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Tensor network states constitute an important variational set of quantum states for numerical studies
of strongly correlated systems in condensed-matter physics, as well as in mathematical physics. This is
specifically true for finitely correlated states or matrix-product operators, designed to capture mixed states
of one-dimensional quantum systems. It is a well-known open problem to find an efficient algorithm
that decides whether a given matrix-product operator actually represents a physical state that in particular
has no negative eigenvalues. We address and answer this question by showing that the problem is provably
undecidable in the thermodynamic limit and that the bounded version of the problem is NP-hard
(nondeterministic-polynomial-time hard) in the system size. Furthermore, we discuss numerous connections
between tensor network methods and (seemingly) different concepts treated before in the literature, such
as hidden Markov models and tensor trains.
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Computational quantum many-body physics is marred
by the fact that standard computational descriptions of
states require exponentially many parameters. Fortunately,
for many physically relevant problems, one does not need to
consider all those parameters to capture natural properties
extremely accurately. One of the pillars on which computa-
tional many-body approaches rest is the framework of tensor
network methods. Here, the relevant degrees of freedom
are parametrized by very few numbers, which are organized
in terms of tensor networks that are contracted in order to
compute expectation values [1–8]. Notably, the density-
matrix renormalization group approach, the most successful
method to numerically determine ground state properties
of strongly correlated one-dimensional models, can be cast
into such a form [1,2]. In this language, the problem of
minimizing the energy can be phrased as a variational
principle over matrix-product (or purely generated
C�-finitely correlated) states [9]. The natural analogue that
also encompasses mixed quantum states is matrix-product
operators. Again, they feature strongly in numerical algo-
rithms [10,11], for example when investigating stationary
states of local Liouvillians modeling open quantum systems
[12,13] or Gibbs states [14,15].
However, general matrix-product operators are not

guaranteed to represent physical states, which is the source
of considerable conceptual and computational difficulties.
It would thus be highly desirable to design an efficient
algorithm capable of checking whether a given matrix-
product representation defines a positive operator. To decide
if such an efficient “local test for positivity” exists is a
fundamental problem in the field, implicit already in its
early formulations (see the Appendix of Ref. [9]).
Here, we address and answer this question: determining

whether a matrix-product operator defines a physical state

in the thermodynamic limit is a provably undecidable
problem. We also show that the bounded version of the
problem is nondeterministic-polynomial-time (NP) hard in
the number of tensors, burying hopes that one could find
an efficient algorithm testing for positivity exactly. This is
proven for quantum spin chains with local dimension d ¼ 2
by a polynomial reduction from the Post correspondence
problem and a bounded variant thereof.
To give a practical example, one can approximate sta-

tionary states of local Liouvillians by iteratively applying
the Liouvillian to a state described as a matrix-product
operator and subsequently truncating the tensors. To avoid
inconsistent results, one has to check whether the trunca-
tion step has caused the state to become “too unphysical” in
that it has created eigenvalues that are more negative than
some chosen tolerance threshold. We prove such a check to
be unfeasible. The practical implications of our work are
as follows. On the one hand, they motivate the quest for
finding specific feasible instances that might exist. This
quest is reminiscent of the task of finding, e.g., efficient
contractions of two-dimensional planar tensor networks,
even though this task has been identified to be #P-complete
[16]. On the other hand, it shows that one should direct
one’s efforts towards finding approximate solutions.
The insight presented here adds a natural many-body

problem to the list of quantum mechanical questions that
have recently been identified not only as computationally
hard, but as outright undecidable [17–20]. Along the way
of introducing these novel results, we discuss a number
of connections between concepts that have arisen in the
literature, but whose relation has received surprisingly
little attention (see Table I).
Tensor networks: In quantum many-body theory, ten-

sor network methods are widely used in order to avoid
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intractability problems. The idea is to resort to variational
classes of states, where the attention is restricted to low-
dimensional manifolds of states that seem to capture well
the relevant physics of the model under study. It is less
widely appreciated in the physics community that similar
structures are ubiquitous in classical probability theory:
the hidden Markov model (HMM) is a generalization of a
Markov chain, where the observable process ðYtÞt∈N does
not need to be Markovian but there is a stochastic process
ðXtÞt∈N carrying additional information that renders the
combined process (Xt, Yt) Markovian. We only consider
the case where Xt and Yt have finitely many outcomes and
call the number of outcomes of Xt the bond dimension D.

