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We study the effect of a magnetic field in the Kondo regime of a double-quantum-dot system consisting of a
strongly correlated dot (the “side dot”) coupled to a second, noninteracting dot that also connects two external
leads. We show, using the numerical renormalization group, that application of an in-plane magnetic field sets
up a subtle interplay between electronic interference, Kondo physics, and Zeeman splitting with nontrivial
consequences for spectral and transport properties. The value of the side-dot spectral function at the Fermi
level exhibits a nonuniversal field dependence that can be understood using a form of the Friedel sum rule that
appropriately accounts for the presence of an energy- and spin-dependent hybridization function. The applied
field also accentuates the exchange-mediated interdot coupling, which dominates the ground state at intermediate
fields leading to the formation of antiparallel magnetic moments on the dots. By tuning gate voltages and the
magnetic field, one can achieve complete spin polarization of the linear conductance between the leads, raising
the prospect of applications of the device as a highly tunable spin filter. The system’s low-energy properties are
qualitatively unchanged by the presence of weak on-site Coulomb repulsion within the second dot.
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I. INTRODUCTION

Electron correlations in quantum-dot structures result in
many fascinating effects that can be probed in detail with
remarkable experimental control of system parameters.1–3 Per-
haps one of the most interesting regimes occurs when electrons
confined in the dot acquire antiferromagnetic correlations with
electrons in the leads, giving rise to the well-known Kondo
effect.4 The simplest realization of this phenomenon in a single
quantum dot is characterized by just one low-energy scale,
set by the Kondo temperature, which controls (among other
features) the width of a many-body resonance at the Fermi
energy.1,4 Recent experimental5–10 studies of the Kondo effect
in multiple quantum dots have revealed a complex competition
between geometry and correlations, making evident that these
structures provide a flexible setting in which to explore much
novel physics.

In this context, double-quantum-dot arrangements exhibit
striking manifestations of Kondo physics, with conductance
signatures of these effects predicted to show up in realistic
experimental setups. A telling example is the interplay of
Kondo physics and quantum interference in “side-coupled”
or “hanging-dot” configurations,11–19 leading to a variety
of interesting “Fano-Kondo” effects.20 A rather unexpected
situation arises when a small, strongly interacting “dot 1”
is connected to external leads via a large “dot 2” that is
tuned to have a single-particle level in resonance with the
common Fermi energy of the leads.21–23 In this configuration
the Kondo resonance, which normally has a single peak at
the Fermi energy, splits into two peaks—a behavior that
can be understood as a consequence of interference between
the many-body Kondo state in dot 1 and a single-particle-
like resonance that controls (or “filters”) its connection to
the leads.21–24 The magnitude of the Kondo peak splitting

is determined by the balance of several important energy
scales in the problem: the width and position of the active
single-particle level in dot 2, the height of the effective
single-particle resonance set by the interdot coupling, and the
many-body Kondo temperature (determined by the preceding
energy scales in combination with the dot-1 level-position and
interaction strength). This filtering of the leads preserves a
fully screened Kondo ground state with a Kondo temperature
that rises with increasing interdot coupling.

In this work, we investigate the effects of an external in-
plane magnetic field on such a double-quantum-dot system in
the side-dot arrangement. The field—which introduces another
energy scale, the Zeeman energy—is known to be detrimental
to the Kondo state in single-dot systems.1,25–28 Using numeri-
cal renormalization-group methods,26,29 we study the interplay
between the different energy scales and discuss the behavior of
the Kondo resonance in the presence of competing interactions.
This interplay reveals itself in the fundamental Fermi-liquid
properties of the system, such as the variation with magnetic
field B at zero temperature of the Fermi-energy (ω = 0)
value of the side-dot spectral function A1(ω,T ). Instead of
the usual monotonic decay27,28 of A1(0,0) with increasing
B we find a markedly nonuniversal behavior, where A1(0,0)
passes through a maximum at a nonzero value of the field. This
effective field enhancement of the Kondo spectral function is a
consequence of the side-dot geometry. The same behavior can
also be understood using an appropriate form of the Friedel
sum rule, which predicts parameter- and field-dependent phase
shifts that impart the unusual nonmonotonicity to the variation
of A1(0,0) with B.

In addition, we show that the competition between Zeeman
splitting of the dot levels and Kondo screening results in a
dominant exchange-mediated antiferromagnetic coupling of
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the dots over a range of moderate magnetic fields, before
both dots become fully polarized at higher fields. Finally,
we identify signatures of the aforementioned phenomena in
the transport properties. A key result is the generation of
spin-polarized currents through the device, which can be tuned
by adjusting gate voltages to achieve total polarization.

The remainder of the paper is organized as follows: In
Sec. II we describe the effective Anderson impurity model
for the double-quantum-dot system. Section III presents the
low-energy spectral properties, while Sec. IV interprets the
nonuniversal behavior of A1(ω = 0,T = 0) vs B in terms
of the Friedel sum rule. The transport properties, including
spin polarization, are explored in Sec. V. Concluding remarks
appear in Sec. VI.

II. DOUBLE-QUANTUM-DOT SYSTEM

The system under study, which is depicted schematically in
Fig. 1, contains two quantum dots. Dot 1 has a large Coulomb
repulsion U1 when its single active energy level is doubly
occupied. Dot 2 has negligible electron-electron interactions
(U2 � 0) and one active level that can be tuned by gate voltages
to be at or near resonance with the common Fermi energy
εF = 0 of left (L) and right (R) leads. Electrons can tunnel
between dots 1 and 2 with tunneling matrix element λ, and
between dot 2 and lead � with tunneling matrix element V2�.

The system can be described by a variant of the two-
impurity Anderson Hamiltonian:

H = Hdots + Hleads + Hhyb, (1)

with

Hdots =
∑
i=1,2

(∑
σ

εiσ niσ + Uini↑ni↓

)

+ λ
∑

σ

(d†
1σ d2σ + H.c.), (2)

Hleads =
∑

�=L,R

∑
k,σ

ε�kσ c
†
�kσ c�kσ , (3)

and

Hhyb =
∑

�=L,R

V2�

∑
k,σ

(d†
2σ c�kσ + H.c.). (4)

FIG. 1. (Color online) Schematic representation of the side-
coupled double-quantum-dot system. The dot QD1 has a strong
Coulomb interaction U1 and is coupled only to the second dot, labeled
QD2. The latter dot has negligible local interactions (i.e., U2 � 0) and
the energy of its active level is tuned to allow tunneling at or near
resonance with the Fermi level of the left (L) and right (R) leads.

