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The possibility of realizing lattice analogs of fractional quantum Hall (FQH) states, so-called fractional Chern
insulators (FClIs), in nearly flat topological (Chern) bands has attracted a lot of recent interest. Here, we make
the connection between Abelian as well as non-Abelian FQH states and FCIs more precise. Using a gauge-fixed
version of Qi’s Wannier basis representation of a Chern band, we demonstrate that the interpolation between
several FCI states, obtained by short-range lattice interactions in a spin-orbit-coupled kagome lattice model, and
the corresponding continuum FQH states is smooth: the gap remains approximately constant and extrapolates to
a finite value in the thermodynamic limit, while the low-lying part of the orbital entanglement spectrum remains
qualitatively unaltered. The orbital entanglement spectra also provide a first glimpse of the edge physics of FCIs
via the bulk-boundary correspondence. Corroborating these results, we find that the squared overlaps between the
FCI and FQH ground states are as large as 98.7% for the 8-electron Laughlin state at v = % (consistent with an
earlier study) and 97.8% for the 10-electron Moore-Read state at v = % For the bosonic analogs of these states,
the adiabatic continuity is also shown to hold, albeit with somewhat smaller associated overlaps, etc. Although
going between the Chern bands to the Landau-level problem is often smooth, we show that this is not always the
case by considering fermions at filling fraction v = %, where the interpolation between Hamiltonians describing

the two systems results in a phase transition.
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I. INTRODUCTION

After Haldane’s seminal work modeling an integer quantum
Hall (IQH) effect in a simple lattice model,' it took over
20 years until it was recently realized that similar ideas
were used to emulate lattice analogs of fractional quantum
Hall (FQH) states.”® These states, termed fractional Chern
insulators (FCIs), have a number of appealing traits: most
saliently they do not require an external magnetic field and
they might, in principle, persist at elevated temperatures.

While the basic ingredient needed for the IQH effect is a
band with nonzero Chern number (and a finite band gap), an
additional prerequisite for the FClISs is that these bands are only
weakly dispersive, thus enhancing the effect of interactions
within the band. Following the initial suggestions,>™ there
are by now many known models with nearly flat bands
carrying nonzero Chern number, including intriguing solid-
state proposals>’~'> and possible cold-atom realizations.'3
Although there is plenty of numerical evidence for FCI analogs
of Laughlin states,* hierarchy/composite fermion states,'+!6
as well as non-Abelian states,!’~!° the physics in Chern bands
is only identical to that of a Landau level in a very idealized
limit.'7-2% In actual lattice models, however, the distinctions are
rather striking such as particle-hole symmetry breaking'>!
and the emergence of qualitatively new competing compress-
ible states,'> underscoring the need for a better understanding
of theses systems at a quantitative level.

In an insightful paper, Qi introduced a Wannier basis
representation of a Chern band mincing the Landau gauge
wave functions in the continuum, and thereby paved the
way towards a more direct comparison between FCI and
FQH states.”! Indeed, Scaffidi and Méller recently used this
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mapping to convincingly show thatthe v = % bosonic FCI state
on the honeycomb lattice is indeed smoothly connected to the
Laughlin state describing the continuum FQH state at the same
filling fraction.””> However, a direct implementation of Qi’s
Wannier mapping is not always successful, e.g., wave-function
overlaps with FQH model states often turn out to be minuscule
even in models where there are well-established FCI phases,
due to the finite-size properties (nonorthogonality) of the
Wannier functions and, in principle, also because the two
systems carry independent gauge degrees of freedom. This
issue was considered in detail by Wu et al. who also came
up with an involved, yet elegant, prescription that remedies
these problems and showed that it leads to impressive overlaps
between the fermionic FCI at v = % and the corresponding
Laughlin FQH state.”?

In this work, we apply the Wannier state mapping>' adopted
to finite-size systems> to both Abelian and non-Abelian
FCI phases. We demonstrate the adiabatic continuity between
these states and their corresponding FQH analogs (Laughlin®*
and Moore-Read® states) by showing that the gap remains
essentially unaltered when interpolating between the FCI and
FQH Hamiltonians as well as studying the overlaps with the
model FQH states which turn out to remain high throughout
the interpolation. Moreover, we report on the first studies of
orbital entanglement spectra®® (OES) of the FCI states. In
contrast to the earlier particle entanglement spectrum?’ (PES)
studies® which probe the quasihole physics, our OES studies,
based on a cut in (Wannier) orbital space,?® provide a test of
the edge physics in FCI phases. The upshot of these studies
is that the FCI states considered here are, in a well-defined
sense, closer to the idealized model FQH wave functions than
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FQH states obtained for more realistic (Coulomb) interactions
in continuum Landau level. Underscoring that these results
are indeed nontrivial, we also provide an example where
the interpolation between the Landau-level physics and the
interacting Chern band problem is not smooth by considering
fermions at v = ‘g‘.

The remainder of this work is organized as follows. In
Sec. II, we give a relatively detailed description of the Wannier
mapping providing a bridge between the description of Chern
bands and continuum Landau levels on a torus. Section III
contains our main results on the adiabatic continuity and the
OES studies focusing on electronic (fermionic) states (corre-
sponding results for bosons are contained in the Appendixes).
Finally, we discuss our findings in Sec. I'V.

II. MODEL AND METHODS

In this section, we put the description of fractional quantum
Hall systems in the continuum and fractional Chern insulators
in the lattice on the same footing. First, we discuss the lowest
Landau level (LLL) on a torus,?® and then we go on to discuss
a suitably adapted version of the Wannier function mapping
of Chern bands in a finite-size system.?® This provides the
necessary framework for a direct quantitative comparison
between FCIs with FQH states despite the fact that the two
systems have different symmetries. Finally, we give a specific
kagome lattice model that we use throughout this work to study
the FQH-FCI correspondence.