With transition probabilities MðαÞ
i;j ¼ Pr½ðXtþ1; Ytþ1Þ ¼

ðj; αÞ∣Xt ¼ i�, boundary condition pj ¼ Pr½X1 ¼ j�, and
1
¯
≔ ð1; 1;…; 1ÞT ∈ RD, the probabilities of outcome

sequences of the process Yt are given by the matrix product

Pr½Y1 ¼ α1;…; Yn ¼ αn� ¼ pMðα1Þ � � �MðαnÞ1
¯
: ð1Þ

In order for a HMM to describe a stationary process,
p is usually taken to be a stationary distribution, i.e.,P

d
α¼1M

ðαÞp ¼ p. The description complexity of the HMM
is independent of n, or, if we allow the Markov kernels M
to vary as a function of t, linear. Non-negativity of the
probabilities in Eq. (1) is guaranteed because they arise as
the contraction over elementwise non-negative tensors.
From Eq. (1), it follows that the matrices Fðk;nÞ defined

by

Fðk;nÞ
ðα1;…;αkÞ;ðαkþ1;…;αkþnÞ ≔ Pr½Y1 ¼ α1;…; Ykþn ¼ αkþn�

have rank at most D, which upper bounds the so-called
Hankel rank [21].
A natural question is whether the rank condition alone

characterizes those distributions that allow for a HMM
with bond dimensionD. It has been known since the 1960 s
that this is not the case: there are distributions where
rankðFðk;nÞÞ ≤ D for all k; n, yet no HMM with finite bond
dimension exists [22,23]. However, a relatively straight-
forward argument (based on sequential “rank-revealing
decompositions,” e.g., singular value decompositions)
shows that every distribution with rank bounded by D
allows for a representation as in Eq. (1) where the tensorsM

are not necessarily positive. This fact seems to have been
discovered independently in different contexts, e.g.,
Refs. [7,9,24–26]. The resulting form is known as a
quasirealization, offering the same concise description of
the distribution as a HMM. These are, however, more
difficult to work with computationally, as any variation of
the local tensors can destroy global positivity. An important
question thus is as follows: are the conditions on the tensor
M that guarantee global positivity computationally effi-
ciently verifiable? As we will see, the answer is no.
The above constructions generalize to the quantum

setting: a C�-finitely correlated state [9] (also known as
quantum Markov chain [27,28]) ρ is obtained by replacing
the elements of Eq. (1) by their quantum counterparts. We
substitute p by a D ×D density matrix σ, the stochastic
map M by a completely positive map Φ that maps states
on CD to those on CD ⊗ Cd, and 1

¯
by the partial trace

(cf. Fig. 1). This immediately yields a local purification
[29]: one can write Φ in Kraus representation by choosing
operators Ki∶CD → CD ⊗ Cd satisfying

P
E
i¼1KiK

†
i ¼ 1

and Φð·Þ ¼ P
E
i¼1K

†
i · Ki. Here, E can be assumed to be

smaller than or equal to dD. Then the n-fold application of
K to a purification j ffiffiffi

σ
p i of σ yields the state vector jψi ¼

K∘K∘…∘Kj ffiffiffi
σ

p i in CD ⊗ ðCd ⊗ CEÞ⊗n ⊗ CD that is a
local purification of ρ, see Fig. 1. For quantum states one
can, once more, define “quasirepresentations.” Here Φ can
be a general linear map and σ is some operator (no
positivity constraints). This results in what is known as a
matrix-product density operator (MPDO) or finitely corre-
lated state (FCS) (not C�-FCS). A discussion of different
notions of positivity is provided in the Supplemental
Material [30]. More concretely, with ½d� ≔ f1; 2;…; dg,

TABLE I. Concepts of tensor networks discussed here.