Here, diσ annihilates an electron in dot i with spin z

component 1
2σ (σ = ±1 or equivalently ↑,↓) and energy εiσ =

εi + 1
2σgiμBB; niσ = d

†
iσ diσ is the corresponding number

operator; c�kσ annihilates an electron in lead � with spin
z component 1

2σ and energy ε�kσ = ε�k + 1
2σgcμBB. The

magnetic field B ẑ with B � 0 is assumed to lie in the plane
of the two-dimensional electron gas in which the dots and
leads are defined, so that it produces no kinematic effects and
enters only through Zeeman level splittings. This Hamiltonian
differs from a generic two-impurity Anderson model through
the absence of dot-1 hybridizations V1�, a consequence of the
side-dot geometry. Throughout the greater part of the paper,
we also take U2 = 0, a case that is particularly convenient
for algebraic analysis. The effect of nonvanishing dot-2
interactions is addressed at the end of Sec. V.

Without loss of generality, we take all tunneling matrix
elements to be real. We consider local (k-independent) dot-lead
tunneling and assume that the dots have equal effective g

factors g1 = g2 = g, simplifications that do not qualitatively
affect the physics. The leads are taken to have featureless
band structures near the Fermi energy, modeled by the flat-top
densities of states ρL(ω) = ρR(ω) = ρ(ω) = (2D)−1	(D −
|ω|) where D is the half-bandwidth and 	(x) is the Heaviside
function. The equilibrium and linear-response properties of
the system may be calculated30 by considering the coupling of

dot 2 via hybridization matrix element V2 =
√

V 2
2L + V 2

2R to
a single effective conduction band described by annihilation
operators ckσ = (V2LcLkσ + V2RcRkσ )/V2 and a density of
states ρ(ω). The Zeeman splitting of this conduction band
produces only very small effects near the band edges, so for
convenience we set the bulk g factor to gc = 0 throughout
what follows.

The primary quantities of interest in this work are the
retarded dot Green’s functions Giσ (ω,T ) = 〈〈diσ ; d†

iσ 〉〉ω for
i = 1, 2, where 〈〈A; B〉〉ω = −i

∫ ∞
0 〈{A(t),B(0)}〉eiωtdt and

〈· · · 〉 denotes an appropriate thermal average.31 In particular,
we are interested in the spectral functions Aiσ (ω,T ) =
−π−1ImGiσ (ω,T ) and the system’s linear (zero-bias) conduc-
tance, given by the Meir-Wingreen formula32 as G = ∑

σ Gσ

with

Gσ (T ) = 1

2
G0

∫ ∞

−∞
[−Im Tσ (ω,T )] (−∂f/∂ω) dω, (5)

where f (ω,T ) is the Fermi distribution function at temperature
T and G0 = [2V2LV2R/(V 2

2L + V 2
2R)]2(2e2/h) represents the

unitary conductance of a single channel of electrons multiplied
by a factor30,33 that varies between 1 (for V2L = V2R) and 0 (in
the limit of extreme left-right asymmetry of the dot tunneling).
In the side-connected geometry, the transmission is11,13,23

Tσ (ω,T ) = �2 G2σ (ω,T ), (6)

where �2 = πV 2
2 /2D. Thus,

2Gσ (T )/G0 = π�2

∫ ∞

−∞
A2σ (ω,T ) (−∂f/∂ω) dω, (7)

which reduces at zero temperature to

2Gσ (T = 0)/G0 = π�2A2σ (0,0). (8)
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In order calculate the dot spectral functions Aiσ (ω,T ) tak-
ing full account of the electronic correlations arising from the
U1 term in Eq. (2), we employ the numerical renormalization-
group (NRG) method, performing a logarithmic discretization
of the conduction band and iteratively solving the discretized
Hamiltonian. In evaluating the spectral functions, we perform a
Gaussian-logarithmic broadening of discrete poles obtained by
the procedure described in Ref. 34. At temperatures T > 0 we
use the density-matrix variant of the NRG,26 which has better
spectral resolution at high frequencies and nonzero fields.26,29

Although these schemes are not totally free from systematic
errors,35 the main results of the paper do not depend crucially
on the broadening procedure.

All numerical results were obtained for a symmetric dot 1
described by U1 = −2ε1, for dot 2 width �2 = 0.02, and for
NRG discretization parameter 
 = 2.5. Except where it is
stated otherwise, we consider a strongly correlated dot 1 with
U1 = 0.5 and situations in which a noninteracting dot 2 is
tuned to be in resonance with the leads, i.e., U2 = ε2 = 0. We
adopt units in which D = h̄ = kB = gμB = 1.

III. SPECTRAL PROPERTIES

In single quantum dots, the presence of an in-plane mag-
netic field26 or connection to ferromagnetic leads36 modifies
coherent spin fluctuations and weakens the Kondo effect.
The spin-averaged spectral function exhibits a Kondo-peak
splitting that grows with increasing applied field, while the
value of the spectral function at the Fermi energy decreases
monotonically. In this section we investigate the effects of a
Zeeman field on the side-dot spectral function in the double-dot
system defined in Sec. II.

Figure 2(a) shows the spin-averaged spectral function

A1(ω,T ) = 1
2 [A1↑(ω,T ) + A1↓(ω,T )] (9)

for a side-dot setup at zero temperature with U1 = 0.5 and
λ = 0.0627. The different curves, vertically offset for clarity,
correspond to four different values of B. For zero field
(the bottom curve), A1↑(ω,0) = A1↓(ω,0) = A1(ω,0), so each
spin-resolved spectral function shows a symmetric Kondo-
peak splitting due to the interdot coupling λ. With increasing
B, the split peaks merge into a single peak at ω = 0, clearly
seen for B = 0.03 (top curve). The left inset to Fig. 2(a) shows
in greater detail the convergence of the peaks near the Fermi
energy, with the maximum in A1 vs ω at ω = 0 being best
defined at B = 0.035, a field where, incidentally, the absolute
value of A1(0,0) exceeds that at B = 0 by nearly a factor of
two. For slightly larger fields, the central peak again splits
into two before all low-energy features become flattened out
at fields B � 0.07 [right inset to Fig. 2(a)].

