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2 THEORETICAL BASICS AND DEVELOPMENT OF THE ANALYTICAL 

SOLUTION   
 

In the previous Chapter 1.1 the concept of isostasy was explained. The Airy and Pratt model of 

isostasy assume that the topography is locally compensated. The most important assumption 

of the Vening-Meinesz Model is that the lithosphere behaves as a perfectly elastic material. 

That is why his flexure model is called elastic plate model. Because of the disadvantage of the 

spectral methods (Chapter 1.2.) I aim to find an analytical solution.  In order to provide an 

analytical solution, it is essential to understand the theory of the elastic plate model. 

Therefore I will investigate the assumptions behind the elastic plate model and the history of 

the differential equation of the 4th order, which describes the flexure of an elastic plate.  

 

2.1 DIFFERENTIAL EQUATION  
 

2.1.1 Plate Theory According To Kirchhoff 
 

In the plate theory the following assumptions are made: 

 

1. the dimension of the plate ( yx, direction) is large compared to the dimension in 

direction z

2.   corresponds to the thickness of the plate eT

3. the load is acting vertical to the middle plane of the plate in the direction z
4. the temperature distribution could cause deformation and tension (this is expressed 

by the moment of temperature) 

 

The differential equation for the elastic plate model is called thin plate approximation, 

according to assumption no. 1., which leads to an error discussed in Chapter 4.1. The middle 

plane of the plate is called neutral surface (Fig. 2.1.1). The reason is, that if a plate is 

deflected, then in the upper part occurs compression and in the lower part extension. The 

middle part is the part of no tension. 

 
Figure 2.1.1) The upper part of an elastic plate is compressed and the lower part 

extended. In the middle plane occurs no tension, therefore this plane is called neutral 

surface. 
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2.1 DIFFERENTIAL EQUATION  

The flexure of an elastic plate has been a subject of investigation by mechanical engineers 

(e.g. GÖLDNER 1978, GÖLDNER 1988, TIMOSHENKO  & WOINOWSKI-KRIEGER 1959, HETÉNYI 

1979). The origin I find in the plate theory developed by the physicist G. R. Kirchhoff (1824-

1887). For small deflections the flexure of an elastic plate is explicate by a differential 

equation with:                                  )
1

(1
ν−

∆
−=∆∆ Θmp

D
w                                              (2.1.1) 

 

with   as force per unit area,( yxfp ,= ) D  as flexural rigidity and ∆  as Laplace operator, 

which can be written in Cartesian coordinates: 2
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[ ]1−Kα  is the coefficient of thermal expansion and Θ  is the temperature difference 

(GÖLDNER 1978). In the following investigation the temperature is not considered. However, 

a discussion about the moment of temperature follows in Chapter 4.2 .  

The differential equation was modified for the deformation of a beam that overlie an elastic 

foundation. This was based on the assumption that the reaction forces of the foundation are 

proportional at every point to the deflection of the beam at that point. This assumption was 

first introduced by E. Winkler (WINKLER 1867) and formed the basis of H. Zimmermann’s 

classical work on the railroad track in Berlin (ZIMMERMANN 1888).  

The most debated part of Winkler’s assumption: that the foundation deforms only along the 

portion directly under loading, has often been found to be true since FÖPPEL’s classical 

experiment (FÖPPEL 1922). In the following a more simple form of the differential equation 

after HETÉNYI (1979) will be investigated.  

 

2.1.2 Beam on elastic foundation 
 

A beam is considered, which is supported along its entire length by an elastic medium and 

subjected to vertical forces acting in the principal plane of the symmetrical cross section (Fig. 

2.1.2). Because of this action the beam will deflect, producing continuously distributed 

reaction forces in the supporting medium. Regarding this reaction forces a fundamental 

assumption is made. The intensity of the reaction force at any point is proportional to the 

deflection  at that point: 

F
w

                                                                      wkF ⋅=                                                          (2.1.3) 
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with as factor.  This assumption implies the statement that the supporting medium 

is elastic; and the process can be described through the Hook’s law. The reaction forces will 

be assumed to be acting vertically and opposing the deflection of the beam.  

constk =

 
Figure 2.1.2) The differential equation of the elastic line takes the restoring force of the 

foundation into account. The deflection  is considered in one dimension w x .  

 

While the loaded beam deflects, it is possible that besides the vertical reactions there may 

also be some horizontal (frictional) forces originating along the interface between the beam 

and the foundation. Their effect is assumed to be very small and will not be considered. In the 

next step an infinitely small element from side length  is considered.  dx

 
Figure 2.1.3) Description for flexure of the elastic line in a portion dx . Shown is 

direction of shearing force and corresponding bending moment Q M . 

 

The Fig. 2.1.3 shows the forces, which are exerted on such element. The upward acting 

shearing force  is considered positive, like the corresponding bending momentQ M . If I 

consider the equilibrium of forces, follows with summation of the vertical forces: 

 

                                                    0)( =−++− pdxkwdxdQQQ                                        (2.1.4)  

 

therefore:                                                     pkw
dx
dQ

−=                                                    (2.1.5) 
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The bending moment M  and the shearing force  are related through (HETÉNYI 1979): Q
 

                                                                      dxQdM ⋅=                                                      (2.1.6) 

 

With use of this relation the Eq. 2.1.5 leads to: 

 

                                                                 pkw
dx

Md
−=2

2

                                                     (2.1.7) 

 

The differential equation for a bending beam is: 

 

                                                                 M
dx

wdEI −=2

2

                                                     (2.1.8) 

 

with I  as moment of inertia and E  as Young's modulus. For a beam with side length a  and 

thickness  is the moment of inertia (BORN 1968, ISSLER ET AL. 1995): eT
 

                                                                
)1(12 2

3

ν−
= eaT

I                                                        (2.1.9) 

 

The factor IE ⋅ corresponds to . Therefore it can be written (HETÉNYI 1979): D
 

                                                                 M
dx

wdD −=2

2

                                                     (2.1.10) 

 

If I differentiate Eq. 2.1.10 twice, I obtain: 

 

                                          (2.1.11) 

 

2

2

4

4

dx
Md

dx
wdD −=

the Eq. 2.1.7 leads to: 

 

                                                                pkw
dx

wdD +−=4

4

                                               (2.1.12) 

 

By comparison of the differential Eq. 2.1.12 with Eq. 2.1.1 it is obviously that the temperature 

moment is not regarded. However, an additional term is considered, which describes the 

reaction force as a consequence of the elastic foundation.  
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2.1.3 Application in geological sciences 
 

The differential Eq. (2.1.12) for a beam was extended for a problem to an elastic plate. The 

restoring force in the Earth can be described through the density contrast; consequently the 

proportional factor k  is replaced (e.g. TURCOTTE & SCHUBERT 1982) with: 

 

                                                                    kgcm =− )( ρρ                                            (2.1.13) 

 

In the geological science usually the scientists concern loads of a certain shape that act on the 

surface and the base of the crust. It is therefore more convenient to replace the forces  per 

unit area  by a load of a specified height  and density, with V as volume follows:  

F
A h

                                              

                                                      gh
Vh

Vg
A
Vg

A
mg

A
Fp ρρρ

=====
−1                           (2.1.14) 

 

With use of Eq. 2.1.12, 2.1.13 and 2.1.14 the deflection  can be described with w ( )yxrr ,=v  

(e.g. TURCOTTE & SCHUBERT 1982): 

 

                                            [ ] ghrgwrwrD ccm ρρρ =−+∆∆ )()()()( vvv                          (2.1.15) 
 

thereby this equation is three dimensional. With use of Eq. 2.1.11 and 2.1.6 it is achieved:  

 

rd
dQ

rd
wdD rr −=4

4
                                                    (2.1.16) 

 

Considering the x direction the 4th derivation of the deflection  is related to a variation of 

the shearing force Q . According to Eq. 2.1.15 and 2.1.16 I can write:  

w

 

                                                 ghxgw
x
Q

ccm ρρρ =−+
∂
∂

− )()(                                     (2.1.17) 

 

Considering the Newton’s law “actio = reactio”, I can describe this differential equation with 

simple words (Fig. 2.1.4): the “actio” is the load = ghcρ ; the resulting deflection produces 

continuously distributed reaction forces in the supporting medium. The “reactio” 

mathematically is described with )()( xgwcm ρρ − , meaning that the restoring force is a 

result of the replacement of mantle material by crustal material. The intensity of this 

restoring force was assumed to be proportional to the deflection of the plate  (see Eq. 

2.1.3).  

w
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2.1 DIFFERENTIAL EQUATION  

 

 
Figure 2.1.4) Description for the differential equation according to the Newton’s 

principia of actio = reactio.  

 

According to the concept of isostasy (VENING-MEINESZ 1939), the isostatic compensation is 

regional and controlled by the lithospheric plate (see Chapter 1.1.3). Additional to the vertical 

component a horizontal one has to be taken into account for the equilibrium of forces. This is 

mathematically illustrated through the variation of the shearing force 
x
Q
∂
∂

−  describing the 

strength of the lithospheric plate. Thereby Eq. 2.1.16 proves that the greater the flexural 

rigidity of the plate the greater is the horizontal shearing force, therefore less is the deflection 

of the plate.  