A. Quantum Hall states

We consider N particles projected to the lowest Landau
level on a twisted torus spanned by two basic vectors L =
Livi(ax) and L, = Lyv,, where vi(a) = sinae, + cosae,,
vy = ey, where « is the twisted angle of the torus, and L () is
the length of the basic vector (in units of the magnetic length).
Assuming the number of flux quanta N; through the surface of
the torus is an integer, the magnetic translation invariance in
the v; and v, directions leads to L L, sina = 27 N,. There are
precisely N, single-particle states [;) in the lowest Landau
level that we choose as maximally to be localized in the e,
direction (but delocalized in the e, direction) as

1 1 +oo i
(x,y1¥;) = (m) Z exp {1<le] +nlL, sina)

n=—00
( 27 )
X|y— ——cote —nLjcosu
L,
1 27 o\
——|x— — —nL;sin«x s (1)
2 L,
where j = 0,1,2,...,N; — 1 is the single-particle momentum

in units of 27r/L,. Note that ¥/, is quasiperiodic and centered
along the line x = 2mj/N,. We define Ny as the greatest
common divisor of N and Ny, namely, Nyo = GCD(N, Ny).
Then, p= N/Ny and g = N;/Ny are coprime. There are
two translation operators T, (o = 1,2) that commute with the
many-body Hamiltonian (as with any translational invariant
operator) and obey T\ T» = ¢*™iP/4T,T|. T corresponds to an
e, translation and 7 translates a many-body state one lattice
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constant 2 /L, in the e, direction. At filling factor v = p/gq,
because Tzq commutes with 77, we can diagonalize certain
many-body Hamiltonian Hggy in the LLL orbital basis and
obtain the many-body ground states |Wrou(Ki,K>)) as the
common eigenstates of 7, and 7, with eigenvalues ¢*™K1/N:
and e?7K2/No where K| can be regarded as the total momentum
in the e, direction. It directly follows that the degeneracy of
|Wrou(K1,K>)) is at least g-fold, among which we can always
pick up g-fold center-of-mass degenerate states with different
K that are connected by the operator Tzk k=0,1,...,g —1).

For later convenience, we also introduce an alternative
description of the translational symmetry on the torus. Suppose
N has two factors N; and N,, namely, Ny = N; X N,.
After defining Ny = GCD(N,N;) and q; = N;/Ny,1, we
can introduce two translation operators S; = (T»)7/9" and
R, = T,"‘. Because S| commutes with R,, we can make the
many-body ground states as their common eigenstates. Within
this description of the translational symmetry, the g-fold
center-of-mass degenerate states are

1 q1—1 . sN—ky
Z 62n1m(W)Siﬂ T2' |‘I’FQH(K1 ,K»)),

N 7)) =
[WEQu(s,r)) N

@)

where s =0,1,...,q1—1, r=0,1,...,q/q1 — 1. If we
choose N; and N, appropriately, we can make ¢q; = 1.
Then, |Wgqu(s,r)) and |Wgou(Ki,K>)) reduce to the same
description.

B. Chern insulators

Now, we move our attention from FQH states in the contin-
uum to the FCIs in the lattice. We consider a two-dimensional
(2D) lattice on the torus with two lattice vectors v{(B) =
sin Be, + cos e, and v, = e,. The number of unit cells is N;
and N, in respective direction and there are s sites in each unit
cell. The states in the first Brillouin zone (1BZ) can be labeled
by a 2D momentum k = (k;,k,) where k; = 0,1, ...,N; — 1.
In momentum space, the single-particle Hamiltonian can be
writtenas H = Y\ p(cf . ....ch DJh®)(ex 1, - .. ,cx)T and
a band structure is formed. We focus on a single, isolated band
k) = Z;:l ua(k)c;a |vac), where u, (K) is the corresponding
eigenfunction of A(k), and suppose N interacting particles
fractionally fill in this band. If the interaction Hamiltonian Hgcy
is chosen appropriately, the ground states of this interacting
many-body system are FCI states |Wgcp) at certain filling
factors v = N/(N1N,).

To compare the FCI states with the theoretically much
better understood FQH states, we need to expand |Wgcy) in
a basis with single-particle states that mimic the LLL states
[Eq. (1)]. An appropriate choice is the Wannier basis, the
single-particle state |X,k;) of which is localized in the v,
direction but delocalized in the v, direction, where X is the
position in the v; direction and k; is the momentum (in units
of 27/ N>) in the v, direction.?!?3

In a Ny x N, finite-size lattice, when focusing on one
fractionally filled band with Chern number C, the (lattice
version of the) Berry connection in the v, direction can be
defined as A (k1,k2) = Y, e 27/ Ny (ky ko g (ky + 1,k2),
where €/ is the v;-direction relative displacement of site & in a
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unit cell. Similarly, we can define the Berry connection in the v,
direction as Ay(k; ko) = Y, e 2/ Nouk (ky kaug (K ey +
1). To restore the orthogonality between different Wannier
functions, we need to introduce unitary Berry connections®®
A](z)(kl,kz) = Al(z)(kl,kz)/|A1(2)(k1,k2)|. Then, the unitary
Wilson loops are Wj(ky) = ]1(\?:—01 Aq(ky,ky) and Wy(ky) =

HIZZ;OI As(ky,k2), whose argument angles are picked in
(—2m,0]. After defining a shift §, as the cardinality of the
set{k, =0,1,...,N, — 1] arg[W;(k;)] > arg[W;(0)]}, we can
introduce a principal Brillouin zone (pBZ) as the set of k;
satisfying Ck, + &, € [0, N,) and move k, from 1BZ to pBZ.

After introducing [A;(k)]V' = W (kz) and [A (k)] =
W, (k1), where we choose the argument angle arg[A;(k;)] €
(—27/N1,0] and arg[i,(k;)] € (—27/N,,0], we can define
the Wannier function localized in the v; direction as

o) Mzl ke
PRI i { [M(ko)]
I

—= — o ( ki.k2),
VNI (S fl:olAl(K,kz)}

where k; is in pBZ and ®(k,) is independent of X and needs to
be fixed by a special prescription (see Appendix C for details).
Letting jX* = Ny X + Cks + 85, we can build a one-to-one
map between | X,k,) and [;).