States Classical Quantum

Pure Deterministic finite [55] Matrix-product states [3], purely generated C�-finitely
correlated states [9], tensor trains [26]

Mixed, inherently positive Hidden Markov models [21],
probabilistic finite automaton [46]

C�-finitely correlated states [9], local purification [29],
quantum Markov chains [27]

Mixed, not inherently positive Quasirealizations [21] Finitely correlated states [9], matrix-product
density operators [10,11]

FIG. 1 (color online). A C�-FCS as a tensor network. The
channel Φ can be written in terms of Kraus operators,
ΦðρÞ ¼ P

iK
†
i ρKi. The vertically contracted indices between

K and K� correspond to the sum over i. The tensor network to
the right is referred to as a local purification.
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a MPDO is a density matrix written in the following
form.
Definition 1 [matrix-product operator (MPO)].—An

instance of MPO tensors is given by M ¼
ðMðα;βÞ

i;j Þα;β∈½d�;i;j∈½D� ∈ Cd×d×D×D and boundary vectors
jLi; jRi ∈ CD. The dimension d is called the physical
dimension and D the (MPO)-bond dimension. The gen-
erated translation invariant MPO for system size n is

ρðL;M;R; nÞ ≔
X

j∈½D�nþ1

Lj1Mj1;j2 ⊗ … ⊗ Mjn;jnþ1
Rjnþ1

:

Main results: In order to precisely define the problems
that are shown to be computationally unfeasible, we employ
the standard language of theoretical computer science: the
task of identifying objects with a certain property (e.g.,
those MPOs that are positive) is a decision problem.
A specific case (e.g., given by a concrete tensor and
boundary vectors) is an instance. A decision problem is
NP-hard if it is at least as hard (in a precise sense) as all other
problems from the complexity class NP. It is deemed highly
unlikely that any NP-hard problem can be solved efficiently
on either a classical or a quantum computer. A problem is
(Turing) undecidable if no computer, even if endowed with
unbounded resources, is capable of correctly solving all
instances. In the statements of the various problems below,
MPO tensors are specified by rational numbers. These have
finite descriptions and can thus serve as inputs to computer
programs. Allowing for more general numbers (e.g., com-
plex rationals) would make the problem only harder.
In the precise statement of the problem, we allow for

a threshold λ, which bounds the “degree of negativity” that
is deemed acceptable. Moreover, we call positive semi-
definite operators more concisely just positive.
Problem 2.—[bounded MPO threshold problem (BTP)]

Instance: MPO tensors M ∈ Qd×d×D×D, jLi; jRi ∈ QD,
threshold λ ∈ Q, and system size n. Question: is the
MPO ρðL;M;R; nÞ þ λ1 positive?
Problem 3.—[MPO threshold problem (TP)] The TP is

defined in the same way as the the BTP except that there
is no restriction on the system size and the question is as
follows: is there an n ∈ Zþ such that ρðL;M;R; nÞ þ λ1 is
not positive?
We obtain the following results, where the latter one

adapts ideas from Ref. [46] to the quantum setting.
Theorem 4.—(NP-hardness of the bounded MPO thresh-

old problem) For any λ ∈ Q and physical dimension d ≥ 2,
the BTP is NP-hard.
Theorem 5.—(undecidability of the MPO threshold

problem) For each threshold λ ∈ Q the TP is undecidable.
In particular, this holds for the case where the physical
dimension is d ¼ 2, the bond dimension is D ¼ 42, and
the matrices Mi;j are diagonal for all i; j ¼ 1;…; D.
Outlook: An important question is whether there are

physically relevant instances for which positivity is

efficiently decidable and how this can be exploited best
in numerical algorithms. Sometimes one can, e.g., effi-
ciently detect negativity locally by calculating expectation
values with respect to matrix-product states (MPS) of small
bond dimension, see Fig. 2.
In Ref. [29] local purifications of positive MPOs in terms