 

The differential Eq. 2.1.15 had until recently not been analytically solved for an irregularly 

shaped topography. One analytical solution for the differential equation was developed by 

HERTZ (1884) for a point load, without taking a elastic foundation and temperature moment 

into account. His formulas were used in order to derive a new analytical solution for the 

application in the geological sciences; therefore Hertz’s solution will be introduced in the 

following chapter.  
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2.2 FORMULA ACCORDING TO HERTZ  
 

In this chapter the formula developed by HERTZ (1884) will be investigated. The introduction 

of the formula is important in order to understand the analytic solution. Many preliminary 

investigations were necessary, because the analytic solution is not simply a use of an already 

existing formula. I will use three equations according to Hertz in order to obtain one 

analytical solution. The three so-called "Hertz’s formulas" are solutions of the elastic plate 

equation in three dimensions. Hertz had applied it to the problem of the deformation of an 

ice sheet caused by a weight and not of a load. Therefore it is necessary to make the formulas 

applicable to geological sciences.  This will lead to the analytical solution for the deflection of 

the elastic lithosphere due to a topographic load.  
 

An infinitely expanded elastic plate (e.g. ice) floats on an infinitely extendend liquid (e.g. 

water), whereon weights are placed causing no lateral tension. Considering only small shifts 

the effect of the weights can be superimposed. For this reason it is sufficient to take only one 

weight P  into account. The load of this weight concentrates on the origin of the coordinate 

system. The plane of the coordinate system is coincident with the yx −  plane of the thin 

flexible plate. Because the solution is radially symmetric, it is suitable to consider a radius, 

describable at the distance from the center: 

 
                                                                                                                     (2.2.1) 222 yx +=ρ
 

Remark: The use of the symbol ρ  for the radius is probably confusing since this symbol is 

the conventional notation of the density, but I want to write here the orginal symbols used by 

HERTZ (1884), in order to avoid confusions. In the following chapter (2.3) the usual symbols 

will be introduced. Given is as the vertical deflection of the deformed plate from the z
yx − plane. The weight P  is acting on the origin of the coordinate system. Hertz considered 

the specific weight of the fluid  and the thickness of the plate . For the elastic parameters 

of the plate he used the Young's modulus 

s h
E and the Poisson's ratio µ .  I will use in the 

following ν as notation for the Poisson's ratio.  The elastic force zEh
∆⋅∆

− )1(12 2

3

ν
 is acting per 

unit area with focus to the top. Thereby ∆  is the notation for the Laplace operator , with 

2

2

2

2

yx ∂
∂

+
∂
∂

=∆ .  The hydrostatic restoring force zs ⋅ is directed towards to the top. The sum 

of the two forces has to be zero except in the point of origin. It follows that 

                                                0
)1(12 2

3

=⋅+∆⋅∆
−

zszEh
ν

                                              (2.2.2); 

 

therefore                                 0)1(12
3

2

=
−

+∆⋅∆ z
Eh

sz ν                                                 (2.2.3) 
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The integral-value of the sum calculated over a small surface must be equivalent to the weight 

in the point of origin of the coordinate system. But the integral-value of the hydrostatic 

pressure disappears over such a small surface. Therefore it is permissible to use the integral-

value for the elastic reaction. Now I will use a shortcut:  
 

                         s
Eh

a 3

2
4 )1(12 ν−
=   with : 4

4 1
α

=a   => 
s

Eh 1
)1(12 2

3
4 ⋅

−
=

ν
α                   (2.2.4) 

 

thus gives for Eq. 2.2.3:                                                                        (2.2.5) 04 =+∆⋅∆ zaz
 

I found a mathematical description for the problem: An integral of the Eq. 2.2.5 has to be 

found, which disappears in the infinite, is finite in the origin point of the coordinate system 

and in the neighbourhood of the origin it should be equal to P . According to HEINE (1878) is: 

                                                                                                           (2.2.6)  dueK iui∫
∞

=
0

cos)( ρρ

 

a solution of the differential equation 0=+∆ zz  (with  as a variable of integral). It follows 

that 

u

)( 4 4aK −⋅ρ  is a solution of the Eq. 2.2.5. Therefore I can solve Eq. 2.2.5 with Eq. 2.2.6 

and it results a solution in the imaginary number space: 
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However, this solution is real. Therefore it is transformed into a solution for the real part. 

This is inserted into Eq. 2.2.7 and it follows (HERTZ 1884): 
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with ξ  as a variable of the integral. This form shows that the solution disappears in the 

infinity. For investigation of the values for the neighborhood (or vicinity) of the point of 

origin, the function K  is expanded according to Bessel's functions and afterwards is it 

expanded in powers (potencies):  
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with . The series are arranged in such a way, that every horizontal-serie for itself 

represents a particular integral of the presented differential equation. It is suitable for the 

computation of small values of the radius 

57721.0=C

ρ . The deflection  remains finite for z 0=ρ  and 

reaches a finite value in the point of origin.  This function (Eq. 2.2.9) is called “logarithm-

function” in the following. 

For greater values a semiconvergent series will be used, which is evolved from Eq. 2.2.8 by 

expansion after the radical and integration of the single elements.  The first part is given as : 

 

                     
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅=

−

...
8

3
2
1sin

8
1

82
1sin

22

2
1

2 πρ
ρ

πρ
ρ

π
π

ρ

aa
a

e
s
Paz

a

             (2.2.10) 

 
In the following this function is called “sine function”. Hertz developed a solution valid at the 

point of the origin, where the plate reaches the maximal value of deflection.  

                                                    
s
Pazz

8

2

0 ==                                                     (2.2.11) 

 

This investigation leads to three questions: 
 

1.Which logarithm did Hertz use (base e, base 10)? 

2.Which is the meaning of greater values of the radius?  

3. How can a close and a wide range mathematically be descriped? 
 

In order to find an answer, some examples proposed by HERTZ (1884) will be recalculated in 

the following chapters. 
 

2.2.1 Investigation of the logarithm function 
 

I will investigate the Eq. 2.2.9 for the logarithm function. It is questionable to which basis the 

logarithm corresponds. The denotation „log“ means either the natural logarithm to the basis 

e (Euler number) or the logarithm to the basis 10. An example is given in the article of Hertz 

(1884, page 453). He calculated the following term: 
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with . This example will be used to investigate which logarithm Hertz has used. 

It follows:                                

57721.0=C
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2
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⎭
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Calculation with “log” to the base of 10 gives: 
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If I assume for “log” the logarithm to the base of e (natural logarithm), then I obtain:  
 

                                                       { 6159.02ln
2
1

−=
⎭
⎬
⎫

⎩
⎨
⎧ +−− C }

}

                                    (2.2.15) 

 

The result of Eq. 2.2.15 is not the same value as in the article (Eq. 2.2.13); Hertz submitted as 

result . A possible reason might result from a typing error (interchange of cipher 

 with cipher 5 ). However, obviousily the denotation of Hertz means the natural logarithm. 

Because I want to use the convention for the present time, in the following I write “ln” instead 

of “log”. For further investigation of the formula the distance (radius 

{ 6519.0−=

1

ρ ) is calculated as a 

function from the parameter α . The results will be compared with the results proposed by 

HERTZ (1884, page 452). 
  

        radius ρ  0/ zz  calculated according to Hertz 

α  646.0  

α⋅2  258.0  

α⋅3  66.0  

Table 2.2.1) The ratio was calculated for different values for the radius 0/ zz ρ .   

When using the radius αρ =  with Eq. 2.2.9, the following is obtained : 
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on condition that the 2nd and 3rd term of the sum within the product with 
4
π

 is neglected. If I 

insert αρ ⋅= 2  in Eq. 2.3.9, then follows:  
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This is the not same value as given by Hertz.  For αρ ⋅= 3  I obtain: 
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which is not equivalent to the result proposed by Hertz, either (see Table 2.2.1). Therefore I 

assume that the logarithm function describes the neighborhood of the area of origin, where 

the point-load is acting. I will come back to this point later in the discussion (see Chapter 

2.2.3).  
 

2.2.2 Investigation of the sine function 
 

Now I will investigate the Eq. 2.2.10.  

I suspect a typing error in the puplished article, instead of 
ρ8
1

 I use 
αρ8
1

 (see orginal 

formula (4), HERTZ 1884, page 451).  I modified the formula by replacing 
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term . The distance can be 

calculated with the original formula (HERTZ 1884); for radius αρ =  is obtained:  
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with the modified formula:   
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because 1=⋅αa  (see notation according to HERTZ 1884). It doesn’t result in {  (see 

Table 2.2.1) because the function is valid for greater values of the radius. If I take for the 

radius 

}646.0

αρ ⋅= 2  then the Eq. 2.2.10 results with the original formula: 
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and with the modified formlua: 
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This result of the modified formula (Eq. 2.2.22) is equivalent to the value given by Hertz (see 

Table 2.2.1) For a greater radius with αρ ⋅= 3  I achieve with the original formula: 
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and by use of the modified formula: 
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The results of Eq. 2.2.24 and from Hertz are equivalent (see Table 2.2.1).  Therefore I 

conclude that the modified formula is correct.  
 

2.2.3 Summary of the behavior of the functions 
 

If I summarize the results (see Table 2.2.2) then I become an idea of the behavior of all 

functions.  

 ratio   calculated  0/ zz

radius ρ  from Hertz with logarithm 

function 

with sine 

function 

with modified 

sine function 

α  0.646 0.646 0.657 0.608 
α⋅2  0.258 0.505 0.263 0.258 
α⋅3  0.66 0.072 0.065 0.66 

 

Table 2.2.2) The results of the investigations are summarized for different values of radius. 
 

