 40= . The flexure curve fits for a 

factor of 5109 ⋅=fact . 

 

5.2.2 Comparison of output from computer program with FFT  
 

As mentioned at the end of Chapter 2.5.2, the output of the computer program has been 

compared with the flexure curves of the analytical solution and derived from the FFT 

methods. We obtain a very good agreement between all functions. In Figs. 5.2.5 to 5.2.7 the 

deflection curves in [ ]kmm /  over a distance x  calculated for kmTe 5=  are shown. Thereby 

the logarithm function is colored dark blue, the sinus function light blue, the output flexure 

of the Fortran computer program red and the flexure curves derived from FFT methods 

orange. Enlarging the graph, we obtain the "automatically switch" of the computer program 

from the logarithm function to the sinus function. Obviously, at close range the curve from 

the computer program (red) agrees with the logarithm function (dark blue) in the wide range 

with the sinus function (light blue). The flexure curve computed by the software fits well to 
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the flexure curves derived with FFT methods (orange). For further enlarging of the graph we 

obtain as well a very good agreement of all functions for the bulge. 
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Figure 5.2.5) The flexure curves were calculated for kmTe 5= . The deflection in 

[ ]kmm /  of the logarithm function is dark blue, the sine function light blue, the output of 

the computer program is red and derived from FFT methods are orange colored.  
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Figure 5.2.6) Zoom of Figure 5.2.5 shows the deflection in [ ]kmm /  calculated for 

kmTe 5= for the logarithm function (dark blue), the sine function (light blue), the output 

of the computer program (red) and from FFT (orange).  
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Figure 5.2.7) Further zoom of Figure 5.2.5 shows the bulge of the deflection in 

[ ]kmm /   calculated for kmTe 5= . 

 
5.3 FE MODELS 
 

5.3.1 Calculation input parameters and results 

 

Name of 
FEmodel PZ [Pa] 

F bzw. 
Fmin / Fmax 

[N] 
E1 / E2 

[Pa] g [m/s2]
time 
[s] Steps 

max. 
iterations 

y-
displacement 

[m] 
susi_1 108  1013 / 1013 -9.81 1.0 22 40 -94096.73 
susi_2 6x108  1013 / 1013 -9.81 1.0 22 40 -75862.35 
susi_3 6x109  1013 / 1013 -9.81 1.0 22 40 +802088.20 
susi_4 109  1013 / 1013 -9.81 1.0 22 40 -292.10 
susi_5 1.1x109  1013 / 1013 -9.81 1.0 22 40 +214.24 
susi_6 1.05x109  1013 / 1013 -9.81 1.0 22 40 +4.28 
susi_7 1.05x109  1012 / 1012 -9.81 1.0 22 40 +50.70 
susi_8 1.05x109  1011 / 1011 -9.81 1.0 22 40 +118269.90 
susi_9 1.03x109  1012 / 1012 -9.81 1.0 22 40 -412.85 
susi_11 1.05x109  1012 / 1012 -10.0 1.0 22 40 -420.33 
susi_12 1.07x109  1012 / 1012 -10.0 1.0 22 40 +46.08 
susi_13   -104 1012 / 1012 -10.0 1.0 22 40 -15.02 
susi_14   -104 1012 / 1012 without 1.0 22 40 -3.14x10-8 
susi_15   -104 1010 / 1010 without 1.0 22 40 -3.14x10-6 
susi_16   -105 1010 / 1010 without 1.0 22 40 -3.14x10-5 
susi_17   -106 1010 / 1010 without 1.0 22 40 -3.14x10-4 
susi_18   -108 1010 / 1010 without 1.0 22 40 -3.14x10-2 
susi_19   -1012 1010 / 1010 without 1.0 22 40 -339.43 
susi_20   -1012 1012 / 1012 without 1.0 22 40 -3.41 
susi_21   -1012 1010 / 1012 without 1.0 22 40 -266.96 
susi_22   -1012 1010 / 1012 -10.0 1.0 22 40 -598.48 
susi_23   -1012 1010 / 1010 -10.0 1.0 22 40 -1724.01 
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susi_24   -1010 1010 / 1012 without 1.0 22 40 -5.35 
susi_25   -1012 1010 / 1012 without 1.0 22 40 -7569.98 
susi_26   -1012 1010 / 1013 without 1.0 22 40 -1255.87 
susi_27   -1012 1010 / 1011 without 1.0 22 40 -58123.76 
susi_28   -1012 1012 / 1012 without 1.0 22 40 -1006.14 
susi_29 vgl. susi_26 -1012 1010 / 1013 without 1.0 22 40 -1266.11 
susi_30   -1012 1010 / 1013 without 100.0 22 40 -1266.11 
susi_31   -1012 1010 / 1013 without 100.0 200 40 -3407.00 
susi_32   -1012 1010 / 1013 without 100.0 500 40 -6017.04 
susi_33   -1012 1010 / 1013 without 1000.0 500 40 -6025.17 
susi_34   -1012 1010 / 1013 without 100.0 1 40 -1064.92 
susi_35   -1012 1010 / 1013 without 100.0 1000 40 -10000.33 
susi_36   -104 1010 / 1013 without 100.0 1 40 -2.25x10-6 
susi_37   -104 1010 / 1013 without 100.0 10 40 -2.68x10-6 
susi_38   -104 1010 / 1013 without 100.0 100 40 -2.75x10-6 
susi_39   -104 1010 / 1013 without 100.0 1000 40 -2.76x10-6 
susi_40   -104 1010 / 1013 without 100.0 10000 40 -2.76x10-6 
susi_41   -109 1010 / 1013 without 100.0 100 50 -0.27 
susi_42   -109 1010 / 1013 without 100.0 200 50 -0.27 
susi_43   -109 1010 / 1013 without 100.0 200 50 -0.27 
susi_44   -1010 1010 / 1013 without 100.0 100 50 -2.75 
susi_45   -1011 1010 / 1013 without 100.0 100 50 -29.28 
susi_46  -2x1011 1010 / 1013 without 100.0 100 50 -76.53 