of matrix-product states are investigated and it is shown that
the arising MPS-bond dimension can in general not be
bounded independently of the system size. This already
suggests that such purifying MPS would require high bond
dimensions when used instead of MPOs in numerical
simulations. However, two constructive purification methods
are suggested that are efficient when the rank of the MPO is
polynomially bounded but in general necessarily inefficient
[29]. From our Theorem 4 it also follows that this is no
coincidence. To be more precise, a local purification method
is an algorithm that receives a MPO instanceM; jLi; jRi and
a system size n with ρðL;M;R; nÞ ≥ 0 as input and outputs
a local purification of ρðL;M;R; nÞ.
Corollary 6.—Local purification methods are inefficient

in the system size.
In the BTP one is asked to exactly delineate the MPOs

with smallest eigenvalues above −λ from those with
smallest eigenvalues below −λ. In practice, it would be
acceptable if an algorithm reliably recognizes whether a
state ρ is either sufficiently positive, i.e., ρ ≥ −λ, or violates
a threshold by at least ϵ ≥ 0, i.e., ρ≱ − ðλþ ϵÞ. Such an
approximate version is allowed to give unspecified results
on the narrow band between the two cases. In order to make
this precise, we state the BTP as a weak membership
problem: for ϵ > 0 one is only required to decide whether
a MPO instance (L, M, R) with Tr(ρðL;M;R; nÞ) ¼ 1
satisfies either ρðL;M;R; nÞ ≥ −λ or ρðL;M;R; nÞ≱
−ðλþ ϵÞ. The MPO provided in the proof of Theorem 4
has a trace that is exponentially bounded from above.
Hence, as a corollary, one obtains that the BTP remains
NP-hard as a weak membership problem if ϵ is exponen-
tially small in n. This statement remains true for algebraic
and not necessarily rational inputs. Weak membership
formulations seem to be natural for a variety of problems
in quantum information. For instance, NP-hardness of
testing separability of quantum states as a weak member-
ship problem was established first [47] for an exponentially
small “error” ϵ and, much later [48], for a polynomially

FIG. 2 (color online). Contracting MPOs with MPS can detect
negativity for some instances. Hence, this provides a hierarchy of
efficient tests labeled by the MPS-bond dimension, a strategy
practically accessible by density-matrix renormalization group
(DMRG) approaches.
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small ϵ, in fact, using key methods of the previous approach
[47]. Hence, our work is an invitation to explore whether
the BTP as a weak membership problem is also NP-hard
for only polynomially bounded ϵ or, instead, to actually
find an algorithm that efficiently solves that problem.
Details: For any finite set Σ (alphabet) we denote by

Σn the set of sequences w (words) of n ¼ jwj elements
(letters) from Σ and by Σ� ≔ ⋃n∈NΣn the set of words. For

w ∈ ½d�� we denote by jwi ¼⊗jwj
j¼1 jwji the tensor product

of the corresponding canonical basis states j1i;…; jdi.
Given two monoidsW andW0 we call a map U∶W → W0 a
morphism if U maps the identity element of W to the
identity element ofW0 andUðw1w2Þ ¼ Uðw1ÞUðw2Þ for all
w1; w2 ∈ W. The monoids we encounter here are either
given by words over an alphabet with concatenation or by
matrices with matrix multiplication. Next, we introduce the
famous Post correspondence problem [49] and a bounded
variant thereof.
Problem 7.—[bounded Post correspondence problem

(BPCP)] Instance: pairs of words ðuα; vαÞα∈½d� over a finite
alphabet Σ and length n in unary notation [50]. Question:
does there exist a nonempty word w ∈ ½d�n of length n such
that uw1

uw2
� � � uwn

¼ vw1
vw2

� � � vwn
?

Problem 8.—[Post correspondence problem (PCP)] The
PCP is defined in the same way as the BPCP except that
there is no restriction on the word length.
The two sets of words ðuα; vαÞα∈½d�, referred to as

dominos, define two morphisms U;V∶½d�� → Σ� given
by UðwÞ ¼ uw1

uw2
� � � uwjwj and similar for V.