Obviousily the values are not correct if the radius is greater then αρ =  for the logarithm 

function and if the radius is smaller then αρ ⋅= 2  for the sine-function. Conclusively the 

formala is divided into a close range - wide range, which can be described with the 

parameterα . Hence, a mathematical definition is received for the neighbourhood, the radius 

of action of the point load. The logarithm-function describes the vicinity and the sine-

function works for the wide range. Between αρ =  and αρ ⋅= 2  has to be the transition 

from the logarithm-function into the sine-function. In the following chapter I will modify all 

3 functions.  In order to retrieve one analytical solution for computation of the flexural 

rigidity, all the three functions will be unificate. Additionally some small errors could be 

found. I came to the conclusion that I have to use  instead of . In the following 

chapter all three formulas are investigated in order to apply them for the geological situation. 

1)8( −αρ 1)8( −ρ
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2.3 NEW ANALYTICAL SOLUTION  
 

2.3.1 Introduction  
 

VENING-MEINESZ (1939) used a modified form of HERTZ’s flexure curve to compute the form 

of the compensation and computed a set of tables that summarized the total gravity effect of 

the compensation at a station for different assumed values of the parameter ß. This 

parameter has been evolved from the parameter α . It is a measure of the flexural rigidity of 

the plate and determines both the amplitude and wavelength of the compensation. In WATTS 

(2001), a modified form of the logarithm function is shown (see previous chapter, Eq. 2.2.9). 

But WATTS used only one solution to describe the deflection. For the next step all three 

functions will be merged in order to retrieve one analytical solution for the computation of 

the flexural rigidity. I found a concept for the dependence of the functions on the parameters 

ρ  and α  in Chapter 2.2, which I can use for a mathematical description in order to combine 

the three functions. 
 

2.3.2 Modification and substitution  
 

Hertz solved the equation for an ice plate and water as under laying substratum. He defined: 

 

                                                                s
Eh

a 3

2
4 )1(12 µ−
=   

with:                                      4
4 1

α
=a   => 

s
Eh 1

)1(12 2

3
4 ⋅

−
=

µ
α                                       (2.3.1)  

 

The parameter h  corresponds to eTh = , and the Poisson's ratio corresponds to νµ = . 

HERTZ (1884) did not take the gravity g  into account. He considered only the specific density 

s  of the underlying fluid.  Furthermore he did not use a density contrast.  Instead of a force 

gmF ⋅=  per unit area or a load, he considered a weight P .  

However, if I want to apply this formula to the situation of the lithosphere, the Hertz solution 

has to be modified. Therefore I will consider the gravity within the weight P as well as in the 

unit from the Young's modulus E , because Hertz used as a unit ⎥⎦
⎤

⎢⎣
⎡

2m
kg

. Hence, I attain a 

force F per unit area A  with 21 m
mg

A
F

⋅
= which corresponds to a point load with hgP ⋅⋅= ρ   

(see Eq. 2.1.14) and receive therefore for the Young's modulus a unit [ ]Pa
m
N

≡⎥⎦
⎤

⎢⎣
⎡

2 . For the 

same reason, I will modify s  with gs cm )( ρρ −= , (compare with Eq. 2.1.13) then it results: 

βα = . Therefore it follows for the flexure parameter β :  

            4
)( g

D

cm ρρ
β

−
=                                                  (2.3.2) 
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with Eq.1.1.3 results:               
g

ET
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e

)(
1

)1(12 2

3
4

ρρν
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−
⋅

−
=                                           (2.3.3) 

 

The equation, I want to solve, can be defined with the modern notation w  for the deflection 

instead of z by:                                  01
4 =+∆⋅∆ ww

β
                                                   (2.3.4) 

0=+∆ ww  I can solve according to HERTZ (1884) with dueRK iuiR∫
∞

=
0

cos)( for the radius 

222 yxR += . Thereby is )(
4 β−

RK  one solution for Eq. 2.3.4, and it follows: 
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Instead of 222 yxR +=  I use the substitution: 
ββ

22

,

yxRr yx

+
==  as radial distance from 

the acting load. This results: 

                                 ξ
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ξ
ρρπβ
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d
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−
⋅

−
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)(4
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             (2.3.6) 

 

As a result I have a modified form of the Eq. 2.3.5. The first solution for the point of origin of 

the coordinate system is derived with the same procedure as in Chapter 2.2. According to the 

modification and the use of the Eq. 2.2.11 for the deflection 0w results:  

                                                 20 )(8 βρρ ⋅−
=

g
Pw

cm

                                           (2.3.7) 

 

This formula describes the maximum depth, because in the point where the load is acting, the 

deflection has a maximum value. For investigation of the neighborhood of point of origin, I 

can use the formula derived by Hertz (Eq. 2.2.9) for calculation of small values of the radius 

yxr , . With 
β
1

=a  (see Eq. 2.3.2) and the substitutions above follows 
β
ρρ =a  therefore is 

yxra ,=ρ  and 
β

22

,

yx
r yx

+
=  is the radial distance [ ]km  from the load, or radius 

respectively. With the substitution and modification results: 
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This Eq. 2.3.8 is shown in WATTS (2001), but with a small error. Instead of 24 is written 44 . 

In the following I will call this solution “logarithm function”. For greater values of the radius 

yxr ,   (this means the wide range of the solution), I will use according to Hertz the semi-

convergent series (after radical expansion and integration of the single elements). With the 

substitution above follows: 
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                                                                                                                                        (2.3.9) 
 

Note: In view of  the investigation in Chapter 2.2    I used the term ( )yxr ,8
1

 and not ( ) β⋅yxr ,8
1

!   

 

In the following I will call this derived solution from Eq. 2.3.9  “sine function”. 
 

2.3.3 Investigation of the graph  
 

The behavior of the function for various elastic thicknesses kmTe 40;30;20;10;5=  will be 

investigated. The analytical function was calculated for a point load with a height kmh 1= , 

Poisson's ratio 25.0=υ , Young's modulus PaE 1110= , gravity 2/81.9 smg = , density of 

mantle 3/3350 mkgm =ρ  and density of crust 3/2700 mkgc =ρ .  

 

In the following the logarithm function (see Eq. 2.3.8) is investigated (see Fig. 2.3.1). With 

increasing of the elastic thickness value eT  decrease the deflection in the point ( )0,00w , but 

increase the distance yxr ,  of the bulge. Obviously it is not acceptable to use only the logarithm 

function to describe the flexure of an elastic plate, as this function breaks down after a certain 

distance. 
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Figure 2.3.1) The Graph was calculated for the logarithm function for 

kmTe 40;30;20;10;5= . This function breaks down after a certain distance; therefore it 

is not acceptable to use only the logarithm function to describe the flexure of an elastic 

plate. 

 
Figure 2.3.2) The graph was calculated for the sine function for kmTe 40;30;20;10;5= . 

The orange box characterizes the area of the zoom. The higher the bulge the lower is 

the elastic thickness value. The lower the elastic thickness value, the lower is the 

distance x  at which the bulges occur. 
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In a next step the sinus function is considered (see Fig. 2.3.2).  The same relationship is 

found for the elastic thickness value and the deflection 0w  and the distance of bulge, 

respectively. For illustration of the behavior of the function I will “zoom” in and study the 

bulges. The following relationship between the bulges and the elastic thickness value can be 

recognized: With increasing elastic thickness eT , the amplitude of the bulge (positive w  

value) decreases.  
 

 
Figure 2.3.3) Graph for the sine function calculated for kmTe 40;30;20;10;5= , with 

further zoom. The orange box shows the area of zoom, whereby the second and the 

third bulges can be observed.  

 

While further enlarging the graph, a second and third bulge can be observed (see Fig.2.3.3). A 

number of bulges occur that become infinite small (HERTZ 1884).  
A simple analogue to illustrate the behavior of the sinus function is the "pattern" in the water 

when a stone is thrown into water. Where the stone hits the water several concentric bulges 

occurs, which become smaller with increasing distance from the center. 
 

2.3.4 Unification of the analytical solution 
 

I will combine all function according to the scheme, which was developed in Chapter 2.2. 

First the flexure parameter β  is calculated with Eq. 2.3.3 for a point load with kmh 1= , 

kmTe 5= , 25.0=υ , PaE 1110= , 2/81.9 smg = , and the densities 3/3350 mkgm =ρ  and 

3/2700 mkgc =ρ , therefore:  
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and for the flexure parameter results: 
 

                                              [ ] [ ]mm 20431107425.14 417 =⋅=β                                     (2.3.11)                        
 

The flexure parameter β  and β⋅2  is shown in Fig. 2.3.4. First the maximum deflection is 

calculated according to Eq. 2.3.7 and later compared with the result of the graph for the 

composite analytical solution. It results for the point load:  
 

                                          [ ] [ ][ ]
[ ] [ ]( ) [ ] m

mmkg
mmkgw 6

32
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0 1024.1
204316508
10002700 −⋅=

⋅⋅
⋅

=                   (2.3.12) 

 

 
Figure 2.3.4) The graph for the composite analytical solution and the sine and 

logarithm function (colored in blue) was calculated for kmTe 5= . Additional, the flexure 

parameter is shown and the position of the bulge, which occurs at ca. β⋅= 89.3x .  

