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Abstract
We review a calculation of the quantum corrections to electrical transport in
graphene, using the trajectory-based semiclassical method. Compared to con-
ventional metals, for graphene the semiclassical propagator contains an addi-
tional pseudospin structure that influences the results for weak localization, and
interaction-induced effects, such as the Altshuler–Aronov correction and
dephasing. Our results apply to a sample of graphene that is doped away from
the Dirac point and subject to a smooth disorder potential, such that electrons
follow classical trajectories. In such a system, the Ehrenfest time enters as an
additional timescale.

Keywords: graphene, quantum transport, semiclassical methods

1. Introduction

The discovery of a method to isolate single layers of graphene [1] has created a field of intense
research over past years (see [2–6] for reviews). The remarkable electronic properties of
graphene stem from a quasirelativistic dispersion with a fourfold degeneracy, due to spin and
valley degrees of freedom, that is characteristic for the underlying two-dimensional honeycomb
lattice [7]. For pristine graphene, the Fermi level lies at the Dirac point, where the density of
states vanishes. Electric transport is then dominated by evanescent modes, giving rise to a finite
minimum conductivity πe h4 /2 [8–14]. Remarkably, when smooth disorder is added that does
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not couple the valleys, no Anderson localization takes place [15–18], but instead the
conductivity rises with disorder strength [15, 16, 19].

When graphene is doped away from the Dirac point, its physical properties resemble those
of a metal, but certain intriguing features from the Dirac spectrum remain. The reason for this
lies in the ‘pseudospin’ degree of freedom, which is connected to the two-atom basis of the two-
dimensional honeycomb lattice. Sufficiently close to the Dirac point, where the electronic
dispersion is still linear, the direction of the pseudospin is aligned with the momentum. This
helicity of charge carriers strongly influences the electronic properties. Two important
consequences are the absence of backscattering at a potential barrier (Klein tunneling) [20, 21]
and the half-integral quantum Hall effect [22, 23].

The type of disorder [24, 25] and the dielectric environment [26–28] play an important role
for the transport properties of graphene. When charged impurities in the substrate are the main
source of disorder, the disorder potential is smooth on the scale of the lattice constant. For
graphene doped away from the Dirac point, one may eventually reach a situation where the
spatial scale ξ on which the disorder changes is much larger than the Fermi wavelength λF.
(Strictly speaking, this condition is met only if the graphene sheet is embedded in an insulating
medium with a high dielectric constant, such as HfO2 [29–31].) In this limit, it is justifiable to
work with the semiclassical approximation and to utilize classical trajectories for the calculation
of physical quantities. In past years, trajectory-based semiclassical methods have been
successfully applied to the calculation of quantum corrections to the transport of normal
metallic systems (see, e.g., [32–37]). The present article discusses the application of such
methods to quantum transport in graphene.

In the limit that the Fermi wavelength λF is much smaller than the transport mean free path
ltr, the main contribution to the conductivity is given by the Drude conductivity, for which the
quantum phase coherence of the electrons plays no role [28, 38]. Corrections to the Drude
conductivity are called ‘quantum corrections.’ They are the result of quantum interference of
electrons moving along different trajectories. The two quantum corrections to the conductivity
are the weak localization correction, which results from interference of time-reversed
trajectories [39–43], and the Altshuler–Aronov correction, which is interaction-induced and
originates from elastic scattering of electrons on Friedel oscillations of the electron density
[44–46]. Inelastic interaction processes cause a loss of phase coherence and set an upper limit
on the timescale at which weak localization occurs [47–49]. Although the quantum corrections
are a large factor λ∼l /tr F smaller than the Drude conductivity, they can be experimentally
detected by their characteristic dependence on magnetic field and temperature. The
measurement of such quantities provides important information about the type of disorder
and interactions for a specific sample.

Soon after the initial experiments, the theory of quantum corrections in disordered metals
was extended to graphene [25, 50–55]. Of particular interest was the potential valley-mixing
effect of short range disorder (correlation length ξ λ≪ F), which leads to a transition between
weak localization and weak antilocalization [25, 50–52] and strongly affects the magnitude of
the Altshuler–Aronov correction [54–56]. Such transitions were also observed experimentally
[54–63]. In the present article, we consider the quantum corrections to the conductivity of
graphene in the presence of a long-range impurity potential, which is smooth on the scale of the
Fermi wavelength λF. Such a smooth random potential does not mix the valleys but instead
leads to a number of modifications of the quantum corrections because of its smoothness. Such
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modifications are known from the theory of conventional electron gases [32–34, 37, 64]. It is
the goal of the present article to extend and collect those results for the case of graphene.

In order to understand why a smooth random potential modifies quantum corrections, one
first recalls that electrons follow well-defined classical trajectories if the potential is smooth.
The randomness of the potential then ensures that the classical dynamics is chaotic: Two nearby
trajectories separate exponentially with time, the divergence rate being described by a
Lyapunov coefficient λ. For quantum interference corrections this exponential divergence then
leads to the notion of the ‘Ehrenfest time’: τE [32]: The Ehrenfest time is defined as the time
after which two classical trajectories, initially a quantum distance λF apart, get separated by a
reference distance Lc characteristic of the classical dynamics:

τ
λ

λ= ( )L
1

ln . (1)E c F

The significance of the Ehrenfest time is that it puts a short-time cutoff for the occurrence of
quantum corrections, as it sets the minimum time for interference effects to take place. In the
case of a non-smooth potential with variations on the scale of the Fermi wavelength, no such
short-time cutoff appears, and the results of the semiclassical theory agree with those of
standard diagrammatic methods.

The trajectory-based semiclassical calculation of quantum corrections to the conductivity
of graphene differs from the same calculation for conventional metals by the additional
pseudospin structure. The problem of extending the semiclassical formalism to system with a
spinor degree of freedom, such as metals with spin–orbit coupling or Dirac Hamiltonians, has
received considerable attention in the literature [65–72]. The application of the formalism to the
case of graphene by Carmier and Ullmo [73] will serve as a starting point for our calculation. A
key element in the trajectory-based approaches is that the pseudospin can be reconstructed
along the trajectories, where it remains aligned with the momentum. Associated with the
transport of the pseudospin along the trajectory is an additional phase in the semiclassical
propagator, which can be identified as the Berry phase. One example where this phase plays an
important role is the semiclassical calculation of the Landau levels, where the electrons acquire
a Berry phase of π during the cyclotron motion, ultimately leading to the half-integral quantum
Hall effect.

The semiclassical theory presented here is specifically aimed at the leading order quantum
corrections (weak localization and Altshuler–Aronov correction, as well as the effect of
dephasing on weak localization) for graphene in a smooth random potential. Typical systems to
which the trajectory-based semiclassical method has been applied in the literature are quantum
billiards, ultraballistic systems—where particles scatter only at the boundary of the sample—or
antidot arrays, high mobility two-dimensional electron gases with artificially superimposed
antidots that act as classical scatterers [64, 74, 75]. While for standard semiconductor structures,
quantum billiards can be shaped by means of gate potentials, such a procedure is problematic
for graphene, as it is a gapless material. Quantum billiards in graphene can be realized in etched
structures, where the edges are atomically sharp [76–79]. The scattering on such edges then
depends on the precise atomic configuration and deserves careful consideration [80, 81]. The
same applies to antidot arrays in graphene [82], but also here, the boundaries of the antidots are
so sharp that they lead to scattering between the valleys. Such atomically sharp boundaries
invalidate a description that is solely based on classical trajectories, although for sufficiently
well-defined boundaries a theoretical description involving coupled valleys is possible [80, 81].
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Such a limitation does not exist for the effect of an impurity potential in a graphene sheet on a
substrate with a high dielectric constant, which is the scenario we consider here. In this case, the
high dielectric constant ensures that the screening length is larger than λF at sufficiently high
doping. Hence, the potential has a correlation length ξ λ≫ F, and classical paths are well-
defined objects.

For the sake of readability, we have tried to make this article self contained, only referring
to the literature for the finer technical details of the semiclassical approach. The starting point of
our discussion is the semiclassical Green function that will be introduced in section 2. To set the
stage, we calculate the Drude conductance in section 3. We then turn to the quantum
corrections, where the weak localization is calculated in section 4. The interaction-induced
corrections are treated in section 5 (Altshuler–Aronov) and 6 (dephasing). We conclude in
section 7.

2. Semiclassical Green function

In this article, we consider graphene subject to a smooth disorder potential V r( ) that does not
couple the valleys. In the vicinity of the Dirac point, electrons are described by the Hamiltonian:

σ μ= · + −H v Vp r( ) , (2)F

where vF is the Fermi velocity, μ is the chemical potential, and σ σ σ= ( , )x y are Pauli matrices for
the pseudospin degree of freedom. The eigenvalues of the kinetic energy term σ·v pF are

= ± | |±K v pF . We will be interested in the case of electron-doped graphene for which the
chemical potential μ is (much) larger than the potential V r( ) and the temperature. In this case
we may restrict our attention to the conduction band and set = | |K v pF . The corresponding
eigenspinor of the kinetic energy is:

⎜ ⎟⎛
⎝

⎞
⎠χ = ϕe

p( )
1

2
1

, (3)i p

where the angle ϕ
p
denotes the direction of the momentum p.