 
The following FE models are calculated without gravity. 

name lF [km] 

F bzw. 
Fmax / 

Fmin [N] 
E1 / E2 

[Pa] time [s] Steps
max. 

iterations

y-
displacement 

[m] 
                

susi_47  120 -1010 
1010 / 
1013 100.0 100 50 -27.11 

susi_48 240 -1010 
1010 / 
1013 100.0 100 50 -42.13 

susi_49  60 -1010 
1010 / 
1013 100.0 100 50 -7.67 

susi_50  120 
-1010 / -

107 
1010 / 
1013 100.0 100 50 -6.78 

susi_51 120  
-1010 / -

108 
1010 / 
1013 100.0 100 50 -6.84 

susi_52  192 
-1010 / -
4x108 

1010 / 
1013 100.0 100 50 -12.69 

susi_53 192p -1011 / 0 
1010 / 
1013 100.0 100 50 -38.36 

susi_54 120 
-1010 / -

108 
1010 / 
1013 100.0 100 50 -51.54 

susi_55  60 

central -
1010 / -

108 
1010 / 
1013 100.0 100 50 -4.18 

susi_56 60 

central -
5x1010 / 
-5x108 

1010 / 
1013 100.0 100 50 -46.00 

susi_57 60 

right -
5x1010 / 
-5x108 

1010 / 
1013 100.0 100 50 -48.11 
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The following models are calculated without gravity, time=100s, 100 steps, and with 

maximum 50 iterations. 

 

  F bzw. Fmax / Fmin [N] 
E1 / E2 

[Pa] C1 / C2 [Pa] φ1 / φ2 [°] 
σy1 / σy2 

[Pa]   
          
susi_58 right -5x1010 / -5x108 1010 / 1013 2x1010/2x107 31 / 31  -48.12 
susi_59 -5x1010 1010 / 1013 2x1010/2x107 31 / 31  -13.88 
susi_60 -5x1010 1010 / 1013 2x107/2x107 31 / 31  -13.88 
susi_61 -5x1010 1010 / 1013 2x1010/2x1010 31 / 31  -13.79 
susi_62 -5x1010 1011 / 1013 2x1010/2x1010 31 / 31  -2.70 
susi_63 -5x1010 1010 / 1013 2x1010/2x1010 15 / 31  -13.79 
susi_64 -5x1010 1010 / 1013 2x1010/2x1010 40 / 40  -13.79 
susi_65 -5x1010 1010 / 1013    107 / 108 -13.79 
susi_66 -5x1010 1010 / 1013    107 / 108 -13.79 
susi_67 -5x1010 1010 / 1013    107 / 107 -21.08 
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5.3.2 Settings of the FE models 

 

 