 

By comparison with the result (Fig.2.3.4) is obtained that in the point of origin, where the 

point load is acting, the value for 0w is reached (blue colored). Furthermore it is obtained that 

the logarithm function is appropriate for the close range. On the other hand the values for the 
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deflection, produced by the sinus function, are too small in the close range. Therefore the 

analytical function has to switch from the logarithm function into the sinus function at a 

distance ( ) β=yxr ,  and ( ) β2, =yxr . This was realized by the implementation of the 

composite analytical solution into a computer program for convolution by BRAITENBERG 

(PERS. COMM.).  

 

The emergence of the first bulge at the distance x  can be calculated with (HERTZ 1884): 

  

                                     kmx ebu 48.7989.32
8
7

lg =⋅=⋅⋅⋅= ββπ                      (2.3.13) 

 

According to HERTZ (1884) the deflection results at the bulge ( ) kmxw ebu 0lg = , and the value 

for the deflection w  becomes positive with increasing radial distance. I found that this is 

valid for the sinus function only (see Fig.2.3.4). This is another evidence for the idea that the 

logarithm function is not suitable for the greater values of distance or radius, respectively.  

However, another item can be concluded with this investigation for the bulge. In order to 

accelerate further calculation, the analytical function should be cut at a certain distance. In 

view of the fact that the deflection value should reach zero before the function is cut, the 

function should be considered within the distance β⋅= 89,3lg ebux . I will apply these 

suggestions for the radius of convolution (see Chapter 2.6). 
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2.4 TRANSFER FUNCTION 
 

2.4.1 Introduction 
 

The lithosphere does not respond locally to long-term geological loads, as the AIRY and PRATT 

models would predict. As described in Chapter 1, the compensation takes place regionally by 

a flexure over a wide region. Thereby the lithosphere behaves as a filter suppressing the 

short-wavelength deformation (large amplitude) associated with local models of isostasy and 

passes the long-wavelength deformation (small amplitude) corresponding to the flexural 

behavior of the lithospheric plate. The expression “filter” is used in its usual meaning to 

describe a system with input and output. The input is the load and the output is the flexure. 

The assumption is that the lithosphere behaves like a linear space-invariant filter (WATTS 

2001). This means that if a topographic load with height )(xh  causes a deflection )(xw and a 

topographic load with height )(ˆ xh produces a flexure )(ˆ xw  then the sum )(ˆ)( xhxh + generate 

a flexure of )(ˆ)( xwxw + . Another property of such a filter is, that if the input load is periodic, 

then the output flexure is also periodic. The general equation describing the elastic response 

of a plate to a periodic load is given for one dimension by: 
 

                             ( ) ( ) ( )kxghgw
x
wD wcim cos4

4

⋅−=−+
∂
∂ ρρρρ                                (2.4.1) 

 

with D  as the flexural rigidity, w  as the flexure, x  as the horizontal distance, mρ as the 

density of the mantle, iρ  as the density of the material that infills the flexural depression, cρ  

as the density of the crust, wρ  as the density of the medium which displaces the load (e.g. 

water, air), h  as the peak-to-through amplitude of the load and k as the wavenumber of the 

load in the x direction, respectively. The solution of Eq. 2.4.1 is periodic and has the form: 
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For a weak plate, the rigidity approaches zero. For 0→D  the Eq. 2.4.2 leads to : 
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if I additionally assume ci ρρ ≡ , then I achieve the Airy isostatic response to a periodic load: 
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For an endless rigid plate the flexure approaches zero. For ∞→D  the Eq. 2.4.2 approaches 

zero 0→w . This is called Bouguer response. If the plate has a finite strength, then it 

responses by a flexure. Chapter 1.2 introduces the isostatic response function. A wave-

number parameter )(keΦ is defined, modifying the gravity effect of the topography such as to 

produce the gravity anomaly. It is given with (see Chapter 1.2): 
 

                                                               
input
outputke =Φ )(                                     (2.4.5)

      

If this wave-number parameter )(keΦ is used to modify the Airy response such as to create 

the flexure, the input and the output (see Eq. 2.4.2) of the system is given with (WATTS 2001): 
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from the Eq. 2.4.5 follows:              ( )
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From Eq. 2.4.5 follows that )(keΦ  determines the wavenumber for which the flexure is 

important. This parameter is called “flexural response function” (WALCOTT 1976).  
 

2.4.2 Transfer function 
 

However, Eq. 2.4.8 yields only the flexural response to a load at a particular wavenumber. 

Since a load can be split into its individual spectral components, Eq. 2.4.2 can be used to 

compute the response to any arbitrarily shaped load. The method of Fourier analysis (see 

Chapter 1.2) is a widely used technique to decompose a spatial data set into its spectral 

components. Replacing the term ( )kxh cos⋅  in Eq. 2.4.2 by )]([)( xhFTkH = , which 

represents the wave number domain of the topography )(xh and replacing the flexure 

)(xw with )]([)( xwFTkW = , which is the description for the wave number domain; yields to 

(WATTS 2001): 
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with use of Eq. 2.4.8 : 
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In order to describe the flexural response for a point load the impulse function )(xdδ can be 

used. The impulse function is defined as (BRIGHAM 1974): 
 

                                          0)( =xdδ 0≠∀x   and    ∫
∞

∞−

=1)( dxxdδ                                  (2.4.11) 

 

This is the mathematical description for the fact that the value of a point load is 1  and the 

extension of this point load is 0 . This condition mathematically means that )()( xxh dδ=  and 

therefore 1)]([)( == xhFTkH . According to Eq. 2.4.10 and with 1)]([)( == xhFTkH  result: 
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Hence I receive the flexural response for a point load. This study reveals that the Fourier 

analysis is the equivalent in the space domain to a convolution of an impulse function with 

discrete samples of a load (see Fig. 2.4.1). 

 

 
Figure 2.4.1) The scheme presents the principal steps of filtering of a topographic data 

set in the frequency domain (on the left side) and space domain (on the right side), 

modified from WATTS (2001), thereby the analytical solution has to be equivalent to the 

inverse Fourier transform of the flexural response function. 
 

The spatial variation of the flexure is obtained by using the Fourier transform of the load, by 

multiplying it with the wavenumber parameter and a density term; afterwards the inverse 

transform of the result is calculated. In the space domain this is equivalent to the convolution 

of the load with the inverse Fourier transform of the wavenumber parameter and the density 

term.  For 
( )
( ) )()( kk e

im

wc ϕ
ρρ
ρρ

δ −
−

=Φ  and Eq. 2.4.8 it follows: 
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With use of Eq. 2.4.9 :                            )()()( kHkkW ⋅Φ= δ                                        (2.4.14) 

 

Therewith I obtain a transfer function to describe the flexure of a point load.  This function I 

is used for verification of the analytical solution, as the analytical solution also computes a 

flexure to any arbitrarily shaped load. The inverse Fourier transform of the Eq. 2.4.13 has to 

give the same result as the flexure curve computed by the analytical solution (see Fig. 2.4.1). 

Vice versa the Fourier transform of the flexure curve calculated with the analytical solution 

has to be the same like the curve that results from Eq. 2.4.13. 

Hence, the Fourier transform of the flexure curve has to be computed after convolution with 

a point load (= delta function). The resulting function is notated with analytΦ  in the following.   

In the analytical solution the density wρ  of the medium displacing the load (e.g. water, air) is 

not considered. This is done in a next step with the convolution of a special input grid. The 

idea of a density of the material that infills the flexural depression iρ  is better described by 

internal density variation within the crust. The internal loads are taken into account (PERS. 

COMM. GÖTZE) with the concept of pseudo topography (Chapter 1.4). Accordingly, if I want to 

compare the results with the analytical solution, I have to set the density of the material that 

infills the flexural depression iρ  equal to the crustal density of cρ .  Neglecting the density 

wρ  and using iρ  = cρ  the Eq. 2.4.13 leads to: 
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Finally I obtain a transfer function )(kδΦ , which I compare with analytΦ , the Fourier 

transform of the flexure curve computed with the analytical solution after convolution with a 

point load.  

 

2.4.3 Verification of the analytical solution  
  

In order to prove the analytical solution the response function analytΦ  is compared with the 

transfer function )(kδΦ . Accordingly, I compute (Eq. 2.4.15) with the wave numbers 

45 101101 −− ⋅≤≤⋅ k  and with the densities 3/2700 mkgc =ρ  and 3/3350 mkgm =ρ  the graph 

of the flexural response )(kδΦ . The transfer function analytΦ  is the Fourier transform of the 

flexure curve after convolution with a point load.  It arises that the transfer function analytΦ  is 

equivalent to )(kδΦ except for a specific factor. This factor is independent of eT , and 

unfortunately not explainable.  
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However, intense investigations lead to following clarification. By varying all parameters a 

dependency is found for the distance dx  and dy  of the nodes of the input grid for the point 

load. The factor I can summarize with: 

                                                            
dydx

fact
⋅

=
1                                      (2.4.16)                   

 

Referring to the assumptions this factor is explainable: In the original formula a force per 

unit area was considered, which was transformed to a point load. This assumption is not 

valid for an input grid. This leads to the factor corresponding to the formerly neglected unit 

area. The comparison of the two transfer functions analytΦ  and )(kδΦ is shown in Fig. 2.4.2.  