The starting point for our semiclassical analysis of transport is the semiclassical expression
for the retarded Green function  ε′r r( , ; )R at energy ε derived by Carmier and Ullmo [73]:

 


∑ε π
π

χ χ=′ ′
α ε

α
γ

α α
′→

+α α( )
i

A er r p p, ;
2

(2 )
( ) ( ) , (4)i i

r r

R
3 2

: ;

where the summation is over all classical trajectories α that connect the points r and ′r , α is the
classical action of the trajectory, αA the stability amplitude, γα an additional phase shift to be
defined below, and ′

αp and αp are the initial and final momenta of the trajectory α, respectively.
Equation (4) generalizes the corresponding expression for a system without spin or pseudospin
degrees of freedom [83]. (In that case the projection factor χ χ∣ 〉〈 ∣′

α αp p( ) ( ) and the phase shift γα
are absent.) The classical trajectories are determined by the classical Hamilton function:

μ= + −H v Vp r p r( , ) ( ) , (5)cl F

and the classical action of a trajectory satisfies the equations:

  
ε

τ
∂
∂

=
∂
∂

= −
∂
∂

=
′

′α
α

α
α

α
αr

p
r

p, , , (6)
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where τα is the duration of the trajectory. The stability amplitude αA is found as | |αDdet , with:

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

 

 
ε

ε ε

=

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂

′ ′
α

α α

α α

D r r r

r

. (7)

2 2

2 2

2

Finally, the phase shift γα contains the Berry phase:

∫γ
ϕ

ϕ ϕ π= − = − − +α

τ

′

α
α

α α
( )dt

d

dt
n

1
2

1
2

2 , (8)
tp

p p
0

( )

where in the second equality we chose the initial and final angles to be ϕ ϕ π⩽ ⩽′α α
0 , 2

p p
, and

add πn2 , n being integer, to account for the phase winding along the path α. We have not
included the phase corresponding to the Maslov index [83], which can be disregarded for the
calculation of transport.

In the next sections we also need the advanced Green function, which follows from the
relation:

⎡⎣ ⎤⎦ ε ε=′ ′
†

( ) ( )r r r r, ; , ; . (9)A R

Expression (4) is the basis for all our further calculations. It is called ‘semiclassical’
because of the explicit reference to classical trajectories, which is justified by the smallness of
Planckʼs constant ℏ in comparison to a trajectoryʼs classical action α. Such a trajectory-based
semiclassical analysis is possible if the electronʼs wavelength is small in comparison to the
typical length scale over which the potentialV r( ) changes. This condition can be met only if the
Dirac point p = 0 does not contribute to transport, because the wavelength diverges at the Dirac
point. The requirements that the chemical potential μ be much larger than the potentialV r( ) and
the temperature T ensure that the Dirac point itself can be excluded, indeed.

In this parameter regime, graphene is essentially metallic, with a leading contribution to
transport given by the Drude conductivity, whereas quantum interference and interactions give
rise to small corrections to the conductivity. The Drude conductivity and the quantum
corrections will be calculated separately in the following sections.

In the opposite regime of chemical potential μ, small in comparison to the random
potential V r( ) or temperature T, quantum interference and interaction effects can be much
more pronounced. For clean graphene, the conductivity is dominated by the Coulomb
interaction if μ ≪ T in a manner that does not occur for conventional semiconductor
structures [84, 85]. The reason is that at the Dirac point, momentum conservation does not
imply current conservation so that electron–electron interactions, while conserving the total
momentum, may cause a charge current to relax. This mechanism does not operate in the
regime μ ≫ T we consider here.

There has been considerable activity to address the impact of interactions and disorder
on transport effects in graphene in terms of a hydrodynamic approach, based on the
Boltzmann equation or its generalizations (see, e.g., [84–92]). While technically such
descriptions are referred to as ‘quasiclassical’, we want to stress that there are subtle
differences in the range of applicability between such a quasiclassical description and the
(trajectory-based) semiclassical description used in the present article. The hydrodynamic
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approach has been used to address the ‘quantum-critical’ regime (chemical potential μ much
smaller than temperature T), where conductivity may be interaction-limited. This regime is
outside the range accessible with the semiclassical methods, since the notion of ‘trajectory’
becomes meaningless as one gets close to the Dirac point. Another difference is that
semiclassical methods require scatterers that preserve the notion of a classical trajectory—
such as the smooth random potentials we consider here—while in the Boltzmann approach,
the collision integral is calculated quantum-mechanically and thus can also handle short-range
scatterers. On the other hand, semiclassical methods can be used to describe quantum
interference effects in transport, which are nontrivial in a Boltzmann approach [93]. These
interference effects will be the focus in the remainder of this paper.

3. Drude conductance

We now turn to the calculation of the conductivity. Hereto, we consider a rectangular sample of
graphene of dimensions ×L W , calculate its conductance G, and obtain the conductivity σ from
the relation σ=G W L/ . The conductance G is calculated from the Kubo formula:

⎜ ⎟⎛
⎝

⎞
⎠ ⎡⎣ ⎤⎦  ∫ ∫π

ε
ε
ε

ε ε= − ∂
∂

ˆ ˆ′ ′ ′ ′
′= =

( ) ( )G
e d

dydy d
f

v vr r r r
2

( )
Tr , ; , ; , (10)

W

x x
x x L

2
g

0

R A

0,

where ε = +εf e( ) 1/( 1)T/ is the Fermi function and =d 4g denotes the degeneracy due to spin
and valley. Further, the velocity operator for graphene reads:

σˆ =v v , (11)x xF

and the trace indicates a summation over pseudospin indices.
For a semiclassical calculation of the conductance, we insert the semiclassical Green

function (4) into the Kubo formula so that G is expressed as a double sum over trajectories α
and β. Restricting the summation to diagonal terms α β= , the so-called diagonal
approximation, then gives the Drude conductance. For α β= the semiclassical approximation
equation (10) contains matrix elements of the form:

χ χ ϕ〈 | ˆ | 〉 = =α α α
v v vp p( ) ( ) cos , (12)x xpF

with = ∂ ∂v H p/x xcl . Apart from the factor dg, the resulting expression is the same as in the case of
a standard two-dimensional electron gas,

⎜ ⎟⎛
⎝

⎞
⎠ ∫ ∫ ∫ ∑

π
ε

ε
ε

= − ∂
∂

′ ′
α

α
′ →

G d
e

dy dy d
f

A v v
(2 )

( )
, (13)

( )y L y
x x0 g

2

2
: 0, ( , )

2

with the initial (final) classical velocity ′vx (vx).
The remaining summation over trajectories α can be transformed to an integral over initial

and final momenta and the duration of the trajectories [94, 95]:

∫ ∫ ∫∑ τ ρ= →′ ′ ′ ′
α ε

α α α α ε ε ε
′→

∞

( ) ( ) ( )A f dt d d t f tp p p p X X p p, , ; , , . (14)
r r: ;

2

0

Here, f is an arbitrary function, and the integration over momenta is restricted to the energy shell
δ ε= −εd d Hp p r p( ( , ))cl . The trajectory density ρ →′

ε tX X( ; ) selects only those phase space
points =X r p( , ) that are connected via a classical trajectory with the initial point ′X . Since the
initial phase space point, together with the classical Hamilton function, uniquely determines the
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classical trajectory, ρ is expressed as a δ-function:

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ρ ρ δ δ→ = → − = −′ ′ ′ ′
ε( ) ( ) ( ) ( )t t H H tX X X X X X X X X; ; ( ) , , (15)cl cl

where =′ ′ ′ ′ ′t t tX X r r p p r p( , ) ( ( , ; ), ( , ; )) is the phase space point that a trajectory starting out
of =′ ′ ′X r p( , ) reaches after a time t.

The calculation proceeds by performing a statistical average of the conductance, where we
average over small displacements in the disorder potential V r( ). Such a procedure replaces the
exact trajectory density ρ →′

ε tX X( ; ) by the classical propagator ′P tX X( , ; ), which is a
smooth function of initial and final phase space coordinates as well as time. The classical
propagator has only a weak dependence on energy, which we neglect in the following. We then
obtain for the Drude conductance:

⎡⎣ ⎤⎦ ∫ ∫ ∫π
= ′ ′ ′ ′

ε ε

∞

′= =
( )G

e d
dt dydy d d v P t vp p X X

(2 )
, ; . (16)x x

x x L
0

2
g

2
0 0,

For the further analysis of the Drude conductance, one needs to specify the classical
propagator ′P tX X( , ; ). Following [15, 96], we consider a random Gaussian potential with the
correlation function:


πξ

=′ ξ− − ′( ) ( )
V V K

v
er r( )

2
, (17)r r

0
F

2

2
2

2 2

where ξ is the correlation length and K0 is the dimensionless strength of the potential. On spatial
scales much longer than the correlation length, the electronic motion becomes diffusive, with a
diffusion coefficient that we will calculate in the following. The random potential of
equation (17) has been used to describe the impurity potential in experiments [97, 98].