Considering the one-to-one map between the Wannier
orbital and the LLL orbital as well as their similar localizing
properties, the FCI states |Wgcy) in the Wannier basis will be
very well approximated by the lattice version of FQH states
constructed as*

(W) = D Xk (Y WronGs.r). ()
{X,k>}

where |{...}) is the many-body occupation configuration over
the single-particle state |...) [one can find that |[Wrqu(s,7))
in the LLL orbital basis and its lattice version |\Ifll:aéH(s,r)) in
the Wannier basis have a common description]. However, it is
important to note that |\P1':%H(s,r)) will in general differ from
|WEcy) since the Hamiltonians of the two systems have vastly
different origins. Moreover, as discussed in the following, the

symmetries of the two models are different.

C. Symmetries

The FQH Hamiltonian in the LLL on the torus conserves
center-of-mass position corresponding to momentum K; =
va:l Jji (mod Ny). However, the corresponding quantity is
not conserved for the FCI problem despite the fact that
there is a one-to-one correspondence j Xk = N, X + Cky + 82
between |X,ky) and |v/;) which allows us to calculate a
total 1D momentum Z,N: e jX’kz)i (mod N;N,). Instead, the
translational symmetry (in real space) in the directions of the
two lattice vectors in the Chern band implies a conserved two-
dimensional momentum, which leads to a reduced symmetry
for the FCI Hamiltonian in the Wannier basis: only J; =
vazl( j%X*2); (mod N,) is conserved. (Another manifestation
of the lower symmetry in the FCI problem is reflected in the
lack of particle-hole symmetry.')

The symmetry difference is indeed a generic effect due to
the underlying lattice where the Berry curvature necessarily
varies in reciprocal space as long as the number of bands is
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FIG. 1. (Color online) Schematic picture of the mapping of a flat
Chern band in the lattice model to a continuum Landau level in terms
of Wannier states.

finite. In an ideal limit, however, the FCI Hamiltonian will have
the same emergent symmetries as the FQH Hamiltonian.?

D. Kagome lattice model

In the following, we focus on a special lattice model,
namely, the kagome lattice model proposed in Ref. 2, to
investigate the FCI-FQH correspondence. The single-particle
Hamiltonian of the kagome lattice model (cf. Fig. 1) in the real
space is

H=1n Z C:-rUng + 1A Z (E[j X ﬁij)~oaﬁcjacjﬂ,
(i,j).0 (

iJj)e.p

where E;; is the normalized |E;;| = 1 electric field arising
from an ion at the center of each hexagon as experienced by
a particle hopping along the unit vector R ; from site i to
site j. In this work, we consider electrons are spin-polarized
(all spin up) particles and set #; = —1 while using band
structures corresponding to various A; as input to our studies
of interactions projected to nontrivial bands. In the momentum
space, we have three energy bands, the lowest one of which
has Chern number C = 1. As customary,6 we take the flat
band limit and project the interaction Hamiltonian Hgcy to this
C =1 band. Recent numerical work has indeed shown that
both Abelian and non-Abelian FCI states exist in this model."”

III. CONTINUITY BETWEEN FQH AND FCI

As discussed above, the FQH Hamiltonian and FCI
Hamiltonian have different symmetries. However, they
have a similar expression written in second-quantized
form. Taking two-body interactions as an example, we

have Hpgn = SN gmodNs - yFQH T for

Juindsis=0 C jitja.js+ia ¥ i jajsis €1 €2 €3 C s
the FQH case, where c; (c;) creates (annihilates) a

particle in the state |v;), while we have Hgcp=
Z.IX?/ZZ\.]I?SJ::.O .;ll(f]iszjﬁ'ﬁ ./s?.zl.isjh .]tl C}ZCij“ where cj' (CJ ) cre-
ates (annihilates) a particle in the state |X,k;) with j =
XN, + Cky + 8, for the FCI case. Therefore, the structure
of the Hilbert space of FCIs in the Wannier basis is the
same as that of FQH systems in the LLL orbital basis if we
set Ny = N| x N,. This makes it meaningful to consider an
interpolating Hamiltonian as follows:

H(\) = AwgcrHeer + (1 — A)wgon Hrgn, 4)

where A € [0,1] is the interpolation parameter and wgcy and
wgon are the energy rescaling factors that can make the
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energy gap at A =0 and 1 equal to 1 (in the cases where
we find adiabatic continuity below it is well established
that the gap survives in the thermodynamic limit at A =0
and 1, respectively). We then diagonalize Eq. (4) in each
J1=0,1,...,N, — 1 sector and analyze the energy gap and
the ground states as a function of A, in order to examine whether
the FCI states are adiabatically connected to the corresponding
FQH model states.

A. Fermions at v = %

We start our discussion by focusing on the fermions at filling
factor v = % On the FQH side, we choose the Hamiltonian
as Hequ = Y_;_; V78*(ri —r;). Then, the ground states are
exact threefold-degenerate fermionic Laughlin states with zero
energy. On the FCI side, the Hamiltonian is set as the nearest-
neighbor interaction Hgcp = Z<i ) il - The ground states are
three nearly degenerate states separated by a gap from the
excited states. Since f = m/3 for the kagome lattice, we set
o = 1 /3 also for the twisted Landau-level torus. This choice
is further justified by the large overlap between the FCI states
at A = 1 and the Laughlin states at A = 0 (see the following
discussion).

We find that for each X € [0,1], there are three nearly
degenerate states separated by a sizable gap A from excited
levels in the energy spectrum. We report the evolution of A
with A for various system sizes in Fig. 2(a). It can be seen that
the gap never closes for any intermediate A; in fact, it is always
greater than one and has a maximal value at A &~ 0.4-0.6. This

(a)
M
112} ©
110k N, =6, 6x3 ]

108l —m— N =8, 4x6 ]

1.06
1.04}
1.02}
1.00 f

1.000 [B
0.998 [
0.996 |
0.994 [
0.992}
0.990 f
0.988 [

0.986 L 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. (Color online) Results of the interpolation Eq. (4) for
fermions atv = % with N, = 4 (red dot), N, = 6 (green triangle), and
N, = 8 (blue square). In the FCI part, the lattice size is N; x N, =
4x3, Ny x Np=6x3, and Ny x N, =4 x 6, respectively; and
X1 = 1. (a) The energy gap A does not close for any intermediate
A. (b) The total overlap O (filled symbol, solid line) and the average
weight W (empty symbol, dotted line) are still close to 1 at A = 1. All
1

of those demonstrate that the continuity holds for fermions at v = .
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provides strong evidence for the adiabatic continuity between
FQH states and FCI states.