 
 

Figure 2.4.2) Comparison of transfer function computed for kmTe 1= . The transfer 

function analytΦ  (pink colored) is equivalent to )(kδΦ  (blue colored) in Eq. 2.4.15, 

except to dydxfact ⋅=  whereby dx and dy node distance of input grid. On the left side 

the node distance is kmdydx 5==  and on the right side kmdydx 4== . 

 

2.4.4 Conclusion 
 

Accordingly there is evidence for the correct calculation of the flexure by the analytical 

solution. In the next chapter I will show that the flexure curves in the space domain 

calculated by the analytical solution are equal to the flexure curves from the inverse Fourier 

transform of the response function )(kδΦ . Then I will compare the input flexure curves of 

the convolution software according to BRAITENBERG (ET AL. 2002) with the flexure curves 

derived by the analytical solution. 
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2.5 COMPARISON WITH FFT METHOD  
 

In Chapter 2.4 I conclude that the analytical solution is equivalent to the inverse Fourier 

transform of the flexural response function. In the following the inverse Fourier transform of 

the flexural response function is called “flexure curve from FFT”. 

The dependence of the analytical solution from the distance of the grid nodes is evaluated by 

comparison of the flexure curve from FFT with the analytical solution. 

Furthermore, if a new solution is introduced, then this solution has to fit into well-accepted 

theories (PERS. COMM. WIENECKE J.); therefore boundary cases of the new analytical solution 

are considered. An example is shown for a real topography in a general and a 

phenomenological form. Thereby the location and the geological features are not important. 

The focus lies on the behavior of the analytical solution in order to understand the general 

principles.  
 

2.5.1 Comparison with flexure curves  
 

The comparison is done with the flexure curves from FFT and the analytical solution 

calculated for a point load with height kmh 1=  and the following parameters: elastic 

thickness kmTe 5= , Poisson's ratio 25.0=ν , Young's modulus PaE 1110= , gravity 

2/81.9 smg = , densities of mantle 3/3350 mkgm =ρ  and crust 3/2700 mkgc =ρ .  

 

 
Figure 2.5.1) The flexure curves for kmTe 5=  from the FFT (in blue color) and the 

modified analytical solution is presented: the sinus function (pink colored) and the 

logarithm function (yellow colored). The analytical solution fits to the FFT flexure curve 

with exception to the factor 510=fact .  

 
An input grid of delta topography creates the point load. The input grid consists of several 

numbers of nodes, notated with n  in x  direction and m  in y direction, and the distance 

between the nodes dydx, . The flexure curves from FFT and the analytical solution are 
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plotted at the same scale. Hence, due to a graphical analysis the value of fact is estimated. 

The result for kmTe 5=  is shown in Fig. 2.5.1. Further graphical analysis for 

kmTe 40;30;20;10=  is presented in the appendix (Chapter 5.2.1). Various eT values have been 

used for the calculation with different values of dydx, . Table 2.5.1 displays the resulting 

factors according this inspection. For kmTe 30;20=  are the same values of [ ]mdydx,  used. 

Recognizing, that the factor is equal, I assume a relationship between the distance of the grid 

nodes and the factor, describing the disagreement of the flexure curves. As described in 

Chapter 2.4 the same relationship dydxfact ⋅=  is obtained. 

 

[ ]mdydx,  [ ]kmTe  510=fact  
10000 5 1 
15000 10 2,25 
20000 20 4 
20000 30 4 
30000 40 9 

 

Table 2.5.1) The factor between the flexure curves is calculated with analytical solution 

and with spectral methods (FFT) in dependence of the node distance of input grid of  

delta topography 
 

2.5.2 Investigation of dependence from grid parameters  
 

I have to assume the factor either in the flexure curves from the FFT or in the analytical 

solution. The dependence of the numbers of grid nodes mn,  is investigated in addition.  

 

Delta topography 

The investigation of a dependence of the flexure calculation from the grid parameter of delta 

topography, I examine the values of maximum deflection for different numbers of nodes mn,  

but same for the distances of  the grid nodes dydx,  (see Table 2.5.2).  

 

 

calculated with analytical solution 

 

calculated with Fourier transform 

grid nodes 
mn,  

grid distance 
dydx,  

max. value 

0w  
grid nodes 

mn,  
grid distance 

dydx,  
max. value 

 0w  

220  5000  121024.1 −⋅− 260  5000  51010.3 −⋅−

550  5000  121024.1 −⋅− 650  5000  51010.3 −⋅−
 

Table 2.5.2) The maximum value of deflection of flexure curves is examine for different 

nodes numbers n and m of input grid for delta topography. 
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The values of maximum deflection of the flexure curves from the FFT and from the analytical 

solution are independent on the number of grid nodes mn, . In the following I calculate the 

maximum deflection 0w  for different dydx, but for same amount of mn,  (see Table 2.5.3).   

 

 

Table 2.5.3) The maximum value of deflection of the flexure curves is calculated for 

different distance of input grid for delta topography.  

 

The values of the analytical flexure curve are independent on the distance dydx, . The values 

of the maximal deflection vary with different distances of the grid nodes for the flexure curves 

calculated with the FFT method. In view of that, the flexure curves from the FFT are 

multiplied with the factor 
dxdy

fact 1
= , producing the same results (see Table 2.5.4). 

 

grid 

distance 

analytical 

solution 

Fourier transform Fourier transform 

multiplied with 
dxdy

fact 1
=  

dydx,  0w  0w  0w  

5000  121024.1 −⋅−  51010.3 −⋅−  121024.1 −⋅−  

4000  121024.1 −⋅−  51099.1 −⋅−  121024.1 −⋅−  

2000  121024.1 −⋅−  61097.4 −⋅−  121024.1 −⋅−  
 

Table 2.5.4) The maximum value of deflection of the flexure curves is calculated by 

multiplication with the grid node distance. 
 

However, considering the input grid for delta topography, it is seen that the topographic load 

is changing in dependence of the distance dydx,  (see Figure 2.5.2), because of the 

computational interpolation of a point load of the height 0=h to 1=h . With increasing of the 

distance dydx, the area of the delta topography grows, which leads to an increase of the 

deflection. Conclusively, the maximum deflection calculated for delta topography must 

increase along with an increase of dydx, . Therewith it is established that the flexure curves 

from the FFT are dependent on dydx, . Consequently, the maximum deflection calculated 

with the analytical solution necessarily changes with dydx, , investigated in the following for 

 

calculated with analytical solution 

 

calculated with Fourier transform 

grid nodes 
mn,  

grid distance 

dydx,  

maximal value 

0w  

grid nodes 
mn,  

grid distance 

dydx,  

maximal value 

 0w  

550  2000  121024.1 −⋅−  650  2000  61097.4 −⋅−  

550  5000  121024.1 −⋅−  650  5000  51010.3 −⋅−  
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a synthetic topography, since in this case the interpolation problems mentioned above are 

diminished.  

 

 
Figure 2.5.2) The Delta topography is shown for a small distance of grid nodes dx on 

the left and for a larger dx on the right. Despite of a constant height of load, the load 

effect enlarges with increasing of the distance dx . 
 

 

Synthetic Topography 

I compute the maximum deflection of the flexure curves from the FFT and from the 

analytical solution with the same synthetic topography (Table 2.5.5). Both flexure curves are 

independent on mn,  from the input grid. The flexure curves from the FFT are independent 

on dydx,  for a synthetic topography.  

 

calculated with analytical solution calc. with Fourier transform 

grid node 

number 
mn,  

grid 

distance 

dydx,  

 

maximal 

value 0w  

multiplied with 

dxdyfact ⋅=  

max. value 0w  

grid node 

number 
 mn,  

grid 

distance 

dydx,  

 

maximal 

value 0w  

220  5000  71098.4 −⋅−  11025.1 ⋅−  260  5000  11024.1 ⋅−  

550  2000  61011.3 −⋅−  11025.1 ⋅−  650  2000  11024.1 ⋅−  
 

Table 2.5.5) The maximum value of deflection of the flexure curves is calculated for  a 

synthetic topography. 

 

The multiplication of the analytical solution with the distance of the input grid nodes leads to 

the same result for the maximum deflection. Accordingly I come to the following conclusions 

for the analytical solution: 

 
1. the analytical solution is dependent on the input grid of topography 

2. the flexure curves must be calibrated, before start of the convolution  

3. the calibration is done by multiplication with the distance of nodes dydx,  for all input 

grids (e.g. point load, synthetic topography and pseudo topography) 

4. the output of the flexure curves are different from the output of the CMI surface 

(additional to the shift due to the reference depth) 
 

This calibration by multiplication of the analytical solution is implemented within the 

computer software “coto” (described in Chapter 2.6). Once again the solution from “coto” is 

to be compared with the flexure curves from the FFT: The graphical comparison of that is 
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presented in the appendix (Chapter 5.2.2). A very good agreement is obtained with both 

flexure curves. In view of that the verified analytical solution is applicable on a real 

topography.  

 

2.5.3 Boundary cases for elastic thickness  
 

A new solution introduced, has to fit into well-accepted theories. Since the classical Airy 

model for local compensation corresponds to a flexural model where the plate has no 

strength (see Chapter 1.1.4. , Fig. 1.2.4), I inspect the analytical solution for a small value of 

elastic thickness  kmTe 1= .  Furthermore I conclude (see Chapter 1.1.4) that with an increase 

of the elastic thickness the undulation of the CMI lowers. Therefore with higher values of the 

elastic thickness parameter the surface must converge to a flattened plane with a constant 

value of the CMI depth.  I set these ideas into application with the analytical solution for a 

real topography.  If the analytical solution is comparable to these boundary cases, then an 

evidence for the correct calculation of the analytical solution is found. Firstly the CMI depth 

variation is calculated with the analytical solution for a small elastic thickness value 

kmTe 1= , with the load model of the Pacific Ocean as input grid (for further investigation see 

Chapter 3.1). The comparison of the two CMI surfaces calculated with the analytical solution 

and with the Airy solution is displayed in Fig. 2.5.3.   