We start by considering a particle that moves in the x-direction at time t = 0 and
consider how the direction of motion changes under the influence of the potential V r( ).
Following classical dynamics, the angle ϕ t( ) at which the electron propagates at time t is
given by:

 ∫ϕ = − ∂′ ′( )( )t
k

dt V tr( )
1

, (18)
t

y
F 0

where kF is the Fermi wavenumber. This equation is valid for times t short enough, such that
ϕ| | ≪t( ) 1, so that the motion of the electron is mainly along the x-direction, =t v tr e( ) xF . We
then find for the mean quadratic deflection:


∫ϕ = ∂ ∂′ ′

( )
( )t

k v
dxdx V x V x( )

1
( , 0) , 0 . (19)

v t

y y
2

F F

2
0

F

Using the correlation function equation (17), this gives:

ϕ
ξ π

=t
K v t

k
( )

2
, (20)2 0 F

3
F
2

provided t is much longer than the ‘correlation time’ ξ=ξt v/ F. Our derivation required the time
t to be short enough such that the deflection is small. Such a time interval exists as long as

ξ≪K k( )0 F
2, which is a condition that can be met if the disorder is smooth on the scale of the

Fermi wavelength ξ ≫k( 1)F .
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Equation (20) describes a linear-in-time increase of the quadratic deflection, a
characteristic property of the diffusive motion for the angle ϕ. Continuing the diffusive
process beyond small angles, the validity of this equation can be extended to all times longer
than the correlation time ξt . Further, extending the result to arbitrary starting times and arbitrary
directions in the beginning of the propagation, we conclude that the angle difference
ϕ ϕ− ′t t( ) ( ) has a Gaussian distribution with zero mean and with variance:

⎡⎣ ⎤⎦ϕ ϕ
ξ π

− = −′ ′( )t t
K v

k
t t( )

2
. (21)

2 0 F
3

F
2

Now we can calculate the electronʼs mean square displacement. Since:

⎡⎣ ⎤⎦∫ ϕ ϕ− = +′ ′ ′( ) ( )t v dt t tr r e e( ) (0) cos sin , (22)
t

x yF
0

the mean square displacement is given by:

⎡⎣ ⎤⎦∫ ϕ ϕ− = ″ − ″′ ′( )t v dt dt t tr r( ) (0) cos ( ) . (23)
t

2
F
2

0

The average can be performed using the Gaussian distribution of ϕ ϕ− ″′t t( ) ( ), and one
finds, in the long-time limit,

− =t D tr r[ ( ) (0)] 4 , (24)2

where the diffusion constant D is given by:

ξ π
=D

k v

K

2
. (25)

3
F
2

F

0

The diffusion constant of equation (25) corresponds to a transport mean free path:

τ
ξ π

= =l v
k

K

2 2
, (26)tr tr F

3
F
2

0

which is parametrically larger than the correlation length ξ in the limit ξ ≫k 1F of a smooth
potential.

We now turn back to the evaluation of equation (16) in the diffusive limit. In this case, the
direction of the momentum does not influence the propagation, which amounts to the
replacements:

π ν ϕ
π

=εd
d

p (2 )
2

(27)2

and

π ν
=′ ′( ) ( )P t P tX X r r, ;

1

(2 )
, ; , (28)2

where ν is the density of states per spin and valley. The relevant classical propagator ′P tr r( , ; )
is then a function of position only and satisfies a diffusion equation:

Δ δ δ∂ − = −′ ′( ) ( ) ( )D P t tr r r r, ; ( ) , (29)t r

where D is the diffusion constant, determined above.
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The solution to the diffusion equation equation (29) in two dimensions, with perfect leads
at x = 0 and x = L and insulating boundaries at y = 0 and y = W, is given by:

∑θ ψ ψ=′ ′ −( ) ( )P t t er r r r, ; ( ) ( ) , (30)D t

q
q q

q2

where we introduced the function:

⎧
⎨⎪
⎩⎪

ψ = ×
=

≠( )LW
q x

q

q y q
r( )

4
sin( )

1 2 if 0,

cos if 0.
(31)

x

y

y y

q

The summation over q extends over π=q n L/
x

, with = …n 1, 2, and π=q m W/
y

and with
= …m 0, 1, .
In our calculation of the Drude conductance, as well as in the forthcoming calculation of

the quantum corrections, we also encounter expressions where the diffusion propagator that
connects to the leads is multiplied by the velocity vx. Such expressions are handled with the help
of the diffusive flux:

= − ∂′ ′( ) ( )j t D P tr r r r, ; , ; , (32)
x x

at position r and time t, for a particle starting from ′r at time t = 0. We find:

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

∫ ∫
∫ ∫

= = −

= =

′ ′ ′ ′

′ ′ ′ ′

ε

ε

∞

′=
∞

′=

( )

( )

P dt dy d P t v
L x

L

P dt dy d v P t
x

L

r p X X

r p X X

( ) , ; ,

( ) , ; , (33)

x
x

x
x L

L
0 0

R
0

⎡⎣ ⎤⎦∫ ∫ π ν
= =′

′
′ ′ε ε

∞

′= =
( )P dt dydy

d d
v P t v D

W

L

p p
X X

(2 )
, ; .x x

x x L
LR

0
2 0,

The quantity PLR appears in the Drude conductance, while the quantities PL and PR, which
represent the probability that a particle at position r has entered via the left lead or will exit via
the right lead, respectively, are introduced for later use.

For the Drude conductivity σ = G L W/0 0 we then obtain the standard expression:

σ ν= d e D, (34)0 g
2

where the factor =d 4g accounts for the degeneracy for spin and valley. Importantly,
pseudospin does not enter as an additional degeneracy, since it is locked to the momentum.
Taking the expression for the diffusion coefficient for the Gaussian random potential,
equation (25), as well as the density of states at graphene, ν π= k v/2F F, one obtains:

σ
ξ

π=
( )e

h

k

K

4
2 . (35)0

2
F

3

0

The same result was obtained in a quantum-mechanical calculation using the Boltzmann
equation in [96].

4. Weak antilocalization

Deviations from the Drude conductance are termed quantum corrections. Without interactions
and for conventional metals, the leading correction to the classical conductance results in a

9

New J. Phys. 16 (2014) 073015 M Schneider and P W Brouwer



small reduction of the conductance and is called ‘weak localization’, since it describes the
onset of Anderson localization. In graphene, the Berry phase is responsible for a different
sign of this quantum correction, which gives rise to an enhanced conductance (when effects
of intervalley scattering and trigonal warping are neglected), and is therefore called weak
antilocalization [50–52, 58, 60]. In the following, we will show how the weak antilocalization
correction is derived in the semiclassical formalism and discuss the effect of a finite Ehrenfest
time. Again, we will give explicit results for the case of a smooth random Gaussian-correlated
potential.

In the semiclassical framework, weak (anti)localization results from configurations of
retarded and advanced trajectories α and β as shown in figure 1. The trajectories can be
divided into four segments: the entrance and exit segments, where the trajectories α and β are
correlated or ‘paired’ (i.e., the difference between the two trajectories is sufficiently small that
the chaotic classical dynamics can be linearized on that scale); the loop segment, where the
trajectory α is paired with the time-reversed of trajectory β; and the encounter region (or
Lyapunov region), where trajectories α and β as well as their time-reversed are correlated. At
the beginning of their first passage through the encounter region, the trajectories α and β are
located within a Fermi wavelength λF. Due to the chaotic motion, this phase-space distance
increases exponentially along the encounter region as λ= λd t e( ) t

F , where λ is the Lyapunov
coefficient characteristic of the chaotic motion. For the random Gaussian potential (17), the
Lyapunov exponent is:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟λ

ξΓ
π

ξ
=

( )
v K

k(1 6)

9

4 2
(36)F 0

F

2

1 3

(see [32] and appendix A). At the end of the encounter region, the distance has reached a
classical size Lc, beyond which classical motion is considered uncorrelated—i.e., the classical
dynamics can no longer be linearized. For the smooth random potential (17), we may identify

Figure 1. Configurations of trajectories α and β responsible for weak antilocalization.
We represent trajectories corresponding to retarded (advanced) Green functions as solid
(dashed) lines. The trajectories consist of an entrance/exit segment, a loop segment of
variable duration t and an encounter region, which allows for ‘pair switching’ of the
trajectories (indicated in blue). When trajectories are paired together; their allowed
spatial separation is set by the Fermi wavelength λF. During the encounter region, this
separation gets magnified to a classical size Lc beyond which the trajectories develop in
an uncorrelated manner. The encounter is shown enlarged in the figure; in reality all
four segments of trajectories within the encounter remain very close together; on a
submacroscopic scale in phase space.
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ξ≃Lc . The duration of the encounter is set by the Ehrenfest time:

τ λ λ= − ( )Lln . (37)E
1

c F

Our final results can be expressed in terms of Ehrenfest time only, which depends
logarithmically on Lc, so that a more precise definition of the cutoff Lc is not needed.

For the calculation of the weak localization, one starts from the Kubo formula,
equation (10), inserts the semiclassical expressions for the Green function, and then restricts the
summation to configurations of trajectories as explained in the previous paragraph. As long as
the duration of the encounter region is τE or larger, the trajectories α and β acquire an action
difference  Δ ≲ [32, 35].

For graphene, we also have to keep track of the influence of the pseudospin, which has two
effects. First, the spinor structure of the semiclassical Green function changes the velocity
operator to the classical velocity, in the same way as before for the Drude conductance (see
equation (12)). Second, since the trajectories are no longer equal, we have to pay attention to the
Berry phase collected along the trajectories α and β. At this stage, we can write:

⎜ ⎟⎛
⎝

⎞
⎠

 


∫ ∫ ∫ ∑δ
π

ε
ε
ε

= − ∂
∂

′ ′
α β

α
γ γ

′ →

− −α β α β( )( )G
e d

dy dy d
f

A v v e e
(2 )

( )
, (38)

( )y L y
x x

i i
WAL

2
g

2
, : 0, ( , )

2

where the summation is restricted to the configurations of trajectories shown in figure 1, for
which we have =α βA A .

The difference of the Berry phase Δγ γ γ= −α β is collected in the loop segment only.
(In the encounter region, the trajectories α and β differ on a sub-macroscopic scale only,
which adds a negligible contribution to the Berry phase difference.) Since the momenta of
trajectory α are opposite at the beginning and the end of the loop segment, we have from
equation (8):

⎜ ⎟⎛
⎝

⎞
⎠γ π= +α n

1
2

, (39)
,Loop

with integer n depending on the total winding of the momentum along the trajectory. Since the
Berry phase is expressed as an integral along the trajectory, the Berry phase collected by
trajectory β along the loop is just γ γ= −β α,Loop ,Loop

. Hence, we find:

= −Δγe 1 (40)i

for all configurations of trajectories contributing to the quantum correction. This minus sign is
responsible for the change from weak localization (in conventional two-dimensional electron
gases without spin–orbit coupling) to weak antilocalization.