To further confirm that there is no phase transition
between A =0 and 1, we study the properties of the
ground manifold. We can define the total overlap as Oy =
Y Y (Wiou| W/ ()2, where d is the number of
(nearly) degenerate states (here, d = 3), | W/ (L)) is the (nearly)
degenerate state of H(1), and [Wlqy) = [W/ (A = 0)) is the
FQH state (here, the exact v = % Laughlin state). We find
that Oy decreases from 1 at A = 0 smoothly to about 0.987
at A =1 for our largest system size N, =8 [Fig. 2(b)].
Therefore, the ground states do not change qualitatively during
the interpolation from A = Oto 1, supporting that the FCI states
are indeed very well captured by the lattice version of FQH
states constructed by Eq. (3).

The entanglement spectrum?® (ES) can usually provide us
more insights than the overlap, which is only a single number
and will necessarily vanish in the thermodynamic limit. For
any bipartite pure state | W) 4, it can be decomposed using the
Schmidt decomposition

|W)ap = 267&/2’@4)@ 29

where the states |¢>iA) (|¢>iB )) form an orthonormal basis for the
subsystem A (B). {§; > 0} is defined as entanglement spectrum
and is related to the eigenvalues n; of the reduced density
matrix ps = trg(|W)ap ap(¥|) of A as n; = e %. In some
previous works, the ES for particle cut has been investigated
extensively to probe the quasihole excitation properties of FCI
states. Here, we focus on another kind of ES, the OES for a
cut in orbital space, to test the edge physics of FCI states.

We first briefly recall the OES of FQH states on the torus that
has been studied in Refs. 31 and 32. The threefold-degenerate
fermionic v = % Laughlin states have the following simple
representations in the orbital basis in the thin-torus limit*?
L, =0 (for N, =8, N, = 24):

100100]100100100100] 100100,
010010/010010010010/010010, 5)
001001/001001001001/001001.

We bipartition the system into blocks A and B, which consist
of /4 consecutive orbits and the remaining N; — [4 orbits,
respectively [the bold block in Eq. (5) is our subsystem A].
After extracting the ES from the ground states, we label every
ES level by the particle number Ny =}, n; and the total
momentum K, = ., jn; (mod N;) in block A, where n;
is the particle number in the state |;). In this work, we
concentrate on the case [, = N;/2.

In Refs. 31 and 32, it was shown that the resulting OES for
the FQH state form towers that can be decomposed into the
edge modes of the underlying conformal field theory (CFT).
This combination comes about as the natural partition [Eq. (5)]
gives a subsystem A with the geometry of a cylinder which has
two edges on which gapless edge states with opposite chirality
reside. An illuminating recent discussion of the connection
between the OES, the CFT describing the edge, and matrix
product states was given in Ref. 34.
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FIG. 3. (Color online) The orbital entanglement spectra (OES) of exact fermionic Laughlin states (blue diamond) and the projected nearly
degenerate states |lIJ;é(A)) (red cross) atv = %, N, = 8. Thelattice sizeis Ny x N = 4 x 6and A; = 1 for the FCI part. In the left column, J; =
0, corresponding to the Laughlin state in the K; = 12 sector. In the middle column, J; = 2, corresponding to the Laughlin state in the K| = 20
sector. In the right column, J; = 4, corresponding to the Laughlin state in the K| = 4 sector. In (a), (b), and (c), . = 0.5. (a) The unprojected

|W/1=0(2.)) has weight W & 0.997 30 on the K| = 12 sector. The overlap with the Laughlin state O = [(¥,*1="|w/1=0(3,))|2 is 0.996 54. (b)
The unprojected |W71=2(1)) has weight W ~ 0.997 32 on the K; = 20 sector. The overlap with the Laughlin state O = [(¥1=2°|@/1=2(3))|2

Lau

is 0.996 38. (c) The unprojected |W”1=4(1)) has weight W & 0.997 32 on the K| = 4 sector. The overlap O = [(¥,\1=*W/1=4(3))|? is 0.996 38.
In (d), (e), and (f), A = 1. (d) The unprojected |¥"1=0(1)) has weight WW ~ 0.990 62 on the K; = 12 sector. The overlap with the Laughlin
state O = (W51 ="2\W/1=0(3))|2 is 0.987 33. (e) The unprojected |W”1=2(%)) has weight W &~ 0.990 34 on the K, = 20 sector. The overlap with

au

the Laughlin state O = [(W1=°|w/1=2(1)) |2 is 0.986 67. (f) The unprojected |W7/1=*(1)) has weight W ~ 0.990 34 on the K, = 4 sector. The

overlap with the Laughlin state O = (W=

Lau

[W/1=%(1))|? is 0.986 67. The weight and overlap in the middle and right columns are always the

same because of the inversion symmetry of the Wannier basis (Ref. 23). The orange shadows indicate the generic levels in the OES of |\I/]l ),

which deviate from the levels of the exact Laughlin state.

Considering that the structure of the Hilbert space does not
change during the interpolation, we can make a cut in the basis
and extract the OES of |/ (1)) by the same method as that for
FQH states. For pure FCI states, this corresponds to a cut in
the localized Wannier orbitals. However, the total momentum
Ky in |[¥(})) is not a good quantum number (except at A = 0).
This means |W/ (1)) may have weight on some K that |Wgqp)
does not have weight on. We can calculate the weight W' of
each |Wi(A)) on the K sectors of FQH states and obtain an
average weight W = 5 Zflzl W!. From Fig. 2(b), we can see
that the |W/(A > 0)) indeed has some “momentum leakage”
leading to W < 1. However, even for the pure FCI states at
A =1, K; is also almost conserved (W ~ 0.990 for N, =
8). Therefore, we project ¥/ (L)) into the K sector of the
corresponding FQH states and consider the OES of |\IJ[‘;rj Q).