Theorem 9.—(PCP is undecidable, see Ref. [51]) For
every d ≥ 7 the PCP with Σ ¼ f0; 1g is undecidable.
In fact, by noting a simpler proof [52] of a variant of

this theorem with larger d, one can make the following
computation theoretic statement.
Observation 10.—(BPCP is NP complete) There is a

polynomial p such that for any nondeterministic Turing
machine M and input x there is a reduction to an instance
U;V of the BPCP such thatM accepts x in n steps iff there
is a solution of U;V of length pðnÞ.
In the usual textbook proof of the undecidability of the

PCP (see, e.g., Ref. [52]) the halting problem is reduced to
the PCP. The idea of the proof is to encode the computation
history of a given Turing machine into the two morphisms
of the PCP in two different ways such that there is a
solution iff the Turing machine halts. Specifically, there is a
polynomial p such that exactly when a Turing machine
accepts an input after n steps then there is a solution of the
corresponding PCP instance of length pðnÞ. The encoding
works in the same way when the Turing machine is
replaced by a nondeterministic Turing machine because
having a transition relation instead of a transition function
allows us to define the PCP instances in the same way
(possibly with more “dominos” ðuα; vαÞ). This shows that if
one could solve the BPCP in polynomial time, then one
could also solve NP problems in polynomial time. As

solutions to the BPCP can be verified by a Turing machine
in polynomial time the BPCP is in NP.
For the proofs of Theorems 4 and 5 the two following

polynomial reductions are needed (see the Supplemental
Material [30] for proofs building on Refs. [46,53,54]).
Lemma 11.—Let ðuj; vjÞj∈½d� be any instance of the PCP

and λ ∈ Q be a threshold. Then there exist boundary
vectors jLi; jRi, and matrices Að1Þ;…; AðdÞ ∈ N6×6 that
define a morphism A∶½d�� → N6×6 such that for allw ∈ ½d��

hLjAðwÞjRi¼−ðλþ1Þ if UðwÞ¼VðwÞ;
hLjAðwÞjRi≥−λ if UðwÞ≠VðwÞ: ð2Þ

Lemma 12.—(see Ref. [54]) Let d;D ≥ 2,
Að1Þ;…; AðdÞ ∈ QD×D be matrices that define a morphism
A∶½d�� → QD×D, and jLi; jRi ∈ QD be boundary vectors.
Then there exist two matrices Bð1Þ and Bð2Þ that define a
morphism B∶½2�� → QDd×Dd together with an injective mor-
phism X∶½d�� → ½2�� satisfying jXðwÞj ¼ djwj such that
h ~LjBðXðwÞÞj ~Ri ¼ hLjAðwÞjRi for all w ∈ ½d��, where
j ~Xi ≔ ðjXi; 0;…; 0ÞT .
Proof of Theorems 4 and 5.—We prove the theorem

by using the encoding A∶½d�� → QD×D of the PCP with
d dominos into the matrices from Lemma 11. Using
Lemma 12 we reduce the physical dimension d to 2 at
the expense of having a larger bond dimension dD and an
increase of the system size n to dn. This results in an
encoding C∶½2�� → QdD×dD with boundary vectors j ~Li and
j ~Ri. Now we define a MPO tensor M by Mðα;βÞ ¼P

d
γ¼1 δα;γδβ;γC

γ. Then (jLi;M; jRi) is an encoding of the
PCP to the TP. All successively used encodings are
polynomial reductions. In particular, an instance of the
BPCP with word length n can be written as an instance of
the BTP with system size dn. Hence, Theorem 9 and
Observation 10 finish the proof.
Conclusions: In this work, we have shown that a

problem naturally occurring in the context of tensor net-
work states is NP-hard and in the thermodynamic limit even
undecidable. The findings point to the challenge for reliable
numerical methods for, e.g., finding Gibbs and stationary
states of quantum many-body systems: truncations in the
bond dimension—a common step in existing numerical
algorithms—can introduce inconsistencies that cannot be
found computationally. This insight provides an interesting
twist to numerical methods to capture mixed quantum
many-body systems as well as to notions of Hamiltonian
complexity [56,57]. Future research should follow a dual
aim: first, identify instances and approximations where
(near) positivity can be guaranteed; second, search for
further problems in the context of tensor network states that
are not decidable algorithmically.
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