The remaining calculation then proceeds as in the standard case, and we find [37]:

 ∫ ∫δ
π

τ= − ∂′ ′ ′ ′τ ( ) ( )G d
e

d d P P P dt P tr r r r r r r r
2

( ) ( ) , ; , ; (41)WAL g

2

L R EE

where ′ ′P tr r( , ; ) is the diffusion propagator (see equation (30)), and P r( )L and P r( )R are
defined in equation (33). For further evaluation of equation (41), we write:

τ Δ τ∂ =′ ′τ ( ) ( )P D Pr r r r, ; , ; (42)rE EE

and perform two partial integrations on r. Making use of the explicit form of P r( )L and P r( )R ,
we arrive at:
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 ∫ ∫δ
π

τ= ′ ′ ′ ′
τ

∞

( ) ( )G
e d D

L
d d P dt P tr r r r r r

2
2

, ; , ; . (43)WAL

2
g

2 E
tr

In two dimensions, the time integral in this equation is divergent for small times, and the
appropriate cutoff is set by the transport time τtr, below which the diffusive approximation
breaks down. In the limit of large aspect ratio W L/ , and small τ τ/tr D, where τ π= L D/D

2 2 is the
dwell time, we then find (see appendix B):


δσ

π
τ τ τ τ=

e d
h

4
ln ( ) ( ), (44)WAL

2
g

2 D tr E D

where the function h(x) is defined as:

∑
π

=
=

∞
−h x

n
e( )

8 1
. (45)

n n

n x
2

1, odd
2

2

It has the asymptotic behavior:

⎧
⎨
⎪⎪

⎩
⎪⎪

π

π

=
− ≪

≫−
h x

x x

e x
( )

1
4

, 1

8
, 1.

(46)
x

3 2

2

At zero Ehrenfest time, =h (0) 1, and we arrive at the well-known result for weak
antilocalization of a symplectic metal [41, 42]. At finite Ehrenfest time, our calculation results
in a suppression of the weak antilocalization by the additional factor τ τh ( / )E D , shown in
figure 2. (The same multiplicative factor τ τh ( / )E D describes the suppression of weak localization
or weak antilocalization in a conventional two-dimensional electron gas. We are not aware of a
calculation of the function h in this context.)

5. Altshuler–Aronov correction

We now turn to the effects of interactions on the conductivity. Interactions modify the
conductivity in two physically distinct ways. First, interactions cause the so-called Altshuler–
Aronov correction [45, 46], which has its origin in the interference of elastic scattering of
impurities and off Friedel oscillations of the electron density around an impurity. Second,

Figure 2. At finite Ehrenfest time, weak antilocalization is suppressed by an additional
factor τ τh ( / )E D .
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inelastic electron–electron scattering is responsible for a loss of phase coherence, or
‘dephasing’, which sets an upper limit on the time at which weak (anti)localization can occur.

5.1. Lowest-order interaction correction

The semiclassical treatment of interaction corrections proceeds via two steps. First, one
considers a specific random potential and includes interactions to first order diagrammatic
perturbation theory. Such a procedure is rather standard and results in expressions in terms of
Green functions  ε′r r( , ; ) for the given disorder realization. The second step is to take the
disorder average, where we employ the semiclassical framework. Hereto, we insert the
semiclassical expressions for the Green functions and identify the relevant configurations of
trajectories that contribute to the interaction corrections. Our results take into account the effects
of a finite Ehrenfest time.

We now outline the calculation in more detail. For the inclusion of interactions using
diagrammatic perturbation theory, we can adapt the results of [48], where the authors divide
their expressions into contributions to the Altshuler–Aronov correction and to dephasing
effects. For the calculation of the conductance, as done in this work, we may further simplify
the expressions of [48] by keeping only terms in which one retarded and one advanced Green
function are attached to the current vertex (in contrast to the calculation of the conductivity,
where diagrams with two Green functions of the same kind connected to the current vertex also
need to be kept (see discussion in [34]).

Explicit expressions for the Altshuler–Aronov conductance correction δGAA are obtained
from equation (10) upon replacing the retarded Green function  ε′r r( , ; )R by:

   ε ε δ ε δ ε→ + +′ ′ ′ ′( ) ( ) ( ) ( )r r r r r r r r, ; , ; , ; , ; , (47)R R R,F R,H

and a similar replacement for the advanced Green function  ε′r r( , ; )A , keeping terms to first
order in the interaction only. The functions δ ε′r r( , ; )R,F and δ ε′r r( , ; )R,H are Fock and
Hartree corrections to the single-particle Green function, respectively,

⎜ ⎟
⎛
⎝

⎞
⎠  

 
∫ ∫∑δ ε ω

π
ω ε ε ε

ω ε ω ω ε ω

= −

× − − −

′ ′αβ
γδ

αγ δβ

γδ γδ

( ) ( )d

i
d d

T

U U

r r r r r r r r

r r r r r r r r

, ;
4

tanh
2

( , ; ) , ;

{ ( , ; ) ( , ; ) ( , ; ) ( , ; )}, (48)

R,F
1 2

R
1

R
2

A
1 2

R
1 2

R
1 2

A
1 2

⎜ ⎟
⎛
⎝

⎞
⎠  

 
∫ ∫∑δ ε ω

π
ω ε ε ε

ε ω ε ω

= − −

× − − −

′ ′αβ
γδ

αγ γβ

δδ δδ

( ) ( )

( ) ( )

d
d

i
d d

T

U U

r r r r r r r r

r r r r r r r r

, ;
4

tanh
2

( , ; ) , ;

{ , ; 0 ( , ; ) , ; 0 ( , ; )}. (49)

R,H
g 1 2

R
1

R
1

A
1 2

R
2 2

R
1 2

A
2 2

In these expressions we wrote the pseudospin indices explicitly. We further allow for a
frequency dependence of the interaction propagator ωU r r( , ; )R

1 2 to include the effect of
dynamical screening. To first order in interaction we also obtain additional corrections to the
conductance contributing to dephasing, these will be discussed in the next section.

Having replaced the retarded (advanced) Green function in the Kubo formula
(equation (10)) according to equations (47)–(49), we then obtain terms that consist of products
of four Green functions. Insertion of the semiclassical Green functions then leads to a sum over
four trajectories. Systematic contributions to δGAA are obtained only if trajectories originating
from retarded and advanced Green functions are paired up or if they undergo a small-angle
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encounter [34]. Configurations of trajectories that are in line with these requirements for the
Fock contribution to δGAA are shown in figure 3. Here, configuration a( ) originates from a term
with three advanced Green functions and one retarded Green function. In this case, the three
‘advanced’ trajectories must join to a single trajectory that can be paired up with the ‘retarded’
trajectory. Configurations b( )– e( ) correspond to a term with two retarded and two advanced
trajectories. In this situation, due to the specific requirements on the start and end points of the
Green functions, the trajectories cannot be paired one by one; instead, the four trajectories
undergo a small-angle encounter. The subdivision into configurations b( )– e( ) reflects the
possibilities to have none, one or both interaction points within the encounter region. For each
of the configurations shown in figure 3, there is a counterpart for which the role of retarded and
advanced trajectories is interchanged.

In close analogy to the calculation for conventional electron gases [34], we find, for a
random potential with Gaussian correlations as in equation (17),

⎜ ⎟
⎛
⎝

⎞
⎠ ∫ ∫δ

ν
π

ω
ω

ω ω

ω ω Σ

= ∂
∂

× 〈 〉{ }

G
d e

d
T

d d

U K

r r

r r r r p p

2
coth

2

Im ( , ; ) ( , ; ) ( , ) , (50)p p

AA
F g

2

2 1 2

R
1 2 1 2 F 1 2 ,1 2

with the kernel ωK r r( , ; )1 2 given by:

∫ ∫ω ω ω= − ∂ ∂′ ′ ′
τ

ω
′

∞

( ) ( )K
D

L
d d P P dt P t er r r r r r r r r r( , ; )

4
( , ; ) , ; , ; , (51)x x

i t
1 2

2

2 1 2
E

where

∫ω =′ ω
∞

( )P dt P t er r r r, ; ( , ; ) (52)i t

0

is the Fourier transform of the diffusion propagator ′P tr r( , ; ), and where the brackets
〈…〉 p p,1 2

denote an average over the directions of the momenta p
1
and p

2
. Equation (51)

Figure 3. Configurations of trajectories that contribute to the Fock contribution to the
Altshuler–Aronov correction. ‘Retarded’ and ‘advanced’ trajectories are represented by
solid and dashed lines, respectively. Encounter regions are indicated in blue.
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demonstrates that the Ehrenfest time is acting as a short-time cutoff for the Altshuler–Aronov
correction.

The spinor structure of the semiclassical Green function contributes the factor Σ p p( , )F 1 2
,

which is not present in the calculation for the conventional two-dimensional electron gas. As
explained in figure 4, it depends on the overlap of pseudospinors of the two trajectories at the
interaction points. For the diffusive motion, only the quantity averaged over momenta p

1
and p

2
with ∣ ∣ = ∣ ∣ = pp p

1 2 F
is relevant. For the Fock contribution, momentum does not change at the

interaction points, and the spinors at the interaction points combine to a factor:

Σ χ χ χ χ= 〈 ∣ 〉〈 ∣ 〉 =p p p p p p( , ) ( ) ( ) ( ) ( ) 1. (53)F 1 2 1 1 2 2

Thus, up to the degeneracy dg, the result for the Fock contribution remains unchanged as
compared to the conventional metal. The spinor structure will, however, influence the Hartree
contribution δGAA

H , as we now show.
The relevant trajectory configurations for the Hartree correction are shown in figure 5.