 
Figure 2.5.3) The CMI surfaces are computed with the analytical solution for 

kmTe 1= and with the Airy solution. The input grid is the load model of the Pacific Ocean 

in both cases. 
 

The Airy solution is computed with the software “INTERP” (LAHMEYER 1989) with FFT 

techniques using the same input parameters. Both CMI surfaces are similar to each other 

showing the same flexural behavior. Subsequently the difference-grid of both CMI’s is 

calculated and overlain on the bathymetry. The RMS values range below km5.0 , the median 

difference value is km15.0 with a standard deviation of 48.0  (Figure 2.5.4).   
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Figure 2.5.4) The difference values of CMI depth are overlain over the bathymetry.  

 

Since the greater CMI differences occur in the area of the seamounts it is verified that the 

analytical solution is converging to the Airy solution. Subsequently, the analytical solution for 

high elastic thickness values is investigated. As an example the area of the Southern Andes is 

chosen (see Chapter 3.3). Figure 2.5.5 illustrates the CMI undulation, computed with the 

analytical solution with different eT values and with a reference depth of km30 . As a result 

CMI surface flattens with an increase of the elastic thickness value; the undulation decreases 

and the CMI surface converges to a plane of one constant depth. 
 

 
 

Figure 2.5.5) The CMI surfaces are calculated with the analytical solution with 

increasing values of the elastic thickness. Along with increasing of the eT  values the CMI 

depth undulations decrease.  
 

The maximum and minimum values of the CMI depths are investigated (see Table 2.5.6). 

Conclusively the value of the deflection converges to the value of the reference depth (e.g. of 

km30  in the case of the Southern Andes). 
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Output CMI Input parameter 

elastic thickness eT  maximum depth w minimum depth w difference 

100 -31,3572 -28,0501 -3,30706 
400 -30,185 -29,7332 -0,4518 
800 -30,0662 -29,9045 -0,16163 
3200 -30,0083 -29,988 -0,02034 
9000 -30,0018 -29,9975 -0,00432 

 

Table 2.5.6) The maximum/minimum value of the depths of the CMI’s are compared 

for various values of the elastic thickness. 
 

2.5.4 Comparison with Vening-Meinesz solution 
 

Vening-Meinesz used a modified form of the second Hertz’s equation. Since the analytical 

solution was developed out of all three Hertz’s solution, it should approach the Vening-

Meinesz solution. The analytical solution includes the solution for the maximum deflection 

0w  at the point of origin leading to a higher resolution for even small values of the input 

topography.  In opposition to this the Vening-Meinesz solution (Chapter 1.1.3) solved in the 

frequency domain (BANKS ET AL. 1977) , results in instabilities with small values of the input 

topography. 

 
Figure 2.5.6) The CMI estimated from FFT (on the left side) is compared with the 

CMI computed with the analytical solution (on the right side) for the same input 

parameter.  
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Furthergoing investigations are done for the topography of the Central Andes (see Chapter 

3.2). A CMI is computed with the FFT with the software “INTERP” (LAHMEYER 1989) with a 

rigidity of NmD 24104.2 ⋅= and with the same isostatic model parameters: 
3/3380 mkgm =ρ , 3/2900 mkgc =ρ , 3/1030 mkgw =ρ  and a reference depth of km30  

(shown in Figure 2.5.5). A good agreement with both CMI surfaces is found:  The difference 

of the two output grids ranges between kmwkm 65.065.0 ≤∆≤−  (see Fig. 2.5.6). In view of 

the fact that the values of the CMI depths range from kmwkm 852 ≤≤−  a very good 

conformity between the analytical solution and the Vening-Meinesz solution is obtained.  

 
Figure 2.5.7) The difference-grid between the CMI surfaces is computed with the 

Vening-Meinesz solution and the analytical solution. The values of differences range 

between -0,65 km (pink colored) and + 0,65 km (blue colored) .  
 

2.5.5 Conclusion 
 

The flexure curves calculated with the analytical solution are equivalent to the inverse 

Fourier transform of the flexural response function. It is necessary to multiply the analytical 

solution with the factor dydxfact ⋅= of the distance of the input grid nodes. The analytical 

solution is verified by comparison with the flexure curves from FFT for a point load and a 

synthetic topography. I also demonstrate for a real topography that the analytical solution 

approaches to the Vening-Meinesz solution. Therefore evidence for the correct calculation of 

the analytical solution is found. 

Furthermore I show that this new solution is fitting into the well-accepted theories. For small 

values of eT  the solution converges to the Airy solution; for high values of eT  the undulation 

of the CMI surface decreases.  
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2.6 SOFTWARE CONCEPT 
 

2.6.1 Introduction 
 

In the following the results of the analytical solution are investigated. The application for 

various study areas is represented in a general and phenomenological form. The focus is not 

on the location and the geological features, but spots on the behavior of the analytical 

solution in order to understand the general principia. The study areas are considered in 

detailed in Chapter 3. The float chart (Fig. 2.6.1) illustrates the single steps during the 

computation of the elastic thickness/flexural rigidity variation. The software developed by 

BRAITENBERG (PERS. COMM.) convolves the flexure curves with the input load grid in order to 

estimate the crust mantle interface: This so called “flexure CMI” corresponds to a specific 

elastic thickness value. Thereby the flexure curves are the inverse Fourier transform for a 

point load.  

 
Figure 2.6.1) Shown is a float chart for estimation of elastic thickness or flexural 

rigidity, respectively, due to comparison of the gravity CMI and the flexure CMI. 
 

The new analytical solution (see Chapter 2.3) was implemented in this computer software in 

order to calculate the flexure curves.  In this software, as a further development called “coto”, 

the analytical solution is multiplied with the grid distance dydx, .  
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Additionally, the observed gravity values are used in order to derive a so-called “gravity 

CMI”. This can be done by gravity inversion with the Parker algorithm (see Chapter 1.3) or by 

3D density modeling with the software IGMAS (GÖTZE & SCHMIDT 1998). 

In view of the fact that every flexure CMI corresponds to a specific value the elastic 

thickness/flexural rigidity distribution is indirectly obtained by comparison of the flexure 

CMI’s with one reference gravity CMI. In order to compute this comparison I designed the 

software “gridrig”.  
 

2.6.2 Flexure curves and CMI  
 

The computer software “coto” calculates the flexure curves with the analytical solution. The 

calculation time is 3-4 days  (e.g. for a computer with 512MB Ram and a Pentium 4 CPU with 

2,53 GHz) for each study area, described in Chapter 3. Thereby the function of the flexure 

curve is compound of the three analytical solutions (see Chapter 2.3).  Then this flexure curve 

is convolved with the input grid (e.g. topography, load model, pseudo topography). The 

convolution of the flexure curve with the input load grid is done for each grid node within a 

radius of convolution. The result is a flexure CMI that corresponds to a specific elastic 

thickness value and a reference depth.  Fig. 2.6.2 shows the flexure CMI for an input grid of a 

point load with kmh 1=  and kmTe 20= . 

 
Figure 2.6.2) The CMI undulation for a point load is calculated with the elastic 

thickness value of kmTe 20= .  

 

2.6.3 Radius of convolution  
 

The computer software “coto” requires as input parameter the radius of convolution. The 

accuracy of the flexure CMI increases along with the radius of convolution.  However, 
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regarding a rapidly increasing calculation time of the computer, it is important to choose the 

radius as small as possible but sufficiently large for producing significant results. For this 

reason I investigate the radius of convolution. Consequently, numerous flexure CMI’s are 

calculated with different eT  values and a radius of convolution kmR 250;200;100= . The 

flexure CMI’s are compared with a reference CMI, computed with a radius of convolution of 

kmR 300= . Fig. 2.6.3 shows the RMS values of the difference grids of the flexure CMI’s and 

of the reference CMI. 
 

 
Figure 2.6.3) The RMS-value of the difference between reference CMI and flexure CMI 

is calculated for a point load as a function of radius of convolution. 
 

Conclusively, the radius of convolution is dependent on the elastic thickness value.  In view of 

this fact, I aim to use a function describing this dependency. Therefore the results are used 

from the investigation in Chapter 2.3 (see Eq. 2.3.13). Thereby the radius of convolution is 

equal to the distance of the first bulge. Various values for the radius of convolution are given 

in Table 2.6.1 for a density contrast at the CMI 3/644 mkg=∆ρ and 3/480 mkg=∆ρ . 

 

Elastic 

thickness 

Radius of convolution [ ]mR β⋅= 88.3  

for density contrast 

[ ]mTe  3/644 mkg=∆ρ  3/480 mkg=∆ρ  

1000 23751 25554 
10000 133561 143701 
20000 224622 241675 
70000 574783 618418 

Table 2.6.1) The radius of convolution was calculated with different [ ]mTe  and density 

contrasts. 