In Fig. 3, we display our OES results for N, = 8 (the lattice
sizeis Ny x N, = 4 x 6 for the FCI part). For this system size,
|Wi(1r)) are located in the J; = 0, J; = 2, and J; = 4 sectors.
They correspond to the Laughlin state with the K; = 12

prj

(100 sector), K; = 20 (010 sector), and K; = 4 (001 sector),
respectively. We find that the OES almost perfectly match
those of the corresponding Laughlin states up to & = &pax
for all of the three |W/(L)): &max & 13.3 at A = 0.5, while
it reduces slightly to about 12.3 at A = 1. While the notion
of an entanglement gap’®® can not be defined as crisply
as in geometries with only one edge, > the impressive
match of the OES with the model state nevertheless strongly
suggests that the edge excitation properties of the Laughlin
states are preserved during the interpolation and furthermore
corroborates the adiabatic continuity between FCI states and
FQH statesatv = % InRef. 31, the OES of the v = % Coulomb
ground states were investigated and compared to the model
states. In this case, there was a match of the OES levels with
exact v = % Laughlin state up to &« & 8 (the number of
levels below this value increase with system size). That we
find higher &,,x here indicates that the FCI states in the lattice
are actually closer to the Laughlin model states than is the case
for the Coulomb FQH ground states.
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FIG. 4. (Color online) Results of the interpolation Eq. (4) for
fermions at v = % for N, = 6 (red dot), N, = 8 (green triangle), and
N, = 10 (blue square). In the FCI part, the lattice size is N; x N, =
3x4, Ny x N, =4 x4, and N, x N, =5 x 4, respectively; and
A1 = 0.8. (a) The energy gap A does not close for any intermediate
. (b) The total overlap Oy (filled symbol, solid line) and the average
weight VW (empty symbol, dotted line) are still close to 1 at A = 1. All
of those demonstrate that the continuity holds for fermions at v = %
(One may note that for N, = 8, N; x N, =4 x 4, W = 1 for all A.
This is accidental for this particular lattice size.)

1

B. Fermions at v = 3

It is also interesting to investigate whether the adiabatic
continuity holds also for some non-Abelian states. In fact,
none of the two previous Wannier basis studies?>?? considered
states in this class. To this end, we turn our attention to
the v = % fermionic Moore-Read phase. To obtain the exact
fermionic Moore-Read states in the continuum on the torus,
we choose Hrqu = Y, Sijk V7 V8 (ri — r))8%(r; — 1p),
where ;. is the symmetrizing operator. The ground states are
exact sixfold-degenerate fermionic Moore-Read states with
zero energy. On the FCI side, we construct the Hamiltonian
as a three-body interaction Hpci = Y. (ijky T Tk between
three nearest-neighbor sites. The ground states are six nearly
degenerate states separated by a gap from the excited states.
Here, we choose a different twisted angle o = 27/3 for the
torus and this is justified by the large overlap between the
FCI states at A = 1 and the Moore-Read states at A = 0 (for
o = 1 /3, this overlap is relatively small).

We find that there are six nearly degenerate states W (1))
for each A € [0,1]. The evolution of the energy gap [Fig. 4(a)],
total overlap, and average weight [Fig. 4(b)] behave similarly
with those for the v = % fermionic Laughlin phase. While both
of the total overlap and average weight are slightly smaller
(O ~ 0.977 and W = 0.984 at A = 1 for our largest system
size N, = 10), these numbers are way above the overlaps
found between the Moore-Read state and the Coulomb ground
state in the second Landau level.?” (Of course, the three-body
lattice Hamiltonian used here for the FCI is somewhat artificial
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to begin with, making a direct comparison of overlaps a bit
biased.)

We also consider the OES for N, = 10 (the lattice size is
N1 x Ny =5 x 4 for the FCI part). In the continuum, the thin-
torus configuration of the six fermionic Moore-Read states
are®® (for N, = 10, N, = 20)

010101]0101010101]0101,
101010]1010101010]1010,
01100{1100110011]00110 & 10011]0011001100]11001,
11001/1001100110]01100 & 00110[011001100110011.

Their total momentum is K; =0, K; =10, K; =15
(twofold), and K| = 5 (twofold), respectively. Among the six
|Wi(A)), one is located in the J; = 0 sector [corresponding to
the K; = 0 Moore-Read state (0101 sector)], one is located
in the J; = 2 sector [corresponding to the K; = 10 Moore-
Read state (1010 sector)], two are located in the J; =1
sector [corresponding to the two K; = 5 Moore-Read states
(1100 £0011 sectors)], and two are located in the K, =3
sector [corresponding to the two K| = 15 Moore-Read states
(0110 + 1001 sectors)]. The two | Wi (1)) with the same J; = 1
(J1 = 3) will mix with each other, so they do not have
a one-to-one correspondence to the 1100+ 0011 state and
1100 — 0011 state (0110 4 1001 state and 0110 — 1001 state).
Therefore, we only consider the OES for the |¥/(1)) in the
J1 =0 and J; = 2 sectors here by projecting them into the
K sector of the corresponding Moore-Read states. In Fig. 5,
we can see that the low-lying part of the OES of |‘l/érj()\))
also matches that of the exact Moore-Read state very well.
As expected, &nax here (Emax ~ 12.5at A = 0.5 and &px =~ 11
at A = 1) is lower slightly than that for the v = % fermionic
Laughlin case reflecting the lower overlap. We also find that the
OES of |\IJP’;rj()L)) lack inversion (left-right) symmetry, which

is not so obvious in the v = % state. However, taken together
there is no doubt that the FCI phase is excellently described by
the Moore-Read wave function, and the low-energy physics of
the FCI problem should thus be within the same universality
class.