There is a one-to-one correspondence between the trajectory configurations for the Fock and
Hartree contributions. However, unlike for the Fock contribution, the configurations for the
Hartree contribution involve a finite-angle crossing at momenta p

1
and p

2
, which has two

important consequences: first, it leads to an additional difference in the classical actions of the
trajectories, resulting in the fast-oscillating factor − −ei p p r r( )( )/1 2 1 2 . Such a factor also enforces the
interaction points r1 and r2 to remain close together on a scale of the Fermi wavelength. Since
the function ωK r r( , ; )1 2 is built from classical propagators that are smooth on the scale of the
Fermi wavelength, we can identify =r r1 2 for this function. Second, the spinor structure from
the interaction vertices now results in the nontrivial factor:

⎛
⎝⎜

⎞
⎠⎟Σ χ χ χ χ

ϕ ϕ
= 〈 ∣ 〉〈 ∣ 〉 =

−
p p p p p p( , ) ( ) ( ) ( ) ( ) cos

2
. (54)

p p

H 1 2 1 2 2 1
2 1 2

This result indeed reflects the chiral nature of the charge carriers, leading to a suppression of
backward scattering processes.

Figure 4. For graphene, the pseudospin structure contributes additional factors
associated with the interaction vertex. In our notation, the retarded Green function
 r r( , )R

2 1 is associated with trajectories running from r1 to r2, while the advanced Green
function  r r( , )A

2 1 is associated with trajectories running from r2 to r1. This amounts to
the following possibilities: if the interaction vertex is associated with two Green
functions of the same kind, then one trajectory is pointing towards the vertex while the
other one is pointing away; for an interaction vertex associated with one retarded and
one advanced Green function, both trajectories either point towards or away from the
vertex. In the figure, we show four possibilities that result in a factor χ χ〈 | ′ 〉p p( ) ( ) , with
the associated labelling of momenta.
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Combining everything, the Hartree contribution can be obtained from the Fock
contribution by the replacement:

ω ω Σ δ→ − − = −( )U U dr r p p p p r r( , ; ) ; 0 ( , ) ( ), (55)p p
R

1 2 1 2 H 1 2 , g 1 21 2

where the factor dg comes from the existence of a closed trajectory-loop in the configurations of
figure 5, and with the Fourier-transformed interaction:

∫ω ω=U d e Uq r r( ; ) ( ; ). (56)iqrR R

For a short-range potential δ− ∝ −U r r r r( ) ( )1 2 1 2 , we then find δ δ= −G d G( /2)AA
H

g AA
F : the spin

and valley degeneracies enhance the Hartree contribution by an extra factor =d 4g compared to
the Fock contribution, while chirality reduces it by a factor two [54, 55].

Substituting the explicit expressions for the diffusion propagators, the final result for the
interaction correction to the conductivity reads:

⎜ ⎟
⎛
⎝

⎞
⎠

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪


 

∫ ∫δσ
ν

π
ω

ω
ω ω

π
ω

ω
= − ∂

∂ −

ωτ τ−

( )
d e D

d
T

d Dq e e

D i

q
q

q
coth

2
Im

(2 )
( ; ) , (57)

i Dq

AA
g

2

2

2

2
R

2

2 3

E
2

E

with the effective interaction kernel:

 ω ω Σ= − −( ) ( )U d Uq q p p p p( ; ) ( , ) ; 0 , .p p
R R

g
R

1 2 H 1 2 ,1 2

Figure 5. Configurations of trajectories that contribute to the Hartree contribution to the
Altshuler–Aronov correction. There is a one-to-one correspondence between the
configurations for the Hartree and the Fock contributions (figure 3).
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5.2. Coulomb interaction

The Coulomb interaction = | − |U er r r r( , ) /C 1 2
2

1 2 is long-range, and screening effects need to be
incorporated into the results of the previous section. The treatment of screening requires us to
slightly reformulate the results of the previous section. This discussion closely follows that of
[34, 46, 99–101], where the case of Coulomb interactions in a normal metal was considered.

Since all relevant trajectories are paired in the semiclassical analysis, it is sufficient to
consider interaction processes in which the transferred momentum q is small (eventually after
an exchange of the particles). To be specific, we consider the scattering of two particles with
initial momenta p

1
and p

2
and final momenta +p q

1
and −p q

2
, respectively, and assign

combined spin/valley indices α and γ to the incoming particles and the indices β and δ to the
two outgoing particles, respectively (see figure 6). Then the unscreened Coulomb interaction
has the matrix elements  δ δ Σ δ δ= − 〈 − 〉αβγδ α β γ δ α δ β γU Uq q p p p p( ) ( ) ( ) ( , ) p pC , , C 1 2 H 1 2 , , ,1 2

, where
we neglected the small momentum q in the argument of UC for the second term and performed
the average over the directions of p

1
and p

2
, consistent with the diffusive motion. It is the trace

of this averaged matrix element that appears in the effective interaction kernel (58) of the
perturbative analysis.

The theoretical treatment of screening requires a different structure of the valley and spin
indices. The interaction matrix elements are decomposed as:

 ∑ Γ Γ=αβγδ αβ γδ
=

q q( ) ( ) , (58)
i

i i i

0

15
( ) ( ) ( )

where matrices Γ i( ) act in spin and valley space and read { τ τ τ τ⊗ ⊗ ⊗ ⊗s s s s, , ,k j j k0 0 0 0 },
where s j (τ k ) are Pauli matrices acting in spin (valley) space, with ∈j k x y z, { , , } and s0 (τ0 )
as ×2 2-unit matrices. Using the equality Γ Γ δ δ∑ =αβ γδ αδ βγ4

i
i i( ) ( ) one then finds that the bare

Coulomb interaction has:

 δ Σ= − 〈 − 〉U Uq q p p p p( ) ( )
1
4

( ) ( , ) . (59)i
i p p0

( )
C ,0 C 1 2 H 1 2 ,1 2

Screening renormalizes each of the interaction channels  i( ) in equation (58) separately.
For weak interactions (gas parameter ≪r 1s ), one may use the random phase approximation,
which gives:

   ω Π ω ω= −q q q q q( ; ) ( ) ( ) ( ; ) ( ; ), (60)i i i i( )
0
( )

0
( ) ( )

Figure 6. Scattering processes of two particles with initial momenta p
1
(p

2
) and spin

+ valley α (γ), and final momenta +p q
1

( −p q
2

) and spin + valley β (δ) to lowest order
interaction.
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where Π ωq( ; ) is the polarization operator

⎡
⎣⎢

⎤
⎦⎥

Π ω ν ω ω= +d
i

Pq q( ; ) 1 ( ; ) , (61)g

ω ω= − −P D iq q( ; ) ( / )2 1 being the diffusion propagator.
The extension of the discussion to stronger interactions requires the use of Fermi liquid

theory. Following [46, 99–101], the bare interaction acquires a short-range contribution set by
Fermi-liquid constants,

 
ν ν

= + =ρ σ≠U
d

F
d

Fq q q( ) ( )
1

, ( )
1

, (62)
g

i

g
0
(0)

C 0 0
( 0)

0

where we assume the same Fermi-liquid constant σF0 in all non-singlet channels. The screened
interaction is then still given by equation (60).

Applying this procedure to the Altshuler–Aronov correction, we find the same result as the
first-order correction (57), but a different expression for the interaction kernel  ωq( ; )R ,

⎡⎣ ⎤⎦
 





ω

ν
ω ω

ν ω
= − +

− −

+ −

σ

σ

( )( )
( )d

D i

D

F d D i

d D F i
q

q
q

q

q
( ; )

1 1

1
. (63)R

g

2

2

0 g
2 2

g
2

0

The singlet-channel Fermi liquid constant ρF0 does not enter into the correction because of the
divergence of the Coulomb interaction at small momenta.

We plot the Altshuler–Aronov correction for various values of the interaction constant σF0

in figure 7. For small Ehrenfest time, one finds:

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

δσ
π π τ

= − + −
+ σ

σ

( )e

h
c

F

F T
1 1

ln 1
ln

2
, (64)AA

2
0

0 E

with = −c d 1g
2 . Such an expression is well-known from diagrammatic perturbation theory

[102], where in our case, the Ehrenfest time takes over the role of the elastic scattering time as a
short-time cutoff. The graphene-specific physics enters the result in two ways [54, 55]: first, the
constant = −c d 1g

2 is 15 for graphene with only smooth disorder, in contrast to c = 3 for
conventional metals without valley degeneracy. Second, chirality affects the interaction
constant σF0 , as will be explained in more detail below. For small values of σF0 , the singlet
contribution is dominant in equation (64), giving rise to a negative correction to the
conductance. On the other hand, for graphene, for ≲ −σF 0.120 , the non-singlet channels
render the interaction correction positive.

For large Ehrenfest time, we find an exponential suppression:

δσ
π

= − π τ−e

h
e , (65)T

AA

2
2 E

where the prefactor of the exponential is determined by the singlet channel only to leading order
in  τT/ E; hence at large Ehrenfest times, δGAA is negative and has universal behavior.