The field-induced merging of the peaks in A1(ω,0) arises
from opposite displacements of A1↑(ω,0) and A1↓(ω,0)
along the ω axis. In a nonzero magnetic field, A1σ (ω,T ) �=
A1σ (−ω,T ) but A1↑(ω,T ) = A1↓(−ω,T ). This is illustrated
for B = 0.02 in Fig. 2(b), which also shows that the heights of
the two peaks in each spin-resolved spectral function A1σ (ω,0)
are no longer equal. Upon further increase in the field to
B = 0.04 [Fig. 2(c)], the double-peak structure is replaced by a
single peak near ω = 0 in each spin-resolved spectral function.
For larger values of B, these peaks move away from the Fermi
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FIG. 2. (Color online) (a) Spin-averaged dot-1 spectral function
A1 vs frequency ω at zero temperature for U1 = −2ε1 = 0.5, ε2 = 0,
λ = 0.0627, and (from bottom to top curve, offset for clarity) B = 0,
0.01, 0.02, and 0.03. The spectral function is multiplied by π�1 where
�1 = λ2/�2. Insets: Expanded views of A1 vs ω around the Fermi
level ω = 0 for the same system, with B ranging from 0 to 0.035
(bottom to top, curves offset for clarity) in steps of 0.005 in the left
inset, and from 0.04 to 0.07 (bottom to top, curves offset for clarity)
in steps of 0.01 in the right inset. (b) Spin-up (black squares) and
spin-down (red circles) dot-1 spectral functions A1σ (ω,T = 0) for
B = 0.02 with all other parameters as in (a). (c) Same as (b), except
for B = 0.04.

energy and the usual Zeeman-splitting of the Kondo peak with
decreasing amplitude becomes evident in the spin-averaged
spectral function [right inset in Fig. 2(a)]. This behavior can
be qualitatively understood by considering the evolution with
B of the level energies found37 in the “atomic limit” �2 = 0
where the dots are isolated from the leads.

We now focus on the field dependence of A1(ω = 0,T = 0),
a quantity that acts as a sensitive measure of the interplay of
the different energy scales in the problem: the single-particle
resonance width �2, the zero-field Kondo temperature TK , and
the Zeeman energy gμBB. Figure 3(a) plots π�(0) A1(0,0)
vs B/TK (taking gμB = 1) for six values of λ. The energy
scale �(0), introduced for normalization purposes, is defined
in Eq. (26) below. For now, it suffices to note that �(0) is pro-
portional to [1 + (B/2�2)2]−1; i.e., it is a decreasing function
of the field. The figure reveals two distinct regimes of behavior:
(1) For λ � 0.05, π�(0) A1(0,0) decreases monotonically
from its zero-field value 1 over a characteristic field scale that
increases with λ (and is not simply TK , as it is in the single-dot
case). (2) For λ > 0.05, π�(0) A1(0,0) has a nonmonotonic
variation with increasing B, reaching a second maximum
π�(0) A1(0,0) = 1 at B = B∗ � 2TK , beyond which field
it decreases. In view of the field dependence of �(0), the
value of A1(0,0) at B = B∗ is [1 + (B∗/2�2)2] times its
zero-field counterpart. The two regimes seen in Fig. 3(a) are in
sharp contrast with the monotonically decreasing and universal
dependence of the Fermi-energy spectral function on B/TK

in the conventional single-impurity Kondo27 and Anderson28

models. The next section discusses these behaviors in terms of
the Friedel sum rule.
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FIG. 3. (Color online) (a) Spin-averaged dot-1 spectral function
at the Fermi level A1(ω = 0, T = 0) vs scaled magnetic field B/TK

for U1 = −2ε1 = 0.5, ε2 = 0, and six values of λ. A1(0,0) has
been multiplied by the field-dependent quantity π�(0) [Eq. (26)]
to yield f1(B) defined in Eq. (25). The larger λ values produce
a nonmonotonic field variation of A1(0,0), with a peak around
B � 2TK . Inset: Corresponding plot for the noninteracting case
U1 = ε1 = 0, with the field scaled by the interdot coupling λ.
(b) Phase factor ϕ1↑ = −ϕ1↓ corresponding to the data in (a), deter-
mined from the Friedel sum rule [Eq. (27)] using the magnetization
data plotted in Fig. 4.

IV. FRIEDEL SUM RULE

In Sec. IV A we review the Fermi-liquid relation known
as the Friedel sum rule4,38 that sets the Fermi-energy value
of the zero-temperature spectral function in the one-impurity
Anderson model, and write down a form of the sum rule
valid for systems featuring both a Zeeman field and nontrivial
structure in the density of states. Section IV B shows how
the variation of A1(ω = 0,T = 0) in our double-quantum-dot
system can also be understood in terms of the Friedel sum rule.

A. Single Anderson impurity

We consider a single-impurity Anderson model

H =
∑

σ

εdσ ndσ + Und↑nd↓ +
∑
k,σ

εkσ c
†
kσ ckσ

+
∑
k,σ

(Vkd
†
σ ckσ + H.c.), (10)

where εdσ = εd + 1
2σgμBB and εkσ = εk + 1

2σgcμBB. The
conduction-band dispersion εk and the hybridization Vk enter
the impurity properties only in a single combination: the zero-
field hybridization function �0(ω) = π

∑
k |Vk|2δ(ω − εk).

We denote the fully interacting retarded impurity Green’s
function for this problem by

Gdσ (ω,T ) = 〈〈dσ ; d†
σ 〉〉ω

= 1

ω + i0+ − εdσ − �dσ (ω,T )
, (11)

where �dσ (ω,T ) is the retarded impurity self-energy.