C. Fermions at v = g andv = %

Finally, we consider a case where there is a lack of adiabatic
continuity between the low-energy sector of the FQH and FCI
Hamiltonians. To this end, we focus on fermions at v = %.
On the FQH side, we choose the Hamiltonian as Hrqu =
Doie j Vf(Sz(r; —r;). Then, the ground states are fivefold-
degenerate states that are the particle-hole conjugate (phc)
of v = % Laughlin states. On the FCI side, the Hamiltonian is
set as the nearest-neighbor interaction Hgcy = ) (@jy it Due
to the particle-hole symmetry breaking, the ground states are
no longer FCI states but competing compressible (fermion-
liquid-like) states without the fivefold nearly degeneracy.'?
Here, we set 8 = 7 /3, wrcr = wrou = 1, and choose W)
as the ground states in the J; sectors where the FQH states
are located in at A = 0. We use the total overlap and OES to
probe the phase transition between A = 0 and 1. In Fig. 6,
it is clear that the total overlap drops down to a very small
number at intermediate . In Fig. 7, we choose the |Wi (1)) in
the J; = 2 sector to study the OES. One can see that the OES
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FIG. 5. (Color online) The orbital entanglement spectra (OES) of exact fermionic Moore-Read states (blue diamond) and the projected

J

nearly degenerate states |\Ppr‘J(A) ) (red cross) at v =

5, = 10. The lattice size is Ny x N, =5 x 4 and A; = 0.8 for the FCI part. In the left

column, J; = 0, corresponding to the Moore-Read state in the K; = 0 sector. In the right column, J; = 2, corresponding to the Moore-Read
state in the K| = 10 sector. In (a) and (b), A = 0.5. (a) The unprojected |¥”/1="(1)) has weight W & 0.994 03 on the K| = 0 sector. The overlap
with the Moore-Read state © = [(W51=°|w/1=0(1)) |2 is 0.991 19. (b) The unprojected |W”1=2(1)) has weight W ~ 0.994 36 on the K| = 10
sector. The overlap with the Moore- Read state O = [(Wal=""[W/1=2(3))|2 is 0.990 94. In (c) and (d), A = 1. (c) The unprojected |¥/1=0(1)) has
weight W ~ 0.984 88 on the K; = 0 sector. The overlap wrth the Moore-Read state O = |(W K‘_0|\I’J 1=0())|? is 0.977 92. (d) The unprojected
|W/1=2(1)) has weight W = 0.985 83 on the K| = 10 sector. The overlap with the Moore-Read state O = [(W,1=""|w/1=2(3))|? is 0.977 50.

The orange shadows indicate the generic levels in the OES of |‘pr]r'J (A)), which deviate from the levels of the exact Moore Read state.

of the projected |Wi(A)) match those of the corresponding

1.0 ' AL
®—N_=16, 4x5 phc FQH state up to &pax ~ 10 at A = 0.1, but completely
08 »—N.=20,5x5 1 deviate at A = 0.5. Our results clearly show that the adiabatic
0.6} BN =24, 6x5 continuity indeed does not hold for fermions at v = %.
= 04l We also find a similar phase transition for fermions at
o Y _ 2 _ 2
o* v = 5. However, v = £ is probably on the border between
0.2} . .
competing compressible states and FCI states (see Ref. 15 for
0.0 . . such study in checkerboard lattice), thus it is quite likely that
0.0 0.2 0.4 0.6 0.8 1.0

A

FIG. 6. (Color online) Results of the interpolation Eq. (4)
for fermions at v :% for N, =16 (red dot), N, =20 (green
triangle), and N, = 24 (blue square). In the FCI part, the lattice
sizeiS Ny Xx N =4 x5, Ny x N=5x5,and N; x N, =6 x5,
respectively; and A; = 1. The total overlap Oy, shows a clear drop
at intermediate A, which demonstrates that the continuity does not

hold for fermions at v = %.

the appearance of this phase transition may depend on the
system size and the shape of the samples. On the contrary, we
expectthe v = ‘5—‘ results showing a clear phase transition to be
robust to such details.

IV. DISCUSSION

In this paper, we have investigated the interpolation between
the FCI states and FQH states with the help of appropriately
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FIG. 7. (Color online) The orbital entanglement spectra (OES)
of exact fermionic phc state (blue diamond) and the projected state
|WiL(M) (red cross) at v = %, N, = 24. |[W,1(1) is in the J; =2
sector and corresponds to the phc state in the K| = 12 sector. The
lattice size is Ny X N, = 6 x 5 and A; = 1 for the FCI part. (a) A =
0.1. The unprojected | W/t (1)) has weight W & 0.986 45 on the K| =
12 sector. The overlap with the phc state O = |(‘J/§1‘C:12|\IJ’ =200 )2
is 0.97213. (b) A = 0.5. The unprojected | ¥’ (1)) has weight W ~
0.067 92 on the K| = 12 sector. The overlap with the phc state O =

(W™ 2 [W1=2(2)) | is almost 0.

gauge-fixed Wannier wave functions.”>* By demonstrating
an almost constant gap and a large overlap during the
interpolation, we provide the strong evidence that both Abelian
and non-Abelian FCI states are adiabatically connected to their
corresponding FQH (Laughlin and Moore-Read, respectively)
states for fermions as well as for bosons. The method used
here may be seen as an improved version of the first study
of adiabatic continuity,””> which studied v = % bosons, by
utilizing the recent gauge-fixing insights of Ref. 23. It also
provides a more direct and quantitative comparison between
FCI and FQH than the likewise elegant connection recently
established via relating Chern bands to the Landau bands of
the Hofstadter problem in Ref. 39.