A striking consequence of this asymptotics is a sign-change of the interaction correction as
a function of Ehrenfest time, provided the Fermi-liquid-type interactions in the non-singlet
channels are strong enough. For graphene (c = 15) this sign change already takes place at

≲ −σF 0.120 , in contrast to a conventional metal (c = 3), where the sign change is observed for
≲ −σF 0.450 . On the other hand, the values for σF0 are typically somewhat smaller in graphene,
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as can be seen using the Thomas–Fermi approximation [54, 55]. For conventional metals, one
has:

| |
ν

π
κ

= −
− +

σ ⋆F
e

p p

2
, (66)

p p

0

2

1 2 ,1 2

where ⋆e is the charge screened by the substrate [54, 55] and κ πν= × ⋆e2 2 2 is the inverse
screening length resulting from the metal electrons (a factor 2 accounts for spin). We then find:

∫ ∫ν θ
π

π
πν

θ
π

α
α

= −
+

= −
+

σ
π

θ

π

θ
⋆

⋆

F
d e

k e

d2

2 sin 4 2 sin 2
, (67)

F
0

0

2

2
2

0
2

where θ is the angle between the directions of momenta p
1
and p

2
. We further used πν=k v2F F,

as well as the ‘effective fine structure constant’ α = ⋆e v/2
F. The gas parameter rs is related to α

as α=r 2s . For a value ≈r 1s , we obtain ≈ −σF 0.280 as a typical size for the Fermi liquid
parameter.

For graphene, this calculation needs to be modified in two respects. First, the inverse
screening length is twice as large, due to the valley degree of freedom. Second, chirality
contributes the additional factor Σ θ=p p( , ) cos ( /2)H 1 2

2 . Both effects reduce the interaction in
the non-singlet channel,

∫ θ
π

α
α

= −
+

σ
π θ

θF
d cos

2 sin 4
, (68)0

0

2
2

2

so that now for ≈r 1s we find ≈ −σF 0.10 , which is close to the transition point for a sign-change
as a function of Ehrenfest time. The measurements of [54–56] report σF0 in a range between
−0.05 and −0.15. However, we note that our theory requires graphene with a smooth disorder
potential, but no other perturbations, as a necessary condition for the value c = 15 in
equation (64), since there are 16 diffusion channels. Trigonal warping or ripples, while not
invalidating the semiclassical analysis, reduce the number of diffusive channels to eight,
resulting in a prefactor c = 7. In the case of strong intervalley scattering, only four diffusion
modes are present, resulting in a prefactor c = 3 (see [103, 104])—although in that case the
conditions for the semiclassical analysis are no longer valid. The aforementioned experiments
on interaction corrections report to be in a regime where c = 3 or c = 7.

Figure 7. Altshuler–Aronov correction as a function of τ πT 2 /E . Different curves
correspond to different values of the interaction parameter σF0 .
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6. Dephasing

We now turn to the second type of interaction correction, responsible for dephasing. The way of
calculating dephasing in this section follows that of [47]. An alternative discussion based on
perturbation theory, similar to that of the previous section, is given in the appendix.

Because of the interactions, the electrons are subject to a time-dependent potential V tr( , ).
This potential affects the phase that electrons accumulate while propagating through the sample.
These phase fluctuations can be included into the classical action α of the trajectory α, as it
appears in the semiclassical expression (4) for the Green function, by the substitution:

  δ→ +α α α t( ), (69)

where the correction δ α t( ) depends on the time t at which the electron exits the sample. The
shift reads [33, 47]:

 ∫δ = ′ ′ ′α
τ

α
− α

[ ]t dt V t tr( ) ( ), , (70)
t

t

where τα is the duration of the trajectory α.
Such a shift of the classical actions does not affect the Drude conductivity, because the

actions from the retarded and advanced trajectories cancel. It does, however, affect the weak
antilocalization correction. Equation (38) acquires an additional factor  δ δ−α βei t t( ( ) ( )) which, when
averaged over the time t, reduces the contribution from the trajectory pair α, β by a factor:

    〈 〉 =δ δ δ δ− − 〈 − 〉α β α β( )e e . (71)i t t
t

t t( ) ( ) (1 2 ) ( ( ) ( )) t
2 2

The time average can be calculated using the quantum fluctuation-dissipation theorem,

∫ ω
π

ω
ω

ω′ =′ ′ω· − ′ − −( )V t V t
d d

T T
e Ur r

q
q( , ) ,

(2 ) 2 sinh ( 2 )
Im ( , ),( )i i t tq r r

2

3 2
( ) R

which gives:

  ∫ ∫ ∫δ δ
ω

π
ω

ω
ω− =

× − −

α β

τ

ω− − · · − · − ·

α

α β α β( ) ( )
( )t t dt dt

d d

T T
U

e e e e e

q
q

1
2

( ) ( )
(2 ) 2 sinh ( 2 )

Im ( , )

Re . (72)( ) ( ) ( ) ( ) ( )

t

t

i t t i t i t i t i tq r q r q r q r

2

0
1

0
2

2

3 2
R

1

1 2 1 1 2 2

(Note that τ τ=α β for the trajectory pairs that contribute to weak antilocalization.) One
immediately concludes that for the trajectories α and β that contribute to the weak
antilocalization correction, δGWAL, only points αr or βr in the loop or encounter segments of
figure 1 contribute to  δ δ〈 − 〉α βt t( ( ) ( )) t

2 .
To find an explicit expression for the dephasing correction in the limit of weak dephasing,

we expand the correction factor (71) to the lowest order in the interaction ωU q( , )R and
calculate the leading interaction correction δGdeph to the weak antilocalization correction δGWAL.
We consider contributions from positions α β tr ( ), 1 and α β tr ( ), 2 in the loop and encounter regions
separately.

The calculation for the dephasing in the loop segment is very similar to the one carried out
in standard diagrammatic perturbation theory. The discussion below closely follows that of
[49]. With both positions α β tr ( ), 1,2 in the loop region (see figure 8), we find that dephasing in the
loop segment leads to the replacement δ→ +′ ′ ′ ′ ′ ′P t P t P tr r r r r r( , ; ) ( , ; ) ( , ; ) for the loop
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propagator in equation (43), with:

 ∫ ∫δ
π

ω
π

ω ω
ω

= −′ ′( )P t
d d U

T T
r r

q q
, ;

4

(2 ) 2

Im ( ; )

2 sinh ( 2 )

R

2 2 2

∫ ∫ ω× −
−

[ ]dt dt t tcos ( )
( )t t t t

0
1

0

min ,

2 1 2

1 1

⎡⎣ ⎤⎦ × − − − − −t t t t t t t t t t( , , ) ( , , ) , (73)q q2 1 2 1 2 1 2 1

where

 ∫τ τ τ τ τ τ= · − ′ ′[ ] ( ) ( )d d P P Pr r q r r r r r r r r( , , ) cos ( ) , , ( , , ) , , . (74)q 1 2 3 1 2 1 2 2 3 2 1 2 1 1

Inserting the diffusion propagator τ = τ−P eq( , ) Dq2

, one finds:

 τ τ τ = ′ ′ τ τ− −( )P t er r( , , ) , ; , (75)( )Dq t
q 1 2 3

12
2 2

with τ τ τ= + +t 1 2 3. After insertion of the interaction (63) and evaluation of the integrals over
time, frequency and momentum in equation (73) (see appendix D), one obtains:

 
δ α= −

′ ′
′ ′

( )
( )

P t

P t

tT

g

tTr r

r r

, ;

, ;
ln , (76)

0

with the dimensionless conductance π ν=g d D2
0 g , and the constant:

α = + −
+ +

σ

σ σ( ) ( )
( ) ( )

d
F

F F
1 1

1 2
. (77)g

2 0

2

0 0

This result signifies that at large times the loop propagator gets suppressed by interactions.
Here we calculated the leading order correction, describing the onset of an exponential
suppression. (In fact, in two dimensions the decay is not purely exponential [49], but contains
an additional logarithm −e at tln , as can be seen from equation (76)). We estimate the dephasing
rate as the time when the leading correction becomes unity, i.e.,

Figure 8. Dephasing in the loop segment: for the calculation of the lowest-order
interaction correction, the propagation around the loop is split into three segments
′ →r r1 (duration τ1), →r r1 2 (duration τ2) and → ′r r2 (duration τ3). For our figure, the
trajectories α (solid) and β (dashed) are travelled in clockwise and counterclockwise
directions, respectively. The left diagram represents the contribution from the term
proportional to · − ·α αei t i tq r q r( ) ( )1 2 in equation (72); the right diagram represents the
contribution from the term proportional to · − ·β αei t i tq r q r( ) ( )1 2 . The remaining two
contributions, from terms proportional to · − ·α βei t i tq r q r( ) ( )1 2 and · − ·β βei t i tq r q r( ) ( )1 2 , are not shown.
The figures have been drawn for the case that < < −t t t t0 min( , )2 1 1 , which is the
domain of integration in equation (73).
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τ
α

α
≃

φ

T

g

g1
ln . (78)loop

0

0

The leading logarithmic dependence in this expression agrees with that obtained in [105] for a
standard two-dimensional electron gas ( =d 2g ).