In the conventional Anderson model, where the hybridiza-
tion function is assumed to take a flat-top form �0(ω) =
�	(D − |ω|), the Friedel sum rule relates the Fermi-energy
value of the zero-temperature, zero-field impurity spectral
function Ad (ω,0) ≡ Adσ (ω,0) = −π−1ImGdσ (ω,0) to the
average impurity occupancy 〈nd〉 = 〈nd↑〉 + 〈nd↓〉 as

π�Ad (0,0) = sin2

(
π

2
〈nd〉

)
. (12)

In the wide-band limit where D greatly exceeds all other
energy scales in the problem, Eq. (12) has been extended39

to show that in a Zeeman field B, the spin-averaged impu-
rity spectral function Ad (ω,T ) = 1

2 [Ad↑(ω,T ) + Ad↓(ω,T )]
satisfies

π�Ad (0,0) = 1
2 [1 − cos(π〈nd〉) cos(2πMd )], (13)

where Md (B) = 1
2 (〈nd↑〉 − 〈nd↓〉) is the impurity magnetiza-

tion in units of gμB .
Our goal is to extend Eqs. (12) and (13) to allow for finite

values of D and any form of �0(ω). One can show4,22,24,33,37

that provided the system is in a Fermi-liquid regime [where
the imaginary part of �dσ (ω,T = 0) varies as ω2 for ω → 0],
the spin-resolved spectral functions at zero temperature satisfy

π�σ (0) Adσ (0,0) = sin2(π〈ndσ 〉 + ϕσ ), (14)

where �σ (ω) = �0(ω − 1
2σgcμBB) and

ϕσ = Im
∫ 0

−∞

∂�0
dσ (ω,T = 0)

∂ω
Gdσ (ω,T = 0) dω (15)

is a spin-dependent phase shift. In Eq. (15), Gdσ (ω,T ) is the
fully interacting retarded impurity Green’s function specified
in Eq. (11), but �0

dσ (ω,T ) is the retarded impurity self-energy
for the noninteracting system [Eq. (10) with U = 0], which
satisfies Im �0

dσ (ω,T ) = −�σ (ω).
In situations where �↑(ω) �= �↓(ω), it is convenient to

focus on a dimensionless, hybridization-weighted average of
the spin-resolved spectral functions:

F (ω,T ) = π

2

∑
σ

�σ (ω)Adσ (ω,T ). (16)

In terms of this quantity, the linear conductance is

G(T ) = G0

∫ ∞

−∞
F (ω,T ) (−∂f/∂ω) dω (17)

with a zero-temperature limit

G(T = 0) = G0 F (0,0). (18)

Here, G0 = [2VLVR/(V 2
L + V 2

R)]2(2e2/h) is the maximum
possible conductance through the dot for hybridizations VL

and VR with the left and right leads, respectively. We note that
the hybridization-weighted, spin-averaged spectral function
reduces to F (ω,T ) = π�(ω) Ad (ω,T ) for (i) all values of ω

in zero magnetic field, and (ii) at ω = 0 for any field B such
that �0( 1

2gcμBB) = �0(− 1
2gcμBB).

Inserting Eq. (14) into Eq. (16), rewriting 〈ndσ 〉 = 1
2 〈nd〉 +

σMd , and defining ϕ± = ϕ↑ ± ϕ↓, one obtains

F (0,0) = 1
2 [1− cos(π〈nd〉+ϕ+) cos(2πMd + ϕ−)]. (19)
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This form of the Friedel sum rule relates the value of
the hybridization-weighted spin-averaged spectral function at
ω = 0 and T = 0 to the impurity occupancy, the impurity
magnetization, and spin-dependent phase factors that account
for the energy dependence of the hybridization function. The
right-hand side of Eq. (19) has a maximum possible value of 1,
implying through Eq. (18) that G(T = 0) � G0, as one would
expect for a problem with a single transmission mode in the
left and right leads.

In general, each of the phase factors ϕ↑ and ϕ↓ has a
complicated dependence on �(ω), the impurity parameters
U and εd , and the magnetic field B. This makes it highly
improbable that for a generic choice of model parameters
there exists a value of B for which the system satisfies the
requirements

cos(π〈nd〉 + ϕ+) = − cos(2πMd + ϕ−) = ±1 (20)

for achieving F (0,0) = 1 and, hence, a maximum conductance
G(T = 0) = G0.

However, under conditions where both the impurity and
the conduction band exhibit particle-hole symmetry, the
Hamiltonian (1) is invariant under the transformation dσ →
−d

†
−σ , ckσ → c

†
k,−σ , εk → −εk. This invariance leads to the

relations �↑(ω) = �↓(−ω), �0
d↑(ω,T ) = −[�0

d↓(−ω,T )]∗,
and Gd↑(ω,T ) = −[Gd↓(−ω,T )]∗, which in turn imply that
Ad↑(ω,T ) = Ad↓(−ω,T ) and ϕ↑ = −ϕ↓ (or ϕ+ = 0). Since
particle-hole symmetry also ensures �0(ω) = �0(−ω) and
〈nd〉 = 1, it follows that �↑(0) = �↓(0) and the Friedel sum
rule reduces to

π�(0) Ad (0,0) = cos2(πMd + ϕ↑). (21)

In situations described by Eq. (21), the conductance will reach
its maximum possible value G0 whenever (πMd + ϕ↑)/π
equals an integer. It is much more likely that this single
condition can be met at some value of B than that a system
away from particle-hole symmetry can be tuned to satisfy both
parts of Eq. (20).

The conventional flat-top hybridization function �0(ω) =
�	(D − |ω|) is not only particle-hole symmetric, but yields
vanishingly small values of ϕσ , thereby simplifying Eq. (19)
to the previously derived39 Eq. (13). One expects |Md (B)| to
be an increasing function of B with a limiting value |Md (B →
∞)| = 1

2 , and therefore [via Eq. (13)] both Ad (0,0) and G(T =
0) should decrease monotonically with increasing B.

B. Double quantum dots

We now return to the double-quantum-dot setup defined in
Eq. (1). It has been shown21 that for the special case U2 = 0,
the properties of dot 1 are identical to those of the impurity
in a single-impurity Anderson model [Eq. (10)] with U = U1,
εd = ε1, and a zero-field hybridization function

�0(ω) = πλ2ρ2(ω), (22)

where

ρ2(ω) = 1

π

�2

(ω − ε2)2 + �2
2

(23)

describes a unit-normalized Lorentzian resonance of width �2

[defined after Eq. (6)] centered on energy ω = ε2.