To underscore the nontriviality of our results, we have also
considered fermions at filling factor v = ‘5—‘, for which there

is no FCI state due to the particle-hole symmetry breaking'’
in the Chern band (this symmetry breaking is absent in a

PHYSICAL REVIEW B 87, 035306 (2013)
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FIG. 8. (Color online) Results of the interpolation Eq. (4) for
bosons at v = % for N, = 4 (red dot), N, = 6 (green triangle), and
N, = 8 (blue square). In the FCI part, the lattice size is Ny X N, =
4x2, N x N =3 x4, and N; x N, =4 x 4, respectively; and
Ay = 1. (a) The energy gap A does not close for any intermediate
M. (b) The total overlap Oy (filled symbol, solid line) and the average
weight W (empty symbol, dotted line) are still close to 1 at A = 1. All
of those demonstrate that the continuity holds for bosons at v = %
Landau level). The overlap and gap indeed drop drastically
during the interpolation, reflecting a phase transition. In
Ref. 40, it was pointed out that the particle-hole symmetry
can be explicitly restored by adding a single-particle term
to the standard normal-ordered Hamiltonian Hgcp, which is
used in most numerical studies including this work.*! By
examining the adiabatic continuity using the resulting particle-
hole-symmetric FCI Hamiltonian, we find that the results are
significantly less universal and that they crucially depend on
details such as the system size, the tight-binding parameters,
and the interaction we choose.

We have also given a report of the orbital entanglement
spectrum (OES) of FCI states based on the orbital cut in the
localized Wannier basis. The low-lying parts of the OES of FCI
states match those of corresponding ideal model FQH states
very well. By comparing the OES of FCI states with those of
FQH states obtained from realistic interaction in Landau levels,
we find that FCI states are closer to the ideal FQH states. The
analysis of the OES generalizes earlier works on FQH states
on the torus, and thereby provides an appealing picture of
the FCI OES as composed of two CFT spectra with opposite
chirality.*’*? Invoking the bulk-edge correspondence,?*+>~#
our results also provide a glimpse of the gapless edge physics
of the FCI phases.

Our work invites a number of interesting future directions.
Perhaps most interestingly, it suggests a natural generalization
studying FCI states in Chern bands with higher Chern number.
Indeed, novel series of FCI states with arbitrary Chern
number [C| = N have recently been observed in numerics.*>*°
While these new states might correspond to appropriately
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symmetrized versions of multicomponent FQH states,**’
such ideas need to be substantiated by further investigations
and more direct comparisons as would be possible within the
framework used here.

Another important issue would be if the present formalism
might have bearing for the development of a pseudopotential
formalism for fractional Chern insulators. At present, there
are two approaches,'>*® one of which is built on the original
(non-gauge-fixed) Wannier basis construction,”® leading to
apparently diverging predictions.
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APPENDIX A: BOSONS AT v = %

In this section, we focus on the continuity problem of
bosons at filling factor v = % On the FQH side, we choose the
Hamiltonian as Hrqu = ), _; 8%(r; — r;). Then, the ground
states are exact twofold-degenerate bosonic Laughlin states
with zero energy. On the FCI side, the Hamiltonian is set
as the onsite interaction Hgcp = Zi n;(n; — 1). The ground
states are two nearly degenerate states separated by a
gap from the excited states. We set o = /3 also for the
twisted torus.
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FIG. 9. (Color online) The orbital entanglement spectra (OES) of exact bosonic Laughlin states (blue diamond) and the projected nearly
degenerate states |\I/pjr]j (A)) (red cross) at v = %, N, = 8. The lattice size is N; x N, =4 x 4 and X, = 1 for the FCI part. Both of the two
nearly degenerate states are in the J; = 0 sector. In the left column, we consider the one with lower energy and project it in the K; = 0
sector. In the right column, we consider the one with higher energy and project it in the K; = 8 sector. In (a) and (b), A = 0.5. (a) The
unprojected |W*1(1)) has weight W ~ 0.797 21 on the K; = 0 sector and W = 0.190 96 on the K| = 8 sector. The overlap with the Laughlin
state O = %(|(\1’£f0|\11’1:0()»))|2 + (W= 1w 1=0(1)) 12) is 0.982 64. (b) The unprojected | W1 (1)) has weight W 2 0.19276 on the K| = 0
sector and W = 0.799 02 on the K; = 8 sector. The overlap with the Laughlin state O = %(|(\l/£i'u:0|\ll" =002 + (W= W 1=0(3))12) is
0.98825. In (c) and (d), A = 1. (c) The unprojected |¥“1 (1)) has weight W & 0.759 66 on the K; = 0 sector and VW ~ 0.199 68 on the
K| = 8 sector. The overlap with the Laughlin state O = %(|(\Illﬁfol\1”1:°()»))|2 + (W= 1w 1=0(1)) 12) is 0.93967. (d) The unprojected

[W/1(X)) has weight W ~ 0.20603 on the K; = 0 sector and YW & 0.76720 on the K| = 8 sector. The overlap with the Laughlin state
0 =4 (WA= W =000)) 12 4 [ (WK 1=¥ W /1=0(5))%) is 0.961 11. The orange shadows indicate the generic levels in the OES of |W”!(1)), which

Py
deviate from the levels of the exact Laughlin state.
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We find that there are two nearly degenerate states | ¥/ (1))
foreach A € [0,1]. The evolution of the energy gap [Fig. 8(a)],
total overlap, and average weight [Fig. 8(b)] is similar with
that for the v = % fermionic Laughlin phase. However, both
of the total overlap and average weight are smaller (O, ~
0.950 and W 2 0.9663 at A =1 for our largest system
size N, = 8).

We consider the OES for N, = 8 (the lattice size is N| x
Ny = 4 x 4 for the FCI part). In the continuum, the thin-torus
configuration of the two bosonic Laughlin states are (for N, =

8, Ny, = 16)

0101]01010101|0101,
1010/10101010]1010.