We now turn to the encounter region, where dephasing leads to an additional suppression
of weak antilocalization if the typical time for the encounter passage, the Ehrenfest time τE, is
sufficiently long. As discussed before, dephasing is ineffective as long as the trajectories
coincide. Within the encounter region, the trajectories α and β are separated by a small distance,
which does not exceed the classical correlation scale Lc. Dephasing then only plays a role for
interaction that transfers a momentum larger than inverse mean free path and therefore can
resolve such a small distance [33, 106, 107]. On the other hand, for low temperatures τ ≪T 1tr

one has ωτ ≪ 1tr , in this limit, the imaginary part of the screened interaction reads [46]:


ω βω

ν
= −U

qd v
qIm ( ; ) , (79)R

g F

where ν π= k v/2F F is the density of states and we abbreviated:

β = + −
+

σ

σ( ) ( )
( )

d
F

F
1 1

1
. (80)g

2 0

2

0

2

Note that ωU qIm ( ; )R is proportional to −q 1, which is different from the dependence
ω ∝ −U qqIm ( ; )R 2 of the diffusive limit. This difference will result in a different T-dependence

of the dephasing rate in comparison to the loop contribution [33].
We proceed by the integration over ω, which can be done explicitly using the known ω

dependence of ωU qIm ( ; )R [49],




∫ ω
π

ω
ω

π π= −
ω− −

[ ]d e

T T
T w T t t

2 2 sinh ( 2 )
2 ( ) . (81)

( )i t t2

2
2

1 2

1 2

Here the function = −w x x x x( ) ( coth 1)/sinh2 is peaked around x = 0, normalized
∫ =

−∞

∞
dxw x( ) 1, and =w(0) 1/3. Hence, the times t1 and t2 need to be close together on the

scale of inverse temperature. On the other hand, dephasing occurs on times much larger than
−T 1, as we will show below. In the following, we therefore may assume that τ∣ − ∣ ≪t t1 2 E,

when we consider encounters that are long enough to be affected by dephasing. (In fact, the
calculation below will show that the main contribution stems from time differences ∣ − ∣t t1 2 ,
much smaller than the elastic mean free time.) In particular, this allows us to consider the effect
of interaction during the first and second passages through the encounter separately, since they
are separated by a loop of long duration. The same observation also allows us to neglect
contributions where t1 is in the encounter, whereas t2 is in the loop or vice versa. We therefore
focus on the first passage through the encounter region, where the trajectories α and β are
separated by a distance = −β αt t td r r( ) ( ) ( ), with the magnitude:

λ≃ λd t e( ) , (82)F
t

where t is varying from 0 to τE. We can use this to rewrite the last two factors of equation (72)
as:
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⎡⎣ ⎤⎦− − = · ·· · − · − · · ¯ − ¯α β α β( ) ( ) [ ] [ ]e e e e e t tq d q d4 sin ( ) 2 sin ( ) 2 , (83)( ) ( ) ( ) ( ) ( ) ( )i t i t i t i t i t tq r q r q r q r q r r
1 2

1 1 2 2 1 2

where ¯ = +α β[ ]t t tr r r( ) ( ) ( ) /2 represents a trajectory intermediate between α and β.
After performing the average over disorder configurations, we find that inclusion of the leading-

order dephasing correction amounts to the replacement τ τ δ τ→ +′ ′ ′P P Pr r r r r r( , ; ) ( , ; ) 2 ( , ; )E E E

in equation (43), where the factor two accounts for the two passages through the encounter region, with:


∫ ∫ ∫δ τ π β

ν π
π= − −′

τ

( ) ( )P
T

v d

d

q
dt dt w T t tr r

q
, ;

8

(2 )

1
( )

t

E

2

3
F g

2

2
0

1
0

2 1 2

E 1

 τ× − − · ·[ ] [ ]t t t t t tq d q d( , , ) sin ( ) 2 sin ( ) 2 (84)q
enc

1 2 E 1 2 1 2

and

 ∫τ − − = · −[ ]t t t t d dr r q r r( , , ) cos ( )q
enc

1 2 E 1 2 1 2 1 2

τ× − −′( )P t P t t P tr r r r r r, , ( , , ) ( , , ) (85)2 E 1 2 1 1 2 1 2

(see figure 9). Because of the smallness of ∣ − ∣t t1 2 , the propagator −P t tr r( , , )2 1 1 2 is the
ballistic propagator, whereas the propagators τ −′P tr r( , , )2 E 1 and P tr r( , , )1 2 can be taken in
the diffusion approximation. We change the integration variables to the mean time t̄ and the
difference time = −t t t1 2. Again using the smallness of | − |t t1 2 , we replace td( )1 and td( )2 by

t̄d( ). We neglect correlations between t̄d( ) and the direction of the velocity at time t̄ . Using
≃P t P tr r r r( , , ) ( , , )1 2 2 1 , again because of the smallness of | − |t t1 2 , we find:

 τ τ− − ≃ ′( ) ( )t t t t P J v q tr r( , , ) , ; , (86)q
enc

1 2 E 1 2 E 0 F

where we inserted the Fourier transform of the ballistic propagator. Since the integration over t
converges for | | ∼t v q1/ F , the argument of the function w may be set to zero in equation (84).
Finally, the angular average over the direction of t̄d( ) gives a factor − ¯J qd t1 ( ( ))0 , so that we find:

⎡⎣ ⎤⎦ ∫ ∫δ τ π β
ν

τ
π

= − ¯ − ¯′ ′
τ

( )( ) ( ) ( )P
T

v d
P

d

q
dt J qd tr r r r

q
, ;

4

3
, ;

(2 )

1
1 , (87)E

2

3
F
2

g
E

2

2 2
0

0

E

We cut off the logarithmic divergence of the q integration at large q at λ −
F

1, which gives:

 ∫δ τ β
ν

τ
λ

= − ¯
¯

′ ′
τ

( ) ( ) ( )
P

T

v d
P dt

d t
r r r r, ;

2

3
, ; ln . (88)E

2

3
F
2

g
E

0 F

E

The remaining time-integration is easily evaluated with the help of equations (37) and (82) and
we obtain:

∫ λ
τ

λ
¯

¯
=

τ ( )
dt

d t L
ln

2
ln . (89)

F0

E c

F

E

Hence, the final result reads:


δ τ

τ
βτ

ν λ
= −

′
′

( )
( )

P

P

T

v d

Lr r

r r

, ;

, , 3
ln . (90)E

E

2
E

3
F
2

g

c

F
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One may identify the right-hand side of equation (90) with τ τφ/E
enc, where τφ

enc is an effective
dephasing time for the encounter region. With this identification, equation (90) describes the
onset of an exponential suppression of the weak localization ∝ τ τ− φe 2 /E

enc

at large Ehrenfest times.
Note that the time τφ

enc is twice the dephasing time τφ
ball that one finds from dephasing in the loop

region in the ballistic regime [105], consistent with the theory of [33]. (To compare with [105],
take the energy-dependent dephasing time τ εφ ( ) from equations (18) and (19a) of [105] in the
limit τ ≪T and calculate ∫τ ε ε τ ε= −∂ ∂φ φ

− −d f( ) ( / ) ( )ball 1 1 with, for a conventional metal,
=d 2g . The low-momentum cut-off in [105] is the inverse mean free path, whereas it is the

classical correlation length Lc in our case. The two lengths need not be equal (see
equation (26)).

We note that the appearance of a ‘ballistic’ dephasing time at small temperatures τ ≪T
is quite remarkable, as usually the dephasing time at small temperatures is governed by the
diffusive behavior of the electrons (with a dephasing rate linear in temperature, rather than the
quadratic dependence on temperature for the ballistic case). The origin of this effect relies on
the particular arrangement of trajectories within the encounter region, where only differences of
trajectories on a ballistic spatial scale matter.

7. Conclusion

In this article we have presented a trajectory-based semiclassical theory of the quantum
corrections to transport in graphene in the presence of a random potential that is smooth on the
scale of the Fermi wavelength. A prominent role is played by the Ehrenfest time, which serves
as a short-time threshold for the appearance of quantum interference effects. The Ehrenfest time
also plays an important role for electrons in a conventional two-dimensional electron gas (with
quadratic dispersion) if they are subject to a smooth random potential.

Compared to the conventional case, charge carriers in graphene have an additional
pseudospin degree of freedom, and they have an additional valley degeneracy, which leads to a
few subtle modifications of the quantum corrections with respect to the conventional case. The
pseudospin vector always points along the direction of motion, reflecting the chiral nature of the
charge carriers in graphene. The evolution of the pseudospin along the trajectory is associated
with a Berry phase of the spin transport that additionally enters the semiclassical Green
function. This Berry phase is responsible for a sign change in the weak localization correction,

Figure 9.Dephasing in the encounter segment: For the calculation, the encounter is split
into three segments ′ →r r1 (duration τ = t1 2), →r r1 2 (duration τ = −t t2 1 2) and → ′r r2

(duration τ τ= − t3 E 2). Only configurations in which τ| − | ≪t t1 2 E contribute to the
interaction correction δGdeph. In the middle segment, the distance between the
trajectories α and β is λ¯ = λ¯d t e( ) t

F , where ¯ = +t t t( )/21 2 . The figure has been drawn
for the case < <t t0 2 1, which is the domain of integration in equation (84).
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giving antilocalization behavior. The presence of a finite Ehrenfest time reduces the magnitude
of this correction but with a multiplicative factor that is the same for weak localization and weak
antilocalization. We also considered the suppression of weak (anti)localization from dephasing
at finite temperatures and identified there, too, the role of the Ehrenfest time.

For the interaction correction there are two important differences with the case of the
conventional two-dimensional electron gas: the Hartree-type processes (or, more precisely,
interaction non-singlet channels) contain an additional angular dependence as a result of
chirality. Moreover, the importance of screening is changed because of the presence of the
valley degeneracy. A finite Ehrenfest time suppresses the Altshuler–Aronov correction in a
similar way as for conventional metals, but unlike for weak (anti)localization, the suppression is
not simply a multiplicative factor. Interestingly, the interaction correction may undergo a sign
change as a function of Ehrenfest time for sufficiently strong interaction in the non-singlet
channels. For graphene, the interaction strength at which this sign change takes place is smaller
than in conventional electron gases, which may place it within experimental reach, as discussed
in section 5.
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Appendix A. Lyapunov coefficient

Here we calculate the Lyapunov coefficient λ for Gaussian-correlated disorder potential V r( ),
specified by equation (17). Our result agrees with that of Aleiner and Larkin [32], using a
different method.