                       



2.6 SOFTWARE CONCEPT  

 54

For calculating an elastic thickness value of kmTe 1=  a radius of convolution kmR 23=  is 

required; for a higher elastic thickness value of kmTe 70=  a radius of convolution of 

kmR 574=  is necessary using the density contrast 3/644 mkg=∆ρ . In the case the area of 

input load is to small , the result of the flexure CMI is not significant. The area of the load has 

to be chosen larger than the area of investigation, by the amount of the radius of convolution. 

The analytical solution leads to the advantage that the radius of convolution can directly be 

calculated as function of density contrast and elastic thickness. 

 

 2.6.4 Iterative estimation of elastic thickness  
 

The computer software  “coto” calculates one flexure CMI corresponding to one eT value over 

the area of investigation with the radius of convolution. Hence, for kmTe 451K= , forty-five 

different flexure CMI’s are computed. As example the area of the Pacific Ocean (Chapter 3.1) 

is chosen. With increasing of the elastic thickness value, the CMI undulation decreases  (see 

Figure 2.6.4).  

 
Fig 2.6.4) The flexure CMI was calculated for kmTe 30;5;1= . With increasing of eT  the 

CMI depth variations becomes smaller.  
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The difference of the flexure CMI is calculated with a reference CMI. Thereby the reference 

CMI is estimated by independent gravity observation. The software “gridrig” provides the 

best fitting flexure CMI (see float chart Fig. 2.6.5). The calculation time is 5-8 days  (e.g. for a 

computer with 512MB Ram and a Pentium 4 CPU with 2,53 GHz). 
 

 
Figure 2.6.5) The float chart describes the software “gridrig”, which calculates the difference grids 

and provides the elastic thickness distribution. 

 

Given CMI and computed flexure CMI are divided in smaller areas with side length L  (e.g. 

kmL 60= ). For each of these and each flexure CMI a difference grid is computed. The 

criterion of choice is the best fitting flexure CMI, accordingly the Root Mean Square 

( RMS value) is calculated. The grid with the smallest RMS  provides the corresponding elastic 

thickness value. Thus a constant eT value is given for each area. Each area has maxmin / xx  and 
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maxmin / yy  corner. The output grid of spatial distribution of elastic thickness or equivalent 

flexural rigidity is interpolated out of these data. 
 

2.6.5 Elastic thickness distribution 
 

The elastic thickness is calculated for a single area with side length L . The solution for a side 

length L  , which converges to zero , is called “point solution”.  

 
Figure 2.6.6) Shown are the results (black cross) of the solution in a point. As example 

the area of Central Andes was chosen.  
 

In the following the solution of elastic thickness/flexural rigidity at a point is considered. I set 

as a criterion that the difference of the flexure and gravity CMI is smaller than mw 650≤∆ . 

The Figure 2.6.6 represents the results for the area of Central Andes as example (Chapter 

3.2). For one point ),( yxp  a various number of elastic thickness values results. Obviously, 

the solution of the elastic thickness/flexural rigidity variation is equivocal. Hence, I obtain 

the difference between flexure and gravity CMI over a surface. In addition, a solution of eT  

values for a surface intuitively is better understandable than for a point (PERS. COMM. GÖTZE). 

For this reason, it is essential to use the computer program “gridrig” (Fig. 2.6.3) for 

separating of the flexure CMI’s into smaller surfaces. This leads to the question, if the result 

of eT  is dependent on the grid size.  Consequently, the results of eT  distribution will be 

compared for different side lengths L .  

The DTe /  distribution (Figure 2.6.7) calculated with a grid size kmL 340=  corresponds to an 

average value of the smaller grid size with kmL 60= . The conclusion is, that the solution is 

independent on the grid size or side length L , respectively. Merely smaller grid sizes lead to 

higher resolutions of eT distribution, but not to differing results. 

 
 



CHAPTER 2               THEORETICAL BASICS AND DEVELOPMENT OF THE ANALYTICAL SOLUTION  

 57

                                

 
Figure 2.6.7) The results are compared for different grid size with kmL 340=  and 

kmL 60= . A smaller grid size leads to a higher resolution of eT .  

 

2.6.6 Reference depth  
 

Because the solution for the DTe /  distribution is dependent on the reference depth (chapter 

1.3, chapter 2.5) , the correct choice of this parameter is essential.  

 

Figure 2.6.8) The results for different reference depth are compared with the criterion 

of difference value kmw 1≤∆  for a point solution (black crosses).   
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One possibility to prove the correct choice of the reference depth is the amount of results 

from the point solution. I set as criterion that the difference of the flexure and gravity CMI is 

kmw 1≤∆  and plot the numbers of results for different values of the reference depth (Fig. 

2.6.8). As an example the area of Central Andes (see Chapter 3.2) is chosen, for a reference 

depth of km30  and km40 . Additionally, the results of investigation of the reference depth are 

used (Chapter 2.5). Furthermore the reference depth can be estimated from independent 

information (e.g. seismic, seismology). 

In Fig. 2.6.9 an example is shown for the area of the Pacific Ocean (see Chapter 3.1). The 

reference CMI is estimated by gravity inversion for a density contrast 3/450 mkg=∆ρ and a 

reference depth of km30 . The flexure CMI’s are calculated for the same parameters but with 

different reference depths of km30  and km28 . Obviously, the results for the elastic thickness 

variation are not strongly differing (see Fig. 2.6.9). The same features are recognized, but in 

the case of reference depth of km28  the resolution is lower. Furthermore, higher RMS values 

of difference are obtained for a reference depth km28 . 

 

 

 
Figure 2.6.9) The results of elastic thickness variation and RMS values of the difference 

grid between flexure and gravity CMI are compared for different reference depths.   
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2.7 COMPARISON WITH FINITE ELEMENT MODELING 
 

The finite element (short: FE) method is a powerful tool for the numerical simulation for 

example of mechanical problems and dynamic processes. An important advantage of the FE 

method is the flexibility to deal with complex geometries and boundary conditions. The 

variation of specific parameters and the determination of their relevance can easily be done. 

Another good advantage is that forward modeling is possible and the evolution of structures 

can be predicted. 

A disadvantages of the FE method might be the way in which the problem is modeled: For 

example the approximations in the geometry or material properties, and the method of 

discretization, i.e. the number and type of elements used, both effect the accuracy of the final 

result (FAGAN 1992).  

In this chapter the analytical solution is compared with the solution using FE modeling. 

Therefore various FE models were constructed by A. KELLNER (PERS. COMM.) with the 

program package EMRC-NISA and ABAQUS. The FE  models are two dimensional, whereby 

the x  direction is related to the x -coordinate and the z direction is associated to the depth. 

The displacement in z -direction corresponds to the deflection w  for the analytical solution. 

The borders on the right and left side of the FE model are fixed ( 0=∆=∆ zx ). This boundary 

condition is essential to avoid an escape of grid structures.  

Due to the fact that I want to compare the FE solution with the analytical solution I have to 

make assumptions about the underlying foundation. The analytical solution is derived from 

the differential equation working for an elastic foundation (see Chapter 2.1). 

 
Figure 2.7.1) The displacement [ ]m  of the single elements of the FE model no.8 was 

calculated with gravity , but without load. 
 

This concept of an elastic foundation is realized by springs locating at the bottom of the FE 

model with a spring constant k . Thereby k  is calculated with areagk m ⋅⋅= ρ . The 

analytical solution and the FE solution is calculated for the same input parameters: density of 

crust 3/2800 mkgc =ρ , density of mantle 3/3300 mkgm =ρ , Young's Modulus PaE 1110=  

and Poisson's ration 25.0=ν . The displacement of the single elements of FE model no.8 is 

calculated with gravity but without a load (Figure 2.7.1). 
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Figure 2.7.2) The displacement in [ ]m  of the single elements of the FE model no.15 

was calculated for a point load and without gravity. 
 

Obviously a deflection occurs only due to the presence of gravity. Unfortunately it was not 

possible to calculate a FE model with gravity and a point load (PERS. COMM. KELLNER). 

Therefore the deflection due to a load is estimated without gravity.  As an example the model 

no.15 is chosen, calculated with the height of point load of kmh 1= (Fig. 2.7.2). 

 

 
Figure 2.7.3) The displacement in [ ]m  of the bottom of the FE model No.15 is 

compared with the analytical solution for a point load. 

 

Figure 2.7.3 shows the displacement of the bottom from the FE model No.15 , compared with 

the analytical solution computing with the same input parameters, except with gravity. The 

graph of the displacements shows the typical behavior of the flexure curves for a point load 
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(see Chapter 2.5). The solutions are comparable. The values for deflection move in the same 

range.  

For a gravity value of 2/10 smg = and an input grid of point load with height kmh 1= , and 

grid node distance kmdydx 5==  the depth values of the flexure CMI range between 

mwm 86 1065.21000.2 −− ⋅≤≤⋅− . The displacement values for the FE solution range between 

mwm 86 1024.51011.2 −− ⋅≤≤⋅− . In view of the fact that the deflection of the FE model is 

calculated in absence of gravity, I consider the flexure of the analytical solution for a small 

gravity value. For an assumed gravity value of 2/1 smg =  and an input grid of point load with 

height kmh 1= , the maximal depth value of the flexure CMI is mw 6
0 1050.2 −⋅−=  (see Fig. 