In a Zeeman field B, where the spin-dependent hybridiza-
tion function of the effective one-impurity problem is

�σ (ω) = �0
(
ω − 1

2σgμBB
)
, (24)

a quantity of interest is

f1(B) = π

2

∑
σ

�σ (0) A1σ (0,0), (25)

the value of the hybridization-weighted spin-averaged dot-1
spectral function at ω = T = 0. For the resonant case ε2 = 0
considered in Figs. 2 and 3,

�↑(0) = �↓(0) ≡ �(0) = �0(0)

1 + (B/2�2)2
(26)

in units where gμB = 1. Taking into account also the particle-
hole symmetry present for ε1 = − 1

2U1 and ε2 = 0, the Friedel
sum rule [Eq. (21)] gives (after translation back into the
variables of the double-dot problem)

f1(B) = cos2(πM1 + ϕ1↑), (27)

where Mi = 1
2 (〈ni↑〉 − 〈ni↓〉) is the magnetic moment on dot

i, and

ϕ1σ = Im
∫ 0

−∞

∂�0
1σ (ω,T = 0)

∂ω
G1σ (ω,T = 0) dω (28)

with Im �0
1σ (ω,T ) = −�σ (ω).

Figure 4 shows the variation of M1 with B for the same
model parameters used in Fig. 2. As expected, M1 decreases
monotonically from zero over a field scale that grows with λ.
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FIG. 4. (Color online) Magnetization of dot 1 (empty symbols)
and dot 2 (filled symbols) vs scaled magnetic field B/TK at zero
temperature for the same parameters as in the main panels of Fig. 3.
The dot-1 magnetization M1 decreases monotonically from zero over
a characteristic field scale that grows with λ and approaches 2TK for
sufficiently large interdot couplings. The dot-2 magnetization M2 is
of opposite sign to M1 for B � 2TK , pointing to the dominance of the
antiferromagnetic interdot exchange interaction over this field range.
Both dots become fully polarized antiparallel to the field for B �
2TK . Inset: M2 vs B/λ for the noninteracting system with the same
parameters as in the inset of Fig. 3(a). In contrast to the interacting
case, M2 decreases monotonically from zero with increasing field.
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For small λ, this scale is identical to that characterizing the
initial decrease of f1 from 1 [see Fig. 3(a)], while for larger λ,
|M1| grows on the scale B∗ of the second peak in f1(B). In all
cases, dot 1 is essentially fully polarized for B � 2TK . That the
monotonic evolution of M1 does not accompany a monotonic
decrease in f1(B) is an indication of the importance of the
phase factor ϕ1↑ on the right-hand side of Eq. (27).

It is difficult to evaluate ϕ1σ directly from Eq. (15) using
the NRG because this task requires accurate determination of
both the real and imaginary parts of Gσ (ω,0) for all ω < 0,
whereas the NRG is well suited only to compute ImGσ (ω,0)
for |ω| 
 D. At particle-hole symmetry, however, one can use
Eq. (27) to work backward from the NRG values of f1 and M1

to find ϕ1↑ = −ϕ1↓. Figure 3(b) plots the phase obtained in
this manner from the data in Figs. 3(a) and 4. For all values of
λ, ϕ1↑ is zero at B = 0 (as expected) and approaches π at large
field values. For larger values of λ, ϕ1↑ shows a pronounced
kink at B = B∗. This kink is related, via Eq. (27), to the peak
in f1(B) at B∗, since M1(B) is a smooth function of B (as
shown in Fig. 4).

Figure 4 also plots the field dependence of the dot-2
magnetization. The fact that M2 is of opposite sign to M1 for
B � 2TK indicates that the interactions in dot 1 combine with
the interdot hopping to yield a dominant antiferromagnetic
interdot exchange interaction. Over this range of B, it appears
that the system minimizes its energy by first aligning the
partially Kondo screened magnetic moment of the strongly
interacting dot 1 along the direction favored by the field, and
then orienting the less-developed moment on dot 2 to minimize
the interdot exchange energy even at a cost in Zeeman energy.
The data show that this tendency becomes weaker for stronger
interdot couplings, presumably because the interdot exchange
∼λ2 grows more slowly than the energy scale TK for breaking
the Kondo singlet. For all values of λ, once B � 2TK , the
Zeeman field has largely destroyed the Kondo effect, and both
dots are fully polarized for B � 2TK .

One can gain further insight into the results presented in
Figs. 3 and 4 by considering the limit where both dots are
noninteracting. Equations (19) and (27) hold equally well for
interacting and noninteracting problems. However, the case
U1 = U2 = 0 offers the advantage that A1(0,0) can also be
calculated directly from the imaginary part of

G0
1σ (ω,T ) = 1

ω + i0+ − ε1σ − �0
σ (ω,T )

, (29)

where at zero temperature the noninteracting self-energy is

�0
σ (ω,0) = [(ω − ε2σ )/�2 − i]�σ (ω), (30)

giving

A1σ (0,0) = 1

π

�σ (0)

[ε2σ�σ (0)/�2 − ε1σ ]2 + [�σ (0)]2
. (31)

The hybridization-weighted spin average of A1σ (0,0) satisfies

f1(B) = 1

2

∑
σ

1

1 + (e2σ − e1σ )2
, (32)

where e1σ = ε1σ /�σ (0) and e2σ = ε2σ /�2. It should be noted
that e1σ depends on B both through the Zeeman shift of ε1 and
the value of �σ (0) = �0(− 1

2σB). From Eq. (32) it is apparent
that f1(B) attains its maximum value of 1 only if e2σ = e1σ for

both spin orientations, a condition that can be satisfied only
for ε1 = ε2 = 0 and either B = 0 or (if λ > �2) B = B∗ =
2
√

λ2 − �2
2. For ε1 �= 0 and/or ε2 �= 0, f1(B) may have zero,

one, or two maxima at nonzero fields, but f1 < 1 for all B.
These observations are consistent with the conclusion drawn
from the Friedel sum rule that f1 = 1 is likely to be achieved
only under conditions of strict particle-hole symmetry.