We consider two trajectories that are initially close in phase space and investigate their
divergence as they evolve in time. We use Δ ⊥r and Δ ⊥p to denote the position and momentum
differences in the direction perpendicular to the propagation direction. From the classical
equation of motion,

˙ = ˙ = −v Vr e p, , (A.1)pF

with ep the unit vector in the direction of the momentum p, we find that the differences Δ ⊥r and
Δ ⊥p evolve in time as:

Δ Δ Δ
Δ

∂
∂

=
∂
∂

= − ∂
∂

⊥ ⊥ ⊥

⊥
⊥

r

t
v

p

p

p

t

V t

r
r,

( )
, (A.2)F

F

2

2

where V(t) is shorthand notation for V tr( ( )). Upon integrating the evolution equations for an
infinitesimal time interval δt, the solution may be cast in the form of a transfer matrix equation,
which we write as:
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⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
⎟⎟ δ= +

Δ δ
ξ

Δ δ

Δ
ξ

Δ

+

+

⊥

⊥

⊥

⊥
t t t( , ) , (A.3)

r t t

p t t

zp

r t

p t

zp

( )

( )

( )

( )

F F

where ξ= ≪z K k/ 12
0 F and the transfer matrix  δ+t t t( , ) reads:

⎛
⎝⎜

⎞
⎠⎟ δ

ξ
+ = =δt t t e H t

v

f t
( , ) , ( )

0

( ) 0
, (A.4)zH t t( ) F

with

ξ= − ∂
∂ ⊥

f t
z p

V t

r
( )

( )
, (A.5)2

F

2

2

a stochastic function that contains all information on the random potential. The function f has
zero mean, and its fluctuations in a time interval Δt, long in comparison to the correlation time

ξ=ξt v/ F, are:

∫
π

Δ
ξ

′ ′ =
Δ

dtdt f t f t
v t

( ) ( )
3

2
. (A.6)

t

0

F

(The condition Δ ≫ ξt t is consistent with the smallness of the parameter z.)
So far we have calculated the transfer matrix for an infinitesimal time interval δt. The result

can be easily extended to calculate the transfer matrix for time intervals of arbitrary duration via
successive multiplication of transfer matrices valid for the infinitesimal segments. This results in
a stochastic evolution of the transfer matrix, which can be analyzed using an explicit
parameterization of the transfer matrix,

 Δ+ = φσ σ ϕσt t t e e e( , ) , (A.7)i l i2 3 2

where σ2 and σ3 are the Pauli matrices. The exponential divergence of the trajectories follows
from the radial parameter l,

λ
Δ

=
Δ →∞

l

t
lim . (A.8)
t

For the calculation of l it is sufficient to consider the matrix product  T , which has
eigenvalues ±e l2 and no longer depends on the angular variable φ. The time-evolution of the
remaining parameters l and ϕ is given by a Langevin-type process, which, for large l, reads:

∫ ∫δ
δ

ξ
ϕ ϕ ϕ ϕ= + ′ ′ − ′ ″ ′ ″

δ δ
l

z v t z
dt f t

z
dt dt f t f t

2
sin 2

2
sin 2 ( )

2
cos 2 sin ( ) ( ),

t t
F

0

2
2

0

∫δ ϕ
δ

ξ
ϕ= ′ ′ −

δ
z dt f t z

v t
cot ( ) cot , (A.9)

t

0

F 2

where terms of higher order than δt are neglected.
It is helpful to introduce the variable y via:

π ϕ= −y z(2 ) (2 3) cot . (A.10)1 6 1 3 1 3

After averaging over fluctuations of f, we find that mean and variance of the change δy in an
infinitesimal time interval δt read:
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δ π
δ

ξ
〈 〉 = − −y z y

v t
(3 2) (2 ) ,1 3 1 6 4 3 2 F

δ π
δ

ξ
〈 〉 = −y z

v t
( ) 2 3 (2 ) . (A.11)2 2 3 1 3 1 6 4 3 F

The parameter y acquires a stationary probability distribution P y( )s , which satisfies the equation
[108]:

δ
δ

δ
δ

∂
∂

− = ′y

t

P

y

y

t
P c

1
2

( )
, (A.12)

2
s

s

where ′c is a numerical constant. Using equation (A.11), we obtain:

∂
∂

+ = ′
P

y
y P c . (A.13)s 2

s

The only normalized solution of this equation occurs for Γ π′ = ≈−c1/ 3 2 (1/6) 4.9765/6 1/3 and
reads:

∫= ′ ′
−∞

−′

P y c dy e( ) . (A.14)
y

y y
s

( ) 33 3

Keeping leading terms in the parameter z only, we find that the average:

⎛
⎝⎜

⎞
⎠⎟δ

π
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ξ
=l

z
y

v t3

2 2
. (A.15)

4 1 3

F

Since the angular variable y evolves statistically independent of the radial variable l for large l,
we may average y with the help of the stationary distribution (A.14), for which we find:

∫β π
Γ

= = ≈
−∞

∞
dyyP y( )

(3 2)
(1 6)

0.365. (A.16)
s

1 3

From the definition (A.8) we then obtain the Lyapunov coefficient:

⎛
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⎠⎟λ β
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τ ξ
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3
, (A.17)F

F

0
2

1 3

tr

tr

2 3

where, in the second equality, we inserted the transport mean free time and the mean free path
of equation (26). This result agrees with the Lyapunov exponent calculated by Aleiner and
Larkin [32]. (One has to identify the short-length cut-off a of [32] with ξ / 3 ; see the text below
equation (A.3) of [32].)

Appendix B. Weak antilocalization

Here we present some details of the calculation of the weak antilocalization. We start from
equation (43) and insert the diffusion propagators equation (30). After performing the spatial
integrals, we find:
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where τ π= L D/D
2 2 is the dwell time and r =W/L is the aspect ratio. For large aspect ratios r, the

summation over k can be replaced by an integration,
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We are interested in leading terms in the small parameter τ τ/tr D only, for which one finds:
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In the limit of small τ τ/tr D, the behavior of the summand for large l is relevant. We then may
simplify the summation over n as follows: the main contributions arise for ≈n 0 and ≈n l2 ,
where the summand has poles. If l is large, the poles are well separated, and the dominant
contribution comes from the pole at ≈n 0,
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which results in the expression:
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For small l, this expression is not accurate; hence this summation has a lower cutoff, which is
not relevant for small τ τ/tr D, however, where the l-summation results in τ τln /D tr . Hence, we
find equation (44) from the main text.

Appendix C. Dephasing: perturbation theory

An alternative derivation of the dephasing correction to weak antilocalization can be obtained
directly from perturbation theory in the interaction. Following [48] to the leading order in
interaction, one finds two corrections to the conductance. The first one of these corresponds to
the Altshuler–Aronov correction and was considered in section 5. The second correction reads:
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The calculation proceeds by inserting the semiclassical expressions for the Green functions and
identifying the relevant configurations of trajectories. Only configurations where advanced and
retarded trajectories are paired up (where we also allow for small angle encounters or pairing of
time-reversed trajectories) contribute systematically to the conductance. For the first term inside
the trace in equation (C.1), this is only possible if the three retarded trajectories join together to a
single trajectory, connecting the points ′r with r, that can be paired up with the advanced
trajectory. In the semiclassical approximation, we then evaluate the integration over r1 and r2

within the stationary phase approximation, where we keep only stationary configurations that
join to a single trajectory. The result of such a calculation is:
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We here restrict ourselves to explain how the structure of this result can be understood and
refer to [34] for the detailed calculation. The first step is to identify points r1 and r2, which make
the total phase of the integrand stationary. Such configurations are obtained whenever there
exists a single classical trajectory α that connects the points ′r and r via r2 and r1. Since the
position of the intermediate points can be anywhere along the trajectory α, the summation over
stationary configurations of the intermediate points is expressed as a summation over
trajectories α as well as two time integrations along the trajectory α. The Green function
connecting the intermediate points is taken at a different energy, resulting in the additional
factor ω− − ′e i t t( )/ , as follows from equation (6). Furthermore, the actions of the three subpaths
sum up to the action α of the joined path. Similarly, the individual Berry phases for the
subpaths combine to the Berry phase of the joined path γα, as the Berry phase is expressed as an
integral along the trajectory. Since the momenta are smoothly connected at the intermediate
points, the intermediate spinors match together, and only the spinors at the endpoints remain in
the final expression. The second step in the evaluation of the integral is to integrate over
quadratic fluctuations around the stationary configurations. This in turn renders the proper
stability amplitude αA and the prefactor (see [34]).

Similar considerations apply to the second and third terms of the trace of equation (C.1).
Therefore, we can write equation (C.1) as a sum over one retarded trajectory α and one
advanced trajectory β, connecting source and drain. Since only paired trajectories are of
relevance, we may simplify =α βA A and τ τ=α β. Since the only dependence on the propagation
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energy ε is in the factor between square brackets on the first line of equation (C.1), we may
perform the integration over ε and find:
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Inserting the Fourier transformed interaction, we then obtain:
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which is consistent with the expressions of section 6.

Appendix D. Dephasing: loop segment

In this appendix we add some details to the calculation of the dephasing for the loop segment.
The imaginary part of the screened interaction in the diffusive limit, equation (63), evaluates to:
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Accordingly, we split equation (73) as:
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Using equation (75), we are led to the temporal integral:
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where τ = −t t2 1 2 and τ̄ = − −t t t2 1 2 . We evaluate this integral in the long-time limit
 ω≫t Dqmax ( / , 1/ )2 (which is sufficient for the present analysis),
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i.e., we find a linear-in-t behavior.
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For the q-integration we consider the non-singlet part of the interaction first,
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Here we introduced the dimensionless conductance π ν=g d D2
0 g . Our expression now reads:
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where  =x x x( ) /sinh2 . For small ω T/ , we may expand the function  ≈x x( ) 1/ , which gives a
logarithmic divergent ω-integral. This integral should be cut at high energies by temperature
and at small energies by  t/ , where equation (D.5) ceases to be valid. So we find:
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The result for the singlet channel can be obtained from the latter equation by formally sending
→ ∞σF0 .
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