Their total momentum is K; = 0 and 8, respectively. The two
|Wi(A)) are both in the J; = 0 sector, so they mix with each
other and do not have a good one-to-one correspondence with
the two Laughlin states. This means that each |Wi(1)) has
weight on the K| = 0 and 8 sectors simultaneously. However,
we can still project one |W/(A)) in the K; = 0 sector and
project the other in the K; = 8 sector. In Fig. 9, we can see
that the low-lying part of the OES of |‘Illirj()‘)) also matches
that of the exact Laughlin state very well. Of course, &y,.x here
(Emax ® 13.2 at A = 0.5 and &, & 11.2 at L = 1) is lower
than that in the v = % fermionic Laughlin case due to the
lower overlap. However, all of our results strongly support
that the FQH states are adiabatically connected to FCI states

for bosons at v = %

110
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1.00

—8—N,=6,3x2
—»—N,=8, 4x2
—®—N,=10, 5x
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A

FIG. 10. (Color online) Results of the interpolation Eq. (4) for
bosons at v = 1 for N, = 6 (red dot), N, = 8 (green triangle), and
N, = 10 (blue square). In the FCI part, the lattice size is N; x N, =
3x2, Ny x N;=4x2, and Ny x N, =5 x 2, respectively; and
A1 = 0.8. (a) The energy gap A does not close for any intermediate
M. (b) The total overlap Oy, (filled symbol, solid line) and the average
weight WV (empty symbol, dotted line) are still large at A = 1. All of
those demonstrate that the continuity holds for bosons at v = 1.
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APPENDIX B: BOSONS AT v =1

In this section, we focus on the continuity problem of
bosons at filling factor v = 1. On the FQH side, we choose
the Hamiltonian as Hrou = ), _;; 8*(r; — r;)8°(r; — ry).
Then, the ground states are exact threefold-degenerate bosonic
Laughlin states with zero energy. On the FCI side, the
Hamiltonian is tactically chosen as the onsite three-body
interaction Hpcp = Zi n;(n; — 1)(n; —2). The ground states
are three nearly degenerate states separated by a gap from the
excited states. We set o = 2m /3 for the twisted torus as was
done for the fermion case at v = %

We find that there are three nearly degenerate states | ¥/ (1))
foreach A € [0,1]. The evolution of the energy gap [Fig. 10(a)],
total overlap, and average weight [Fig. 10(b)] is similar with

20
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FIG. 11. (Color online) The orbital entanglement spectra (OES)
of exact bosonic Moore-Read states (blue diamond) and the projected
nearly degenerate state |‘~I/pjr3 (A)) (red cross) at v=1, N, = 12.

|lIJerg (X)) is in the J; = 2 sector and corresponds to the Moore-Read
state in the K| = 6 sector. The lattice size is Ny x N, = 3 x 4 and
A1 = 0.8 for the FCI part. (a) A = 0.5. The unprojected |¥”’ (1))
has weight W & 0.958 60 on the K; = 6 sector. The overlap with
the Moore-Read state O = [(Wat=|W/1=2(1))|% is 0.93707. (b)
A = 1. The unprojected |W/1(1)) has weight W ~ 0.89528 on
the K; = 6 sector. The overlap with the Moore-Read state O =
(WAL= w/1=2(3))2 is 0.83976. The orange shadows indicate the
generic levels in the OES of |‘~Ilpjr3 (1)), which deviate from the levels
of the exact Moore-Read state.

035306-10



FROM FRACTIONAL CHERN INSULATORS TO ABELIAN ...

that for the v = % fermionic Moore-Read phase. However,
both of the total overlap and average weight are smaller (O &
0.869 and W A 0.9073 at A = 1 for our largest system size
N, = 10).

We consider the OES for N, = 12 (the lattice size is N1 X
N, = 3 x 4 for the FCI part). In the continuum, the thin-torus
configuration of the two bosonic Laughlin states are (for N;, =
12, Ny = 12)

111111111111,
020]202020]202 = 202]020202]020.

Their total momentum is K; = 6 and 0 (twofold). The three
|[Wi(1)) are in the J; = 0 sector (twofold) and J; = 2 sector.
Because the two states in the J; = 0 sector will mix with
each other, we only concentrate on the single state in the
J1 = 2 sector, which corresponds to the K| = 6 Moore-Read
state. Compared with the fermionic Moore-Read case, the
asymmetry problem in the OES is more serious (Fig. 11).
Although the OES of |[W/1=2(1)) do not precisely match those
of the exact bosonic Moore-Read state, we can still find a
relatively good correspondence between their OES levels up
to Emax ~ 13.8at A =0.5and & &~ 11.5at A = 1.

APPENDIX C: FURTHER DETAILS ON THE WANNIER
BASIS CONSTRUCTION

To make this paper self-contained, we give the prescription
of how to fix the phases ®(k;) in the Wannier function | X,k;)
in this Appendix. The results were first found in Ref. 23. The
essential point in fixing the phase is to make the connection
(X,ka|Y|X ',k}) between adjacent Wannier states independent
of X and k. Here, ¥ = )", |ki,k2) As(ky ko) (ki ko + 1] is
the unitary projected position operator in the e, direction,
and adjacent Wannier states are defined by jX%2 = j¥* 4 C.
Because jX* = N, X + Cky + 82, kb, = ko + 1 (mod N>) for
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two adjacent Wannier states. If increasing from &, to k, + 1
does not cross the boundary of pBZ, X’ = X. Otherwise, X' =
X +C.

From the definition of the Wannier state, one can obtain
that

(X, k| VX' k) = 1= E A, (0, ky Uy (k) (C1)
where
Ny —1
1 Wk, ko)
Upky) = — Y ————
2 N, ,(12:;) W' (ky,k2)
with

[T Artek) Ak ko)
[T Ay + 1) A20.k)

W' (ki ,k2) = [11(k2)]", and

W(ki,ky) =

Ar(ko)
w1(ky) = Tty ket 1€pBZ
e?miC/N _2a) l'x('k(zki)l) ., otherwise.

The product of (X,k|Y|X ’,k}) has a very simple form

Nl—l N2—1 Nz—l N]
[T [] & kl?ix i) = [W2<0> I1 Uz(kz)] N (eo))
X=0 k,=0 k=0

Defining Uj,(ky) = Us(k2)/|Uz(ky)] and  introducing a
phase ()™ = ]_[,1:;2:_01 U,(kp;) with the argument angle
in (—m/Ny,m/Ny), we can choose (X,ky|V|X',k}) =
M (0w, |Us(ky)|, which satisfies Eq. (C2). Finally, by com-
paring this choice with Eq. (C1), we have

AlPE) -~ _ 2O @ ) (C3)
A2(0,ky) Us(ky)

We can choose ¢'®® = 1 and recursively fix all phases e!®*2)
according to Eq. (C3).
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