The inset of Fig. 3(a) illustrates the field variation of f1 for
the particle-hole-symmetric case U1 = ε1 = ε2 = 0, with all
other parameters as in the main panel. For each of the λ values
illustrated (all of which lie in the range λ > �2), f1 reaches 1
at a magnetic field consistent with the value B∗ derived in the
previous paragraph. Note that B∗ approaches 2λ from below
in the limit of strong interdot coupling. The inset of Fig. 4
plots M2 vs B for the same noninteracting cases. For each
λ value, |M2| shows a purely monotonic field variation, with
a rather sudden increase around B � 2λ, a behavior that is
mimicked in the interacting system for B � 2TK , especially
at large interdot coupling λ. The variation of the interacting
f1 and M2 for B � 2TK seen in the main panels of Figs. 3(a)
and 4, particularly for the larger values of λ, may perhaps
be interpreted as a many-body analog of the noninteracting
behavior in the insets, with TK serving as a renormalized value
of the single-particle scale λ.

V. ELECTRICAL CONDUCTANCE

While the spectral functions discussed in the preceding
sections are difficult to access directly in experiments, they
may be probed indirectly through transport measurements. In
this section, we show that the zero-bias electrical conductance
through the double-dot device contains clear signatures of the
nonuniversal variation of π�(0) A1(0,0) with applied field. In
particular, we demonstrate the feasibility of generating cur-
rents through the system that are strongly or even completely
spin polarized.

Although the linear conductance is given most compactly
by Eq. (7), it is also useful to express G in terms of the Green’s
function for the interacting dot 1 by combining Eq. (5) with
a generalization of Eq. (6) in Ref. 23 to include the Zeeman
field:

−Im Tσ (ω,T )

= [1 − 2π�2ρ2σ (ω)] π�σ (ω) A1σ (ω,T ) + π�2ρ2σ (ω)

+ 2π (ω − ε2σ ) ρ2σ (ω) �σ (ω) ReG1σ (ω,T ), (33)

where ρ2σ (ω) = ρ2(ω − 1
2σgμBB), with ρ2(ω) and �σ (ω)

as defined in Eqs. (23) and (24), respectively. The term
π�2ρ2σ (ω) describes the bare transmission through dot 2 in
the absence of dot 1, while the remaining terms represent
additional contributions arising from conductance paths that
include dot 1. In the special case λ = 0 where the latter contri-
butions necessarily vanish, the zero-temperature conductance
reduces to

Gone-dot(T = 0) = G0

2

∑
σ

1

1 + e2
2σ

, (34)

where e2σ is defined after Eq. (32).
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FIG. 5. (Color online) Linear conductance G vs scaled magnetic
field B/TK at zero temperature for the same parameters as in the main
panels of Fig. 3. G rises from zero over the same characteristic field
scale as governs the rise of |M1| in the main panel of Fig. 4.

A. Zero temperature

Figure 5 plots the zero-temperature linear conductance G as
a function of scaled field B/TK for the same parameters used
in Fig. 3. For the case ε2 = 0 considered here, the conduc-
tance of dot 2 alone, Gone-dot(T = 0) = G0[1 + (B/2�2)2]−1,
decreases monotonically from G0 as the Zeeman field detunes
the dot level from the Fermi energy of the leads. For any
λ �= 0 and B = 0, Kondo correlations in dot 1 produce zero
conductance through the double-dot system.23 Figure 5 shows
that with increasing field, the double-dot conductance initially
increases, then peaks at its maximum possible value G = G0

for a field value B∗∗ that for large λ approaches 2TK from
above, and finally drops back toward zero for B � B∗∗.
The field B∗∗ is distinct from that characterizing the peak in
π�(0) A1(0,0). In general B∗ < 2TK < B∗∗, but these three
scales converge for λ � �2.

The initial rise in G with increasing field can be attributed
to the progressive suppression of the Kondo effect allowing dot
1 to become partially polarized and reducing the destructive
interference between the Kondo resonance and the dot-2
resonant state. This change takes place—in agreement with
the evolution seen in π�(0) A1(0,0) and M1—over a field
scale that increases with λ but is not just a constant multiple
of TK . By the point that the conductance reaches its peak at
B = B∗∗, the interchannel interference is clearly constructive
since Eq. (34) would predict a much lower conductance for
dot 2 alone. At still larger fields, the destruction of the Kondo
resonance becomes complete and the dot-2 resonance is
shifted far from the Fermi level, leading to a decrease of the
conductance.

Figure 6 illustrates aspects of the transport away from
particle-hole symmetry. The main panel shows the variation
of the T = 0 linear conductance at several different fixed
magnetic fields as the value of ε2 is swept by varying
the voltage on a plunger gate near dot 2. For B = 0, the
conductance increases from zero at ε2 = 0 and approaches
G0 for |ε2| � �2 as the dot-2 resonance is tuned away
from the Fermi energy, thereby permitting perfect conduction
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FIG. 6. (Color online) Linear conductance G vs dot-2 level
energy ε2 at zero temperature for U1 = −2ε1 = 0.5, λ = 0.0627, and
five different magnetic field values. The conductance is symmetric
about the point ε2 = 0 of particle-hole symmetry. In nonzero fields,
G peaks at some |ε2| �= 0, apart from the special case B = B∗∗ �
0.045 � 2TK , for which the conductance is maximal at ε2 = 0 (as
already seen in Fig. 5). Inset: Conductance vs magnetic field B for
ε2 = 0 and 0.02.

through the Kondo many-body resonance. For fixed B > 0,
competition between Zeeman splitting of the dot-2 resonance
and partial destruction of the Kondo effect leads in most cases
to an initial rise in G for small |ε2| followed by a fall-off
at larger |ε2|. As the magnetic field increases from zero, the
conductance peaks initially move to smaller |ε2|, then merge
into a single peak at G = G0 for B = B∗∗ � 0.045 for the case
λ = 0.0627 here, before separating and moving to larger |ε2|
as B moves to still higher values. Thus B∗∗ can in principle be
located as the only field at which G has a single peak vs ε2.

The inset to Fig. 6 compares the field variation of G(T = 0)
for ε2 = 0 and for ε2 = 0.02. It is only in the former case
(i.e., under conditions of strict particle-hole symmetry) that
the conductance has a single peak vs B and attains G = G0,
whereas for ε2 �= 0 one finds a pair of peaks at G < G0. The
presence of a single peak under field sweeps can therefore
be used to identify the particle-hole-symmetric point in
experiments.