2.7.4). Conclusively, the FE solution is reproducible by the analytical solution. Some 

uncertainties appear because the deflection of a point load topography is dependent on the 

grid distance of the input grid (discussed in Chapter 2.5).  Therefore it would be useful to 

operate with a synthetic topography in the FE modeling. Additionally, an inaccuracy occurs 

due to the two dimensionality of the FE model. Therefore the point load would correspond to 

a line load (PERS. COMM. BRAITENBERG & KUKOWSKI).  However, the analytical solution is 

comparable with the FE solution. The graph of deflection shows the same behavior as the 

analytical solution, for example the typical occurrence of the bulge (compare in Chapter 2.3 

and 2.5). 

 
Figure 2.7.4) The deflection was calculated with the analytical solution for a point load 

and gravity 2/1 smg = . 

 

2.7.1 Influence of input parameters 
 

The following investigations were prepared in order to compare the principles of calculation 

of the deflection and to explore the influence of the density contrast and the change of 

Young's modulus, not focusing on the comparison of the exact values of 

deflection/displacement with the results of the analytical solution. 
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Figure 2.7.5) The settings of the FE models No.75, No. 79, No. 93 and No. 94. 

 

The FE model consists of 2 layers. At the bottom acts a restoring force of NF 91006.1 −⋅= . 

The right and the left side of the model is fixed (Figure 2.7.5). The first layer consists of 

material 1 with a density of 3
1 /2800 mkg=ρ ; material 2 (of the second layer), has a density 

of 3
2 /3300 mkg=ρ . Both materials have the same Young's modulus PaEE 11

21 10==  for 

the elastic case with gravity 2/10 smg =  the displacement is calculated. In the following the 

displacement of the elements are plotted for 7 node series corresponding to 7 different 

depths. Thereby series no.4 corresponds to the depth kmz 5.17=  for the undeformed FE-

model (see Fig. 2.7.5) related to the interface between the 2 layers. The blue colored graph 

corresponds to the bottom of the FE model with a depth of kmz 35= . The displacement was 

calculated in the presence of gravity without a point load. As an example, FE model no. 75 is 

presented (Figure 2.7.6).  

 
Figure 2.7.6) The displacement was calculated without a point load, the cyan line 

corresponds to the depth kmz 5.17=  and represents the border between the 2 layers. 

The blue graph corresponds to the base of the model. 
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Figure 2.7.7) The displacement was calculated for a point load. The cyan colored line 

corresponds to the depth kmz 5.17=  and the blue colored graph corresponds to the 

base of the model at the depth kmz 35= . 

 

Model no.79 is computed with the same input parameters. Additionally the displacement of 

the 7 node series is calculated for a point load with height kmh 1=  (Fig. 2.7.7) in absence of 

the gravity. I use this model for comparison with the model no. 75.  The difference between 

the FE model no. 79 and 75  is calculated. The resulting graph corresponds to a flexure due to 

a load (Fig. 2.7.8).   

 
Figure 2.7.8) The difference in displacement of the elements is calculated of FE models no.79 and 

75, corresponding to the flexure due to a point load with height of kmh 1= . 
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Obviously, the flexure is almost equal for every node series (except in the point of the actual 

load). The flexure does not only occur at the interface between the 2 layers, but also at the 

base, where another restoring force is acting. I could interpret this flexure as flexure of a 

single layer model. Supposedly, I can summarize two layers of different densities to one layer 

if they have the same Young's modulus.  

 
Figure 2.7.9) The displacement was calculated without a point load for a 1 layer model.  

 

As evidence I consider a single layer model with the same settings (see Fig.  2.7.5); as 

example FE model no. 93 is chosen (Fig. 2.7.9). The displacement of the node series is 

calculated without a point load for a 1-layer model with a density 3
1 /2800 mkg=ρ . The 

curves of displacement show the same behavior as for the 2-layer model no.75, except that 

the amount of deflection differs.  

 

The FE model no. 94 is computed with point load of height kmh 1=  and with the same input 

parameter as model No. 93 (Fig. 2.7.10).  Compared to the 2-layer model no. 79, the curves of 

displacement show the same behavior, but the amount of deflection differ. Therefore the 

amount of deflection is dependent from the density contrasts between the two layers.  
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Figure 2.7.10) The displacement is calculated with a point load, for a 1-layer model. 

 

However, considering the difference of displacement between model no. 93 and no. 94, the 

deflection due to a point load is obtained. The displacement is equivalent to the displacement 

of the 2-layer model (see Fig. 2.7.11).  
 

 
Figure 2.7.11) The difference in displacement for FE models No. 93 and 94 corresponds 

to the flexure due to a point load of height kmh 1= . 
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Summarizing the results (Table 2.7.1) is concluded that the amount of 

deflection/displacement differs for a 1-layer or 2-layer model in dependence of the density. 

The difference between the displacements of the FE models calculated with and without load 

corresponds to the flexure due to a point load. The resulting graph is independent of the fact, 

if the calculation is done for a 1-layer or 2-layer model. 
 

name load max. displacement [ ]mw0 difference [ ]mw0∆   

model 75 no -370.1 

2 
 

la
ye

r 

model 79 yes -486.9 
-119 

 

model 93 no -282.1 

1 
 

la
ye

r 

model 94 yes 397.1 
-119 

 
 

Table 2.7.1) The results of FE-modeling are summarized for the models, which consists 

of 1 and 2 layer, respectively. 

 
Supposedly, it is sufficient to handle the layers with different densities like one single plate 

with one thickness and an average density.  The resulting deformation is comparable with the 

deformation occurring for a single plate (1 layer), if the Young's modulus of the 2 layers with 

different densities is equal.  

Therefore I will investigate the deformation for a variation of Young's modulus. The following 

FE-models have the same settings; but the material 1 for the first layer has a Young's 

modulus PaE 11
1 10=  and the material 2 has PaE 13

2 10= . The calculation is done without 

gravity. In the FE model no. 44 the displacement is calculated with a force NF 1010= , 

instead of a point load. In contrast to the previous investigations is the deformation of a 2-

layer model not comparable with the deformation of a single plate (1-layer model), if the 

Young's modulus changes (Fig. 2.7.12). 

 
Figure 2.7.12) The displacement of the elements from FE models No. 44 corresponds 

to the flexure due to a force.  



CHAPTER 2               THEORETICAL BASICS AND DEVELOPMENT OF THE ANALYTICAL SOLUTION 

 67

 

At the interface between the 2 layers the form of the flexure is changing. In view of the larger 

Young's modulus of the second layer ( 12 EE > ) decrease the amount of deflection or 

displacement, respectively.  

 
Figure 2.7.13) The displacement of the elements from FE models No. 47 was calculated 

with 5 forces of equal amount.  
 

The following FE models are calculated with the same input parameters, but with different 

forces varying in form and amount. The displacement of the FE model No.47 is calculated 

with 5 forces with an amount of NF 1010= (Figure 2.7.13). At the interface between the 2 

layers a change in the amount of deflection/displacement is obtained, caused by the increase 

in Young's modulus of the second layer.  

 
Figure 2.7.14) The displacement of the elements from FE models No. 51 was computed 

for 5 different forces. 
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In FE-model No.51 the displacements is calculated with the same input parameters 

(compared to model No.47), but with 5 forces of different amount ranging from 

NF 10
max 10=  to NF 8

min 10=  (Fig. 2.7.14).  A superposition of the 5 forces is obtained. At the 

interface between the two layers a decrease in the deflection is obtained caused by the larger 

E modulus of the second layer. 

 
Figure 2.7.15) The displacement for FE models No. 55 was computed for 5 different 

forces.  
 

FE model No. 55 illustrates the propagation of the „shape“ of the forces in the displacement 

(Fig. 2.7.15): The maximal deflection occurs in the first layer where the maximal force is 

acting. In the second layer the deflection decrease due to the larger Young's modulus of the 

material 2.  The value for the maximal deflection of the first layer moves in the same number 

range as model No. 44.  The results for the maximum displacements of the four FE models 

are summarized in Table 2.7.2. 

 

name F  or [ ]NFF minmax /  max. displacement [ ]mw0  

model 44 -1010 -2.75 
model 47 -1010 -27.11 
model 51 -1010 / -108 -6.84 
model 55 middle -1010 / -108 -4.18 

 
Table 2.7.2) The values of maximum displacements are summarized for different FE 
models. 
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2.7.2 Conclusion  
 

The results of the FE modeling lead to conclusions concerning the calculation of the flexure 

of a thin plate with the analytical solution. It is assumed that the first layer with a density of 
3

1 /2800 mkg=ρ  represents the crust and the second layer with a density of 3
2 /3300 mkg=ρ  

the mantle and a superposition of forces. Furthermore I can conclude that the propagation of 

the deflection between the crust and mantle interface is dependent from the Young's 

modulus. The change of Young's modulus drives the form of deformation.  
 

The question, if the deflection of the CMI or the deflection of the lithosphere/asthenosphere 

boundary (short: LAB) is considered, dependents from the depth at which the Young's 

modulus changes. I can interpret the general concept of calculation of a flexure, that with the 

reference depth the calculated flexure-surface is shifted at the depth where the change of 

Young's modulus is assumed. Therefore the calculated flexure is valid at one hand for the 

CMI and at the other hand for the LAB.  If the Young's modulus of the crust and upper 

mantle is equal, than the crust and upper mantle deforms like one single plate. The density 

contrast drives only the amount of deflection or displacement, respectively.   

 
Because of the complex procedure required for a FE modeling, further investigation are not 

made. Especially the consideration of all ideas is unfortunately not possible in the frame of 

this thesis. 
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