To better understand these results, we again turn to the
noninteracting case U1 = 0, where the linear conductance
can be calculated by substituting the noninteracting Green’s
function given by Eqs. (29) and (30) for the full Green’s
function Gσ in Eq. (33). At T = 0, this results in a conductance
contribution

G =
∑

σ

Gσ = 1

2
G0

∑
σ

e2
1σ[

1 + e2
2σ

]
[1 + (e2σ − e1σ )2]

, (35)

where e1σ and e2σ are defined after Eq. (32). Equation (35)
correctly reduces to Eq. (34) in the limit |ε1| → ∞ where
dot 1 can play no role in the conductance. At particle-hole
symmetry (ε1 = ε2 = 0), Eq. (35) gives

G = G0
[B/2�(0)]2

[1 + (B/2�2)2]{1 + [B/2�2 − B/2�(0)]2} , (36)
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which peaks at G = G0 for B = B∗∗ = 2λ, a characteris-

tic field greater than the one B∗ = 2
√

λ2 − �2
2 at which

π�(0) A1(0,0) reaches 1. Since we have seen above that
G(T = 0) for the interacting case at particle-hole symmetry
reaches G0 for some B∗∗ > 2TK > B∗, with B∗∗ → 2TK for
large λ, the field dependence of the conductance reinforces
the parallels between the large-λ interacting problem and the
noninteracting limit, with the many-body scale TK playing the
role of a renormalized λ.

An interesting feature of Eq. (35) is that it predicts con-
duction contributions G↑ �= G↓ when particle-hole symmetry
and time-reversal symmetry are both broken. In particular, for
ε1 > 0 (or ε1 < 0), the conductance polarization measured by

η = G↑ − G↓
G↑ + G↓

(37)

grows from η = 0 for B = 0 to reach η = 1 (or η = −1)
for B = 2|ε1|, at which field ε1↓ = 0 (or ε1↑ = 0), before
decreasing toward zero for still larger fields. By contrast,
keeping ε1 = 0 but allowing ε2 �= 0 results in variation of
η with field, but does not allow one to achieve perfect
polarization of the conductance.

Spin-dependent conductance is also exhibited when dot 1
has strong interactions. Figure 7(a) shows the variation of η

with the dot 2 level energy ε2 in different fields B �= 0 for a
symmetric dot 1 (U1 = −2ε1) and fixed λ. The conductance
spin polarization is odd about the point ε2 = 0 of particle-
hole symmetry where the condition A1↑(ω,T ) = A1↓(−ω,T )
ensures [via Eq. (7)] that η = 0. For fields B � 2TK � 0.042,
η has the same sign as ε2, whereas for B � 2TK , η and ε2 have
opposite signs. For each field value, |η| peaks at a nonzero
value of |ε2|. One sees that a field B = 0.01 combines with
a level energy |ε2| � 0.025 to achieve complete destructive
interference of the conduction for one spin species, allowing
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FIG. 7. (Color online) Conductance spin-polarization η (a) vs
dot-2 level energy ε2 at six fixed magnetic fields B, and (b) vs B for
two values of ε2. All data are for U1 = −2ε1 = 0.5, λ = 0.0627, and
zero temperature. In (a), η is odd about the point ε2 = 0 of particle-
hole symmetry. Complete spin polarization of the conductance is
achieved in the case B = 0.01. Panel (b) shows a strong, nonuniversal
variation of η with B for different values of ε2.

passage only of a fully spin polarized current through the
device. The fact that reaching |η| = 1 in this manner—by
varying ε2 while dot 1 is held at particle-hole symmetry
(ε1 = 0)—is impossible to achieve in the noninteracting case
U1 = 0 indicates that the interference effects are more complex
in the presence of strong interactions.

It is important to emphasize that in contrast to the maximal
conductance value G0, the polarization η is unaffected by
asymmetry between the left and right dot-lead couplings.
Complete spin polarization (|η| = 1) can be achieved even
in setups where V2L �= V2R .

Figure 7(b) shows the variation of η under field sweeps
at two different values ε2 > 0. For each position of the dot-2
level, η changes sign at a nonzero B. For ε2 = 0.02, η reaches
+1 at a small field and then dips to nearly −1 at a larger
field before increasing back toward zero. For ε2 = 0.1, by
contrast, a small positive peak in η is followed at larger
fields by a dip at (or very close to) −1. This nonuniversal
behavior reflects the subtlety of the interplay between the field
and particle-hole asymmetry in controlling the constructive
or destructive interference between transmission of electrons
directly through dot 2 and paths involving one or more detours
to dot 1.

Similar “spin-filtering” effects in a magnetic field have been
investigated previously40,41 in the context of a single-mode
wire, coupled near its midpoint via a tunnel junction to a
quantum dot (the “side dot”). A number of experiments and
models using different geometries for spin-dependent transport
have also been reported in the literature.10,20 Reference 41
showed that conductance polarizations η = 1 and η = −1
(in the language of the present paper) occur at values of
the dot energy εd (η = 1) and εd (η = −1) differing by a
large scale exceeding the dot Coulomb interaction strength
U . Thus, the change in gate voltage needed to switch the
polarizations is so large that all traces of the Kondo effect
are suppressed. These behaviors should be contrasted with
those found here, where the ε2 values that lead to η = ±1
differ only by an energy of order �2 (much smaller than
U1). What is more, the complete spin filtering achieved
in our setup depends crucially on the presence of Kondo
many-body correlations. This point will become particularly
clear in the next section, where we consider the effect of
nonzero temperatures. Reference 40 considered a side-coupled
quantum dot in a regime of much smaller Kondo temperatures.
In contrast to our results for double quantum dots, complete
polarization of the conductance was reported to occur quite
generically due to a mechanism very similar to that we find in
the noninteracting limit U1 = 0 described by Eq. (35).

B. Nonzero temperatures

To this point, only zero-temperature results have been
presented. This subsection addresses the effect of finite
temperatures on the zero-bias conductance G and its spin
polarization η. Throughout the discussion, temperatures are
expressed as multiples of a characteristic many-body scale
TK0 = 0.021, the system’s Kondo temperature for ε2 = 0,
B = 0, and the representative value λ = 0.0627 that we have
used in all our T > 0 calculations.
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FIG. 8. (Color online) Linear conductance G vs dot-2 level
position ε2 for U1 = −2ε1 = 0.5 and λ = 0.0627 at four
temperatures T for (a) B = 0, and (b) B = 0.045 � 2TK0. Tempera-
tures are expressed as multiples of TK0 = 0.021.

Figure 8 plots G vs ε2 for λ = 0.0627 in fields B = 0 [panel
(a)] and B � B∗∗ � 2TK0 [panel (b)]. For B = 0, the effect
of increasing temperature is a progressive suppression of the
Kondo effect and hence of the conductance channel involving
the many-body Kondo resonance. As a result, G rises near ε2 =
0 due to a lessening of the destructive interference between
the Kondo channel and the single-particle resonance on dot
2 (discussed above in connection with Fig. 6), but there is a
decrease in the conductance at |ε2| � �2, which is dominated
by transmission through the Kondo channel. This trend results
in a conductance peak at some |ε2| �= 0 for temperatures 0 <

T � TK0, which evolves into a peak centered at ε2 = 0 for
T � TK0, in which regime transmission is dominated by the
single-particle, Lorentzian-like contribution from dot 2.
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FIG. 9. (Color online) (a) Conductance spin-polarization η, and
(b) conductance G vs dot-2 level energy ε2 at different temperatures
for U1 = −2ε1 = 0.5, λ = 0.0627, and B = 0.01. Temperatures are
expressed as multiples of TK0 = 0.021.

Figure 8(b) reveals a very different behavior for B = B∗∗ �
2TK0. As described above, the T = 0 conductance attains its
maximum possible value G0 at ε2 = 0 due to constructive in-
terference between the Kondo and single-particle conductance
channels, and G decreases monotonically with increasing |ε2|.
Raising the temperature over the range T � TK0 leads to
suppression of the Kondo conductance channel but has little
effect on the single-particle channel, leading to a decrease in G

that is strongest for ε2 = 0. Once the temperature passes TK0,
the variation of G with ε2 increasingly reflects the field splitting
of the dot-2 energy level, with peaks centered at ε2 � ± 1

2B.
The influence of temperature on the spin polarization of

the conductance is shown in Fig. 9(a), which focuses on the
case B = 0.01 that we know from Fig. 7 yields full spin
polarization (η = ±1) at zero temperature for ε2 � ±0.025.
As T increases from zero, the peak spin polarization is
lowered, presumably due to a combination of two effects:
(i) a reduction in the destructive interference between the
Kondo and single-particle conduction channels for one spin
species σ leading to an increase in −Im Tσ (ω = 0,T ) entering
Eq. (5), and (ii) thermal broadening of −∂f/∂ω in Eq. (5) lead-
ing to sampling of ω values having nonzero −Im Tσ (ω,T = 0).
At higher temperatures, T � TK0, the suppression of the
Kondo conductance channel unmasks oscillations in η vs
ε2 that result from shifts in the spin-resolved energy levels
in dot 2. These oscillations are much less pronounced than
the polarization variations at lower temperatures and the
maximum values of |η| are about an order of magnitude smaller
than those obtained in the Kondo regime.

Figure 9(b) plots the total conductance G vs ε2 correspond-
ing to each of the η vs ε2 traces in Fig. 9(a). There is a
close correlation (although not a perfect match) between the ε2

values of the peaks in G and of those in |η|. This suggests that
measurements of the total conductance can provide a useful
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FIG. 10. (Color online) Effect of a nonzero dot-2 interaction
(U2 > 0) on (a) the conductance spin-polarization η, and (b) the
conductance G, both plotted vs dot-2 level energy ε2 for the same
parameters as in Fig. 9. Open symbols correspond to U2 = 0 and filled
symbols to U2 = 0.01. Temperatures are expressed as multiples of
TK0 = 0.021.
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starting point for experiments seeking to optimize the system’s
spin-filtering performance.

Although we have focused on the special case U2 = 0, the
conductance features described above by no means depend on
this condition. In fact, qualitatively similar results are obtained
for an interacting dot 2 provided that U2 is small compared to
the level broadening �2. This is illustrated in Fig. 10, which
compares the ε2 dependence of the conductance and of its spin
polarization for U2 = 0 (data from Fig. 9) and U2 = 1

2�2 =
0.01, both for the lowest (T = 0) and highest (T = 0.460TK0)
temperatures shown in Fig. 9. Apart from a small shift in the
point of particle-hole symmetry, which moves from ε2 = 0 to
ε2 = − 1

2U2, the other essential features (such as the complete
spin polarization at zero temperature) are unaffected by the
presence of Coulomb repulsion within dot 2.

VI. CONCLUSIONS

In this work, we have investigated the effect of an
applied magnetic field on a strongly interacting quantum
dot side-coupled to external leads via a weakly interacting
dot. Our numerical renormalization-group results show that
the interplay of electronic interference, the Kondo effect,
and Zeeman splitting brings about qualitative changes in
the spectral and transport properties of this system. We
have found, for instance, that the value of the interacting
dot’s zero-temperature spectral function at the Fermi energy
does not decay monotonically with increasing field, as it
does in single-dot setups. Instead, the presence of the extra
energy scale determined by the interdot coupling introduces

nonuniversal behavior, and in some cases leads to the ap-
pearance of one or two maxima in the Fermi-energy spectral
function at nonzero values of B. These features can be
understood by the presence of a parameter-dependent phase
appearing in the Friedel sum rule for energy- and spin-
dependent hybridization functions.

One of the signatures of the interplay of site and spin
degrees of freedom in this double-dot device is the appearance
of spin-polarized currents between the two leads. We have
shown that the degree of spin polarization can be tuned up
to 100% by changing gate voltages and/or small magnetic
fields in the system. These results underscore the flexibility
of quantum-dot systems for exploration of novel effects in
correlated electron physics.
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9A. Hübel, K. Held, J. Weis, and K. v. Klitzing, Phys. Rev. Lett. 101,
186804 (2008).

10W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa,
S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2002).

11V. M. Apel, M. A. Davidovich, E. V. Anda, G. Chiappe, and C. A.
Büsser, Eur. Phys. J. B 40, 365 (2004).

12C. A. Büsser, G. B. Martins, K. A. Al-Hassanieh, A. Moreo, and
E. Dagotto, Phys. Rev. B 70, 245303 (2004).

13P. S. Cornaglia and D. R. Grempel, Phys. Rev. B 71, 075305
(2005).

14Y. Tanaka and N. Kawakami, Phys. Rev. B 72, 085304 (2005).
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