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Abstract 

The atomic structure of water-oxidizing nanoparticles (10-60 nm) formed from cobalt(II) salts 

and methylenediphosphonate (M2P) is investigated. These amorphous nanoparticles are of 

high interest for production of solar fuels. They facilitate water oxidation in a directly light-

driven process using [Ru(bpy)3]
2+ (bpy = 2,2’-bipyridine) as a photosensitizer and persulfate 

(S2O8
2-) as an electron acceptor. By X-ray absorption spectroscopy (XAS) at the cobalt K-

edge, cobalt L-edge and oxygen K-edge, we investigate the light-driven transition from the 

CoII/M2P precursor to the active catalyst, which is a layered cobalt(III) oxide with structural 

similarities to water-oxidizing electrocatalysts. The M2P ligand likely binds at the periphery 

of the nanoparticles, preventing their further agglomeration during the catalytic reaction. This 

system opens a possibility to link the catalytically active nanoparticles via a covalent bridge to 

a photosensitizer and build an artificial photosynthetic system for direct utilization of solar 

energy for fuel production without production of electricity as an intermediate step.  

This article is part of a Special Issue entitled: Photosynthetic and Biomimetic Hydrogen 

Production.  

 

 

Keywords: artificial photosynthesis, photocatalysis, solar fuels, water oxidation, X-ray 

absorption spectroscopy 

 

 

 



 3

1. Introduction 

Our society is heavily dependent on fossil fuels needed for operating combustion engines in 

transportation and production of electrical energy. This has led to an increased level of carbon 

dioxide, a greenhouse gas, in the atmosphere which ultimately might cause drastic changes in 

the climate on Earth [1-3]. To decrease our dependence on fossil fuels, scientists are searching 

for new routes towards production of renewable energy. Molecular hydrogen is an attractive 

fuel option, as it burns to water without carbon dioxide formation. The only viable starting 

material for the sustainable large-scale production of hydrogen is water. 

The production of hydrogen from water can be broken down into two steps. Firstly, the 

oxidation of water to form oxygen, protons, and electrons and secondly, the reduction of 

protons to form hydrogen according to Eq. 1 and 2, respectively.  

 2H2O → O2 + 4H+ + 4e– (1) 

 4H+ + 4e– → 2H2  (2) 

In comparison to hydrogen formation by proton reduction (Eq. 2), the four-electron/four-

proton chemistry of water oxidation (Eq. 1) is clearly more thermodynamically demanding [4-

5]. 

Nature can catalyze both reactions with exceptionally high efficiency. Water oxidation is 

carried out by Photosystem II (PSII), which is a highly conserved protein-cofactor complex 

found in plants, algae, and cyanobacteria [6-8]. Water is split into oxygen, protons, and 

electrons at a Mn4O5Ca cluster, which is bound to the PSII protein complex [9-14]. 

Many attempts to synthesize artificial catalysts have involved manganese oxides or multi-

nuclear manganese complexes with intricate ligand systems [15-32]. Some of these exhibit 

water-oxidation activity, but at comparatively low turnover frequencies and numbers [15-

17,20-22,24-29]. Ruthenium and iridium based catalysts show a better performance, but the 

metals are scarce and expensive [33-39], which is a serious drawback if the catalysts are to be 

used on a large scale. In this case the use of earth-abundant elements is clearly mandatory. 

Much research has been devoted to cobalt-oxo materials as very promising candidates for 

water oxidation catalysts [40-46]. In particular, electrodeposited cobalt oxide films (herein 

called CoCat) have been shown to be efficient in electrochemical water oxidation [41,47]. 

Cobalt oxides and molecular complexes have been utilized as catalysts for light-driven water 

oxidation in a solution containing suitable photosensitizers [33,42,46,48-53]. Cobalt oxides 
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were also deposited and operated on photoanodes, such as α‐Fe2O3 [54-58], ZnO [59], WO3 

[60], W:BiVO4 [61], and on Si-based solar cells [62-64].  

Connecting the water oxidation catalyst to a photovoltaic cell is an indirect method where a 

potential difference of at least 0.8 V at pH 7 must be generated to facilitate the water 

oxidation reaction. As an alternative and, in our eyes, more desirable approach, solar energy 

can be employed to generate a chemical oxidant which directly drives the water splitting 

reaction. The advantage of a molecular oxidant is that it can be tailored to the specific needs 

of a given catalytic system. The direct covalent coupling of a photosensitizer to a cobalt oxide 

nanoparticle however had not been achieved yet.  

In a previous work, cobalt-based nanoparticles were formed in-situ from cobalt and 

methylenediphosphonate, M2P1, under oxidizing conditions in a phosphate buffer (pH 7). 

These particles work as water oxidation catalysts in a direct light-driven process using 

[Ru(bpy)3]
2+ (bpy = 2,2’-bipyridine) as a photosensitizer and persulfate (S2O8

2-) as an electron 

acceptor [46]. The nanoparticles are limited in size to 10-60 nm radius in the presence of 

M2P. Under illumination, the nanoparticles could catalyze the production of ~20 dioxygen 

molecules per cobalt atom at a rate of ~0.2 mol O2 s
-1 (mol Co)-1. Interestingly, when 

excluding the M2P ligand, the same activity was determined but the particles grew to a size of 

at least one micrometer.   

The small M2P molecules offer a possibility to link the cobalt-based nanoparticles via a 

covalent bridge to a photosensitizer and utilize the solar energy for fuel production directly, 

without creation of an electric potential at a conducting electrode as an intermediate step. 

Such a direct conversion could increase the quantum efficiency pronouncedly by minimizing 

recombination losses after light excitation. Therefore, atomic structure and arrangement of the 

constituents of the nanoparticles (cobalt ions, M2P ligand, water-derived ligands) are of high 

interests. As the Co/M2P nanoparticles are amorphous and cannot be studied by X-ray 

powder diffraction, we employ X-ray absorption spectroscopy, XAS, at three different 

absorption edges (cobalt K-edge, cobalt L-edge and oxygen K-edge). This comprehensive 

approach is relatively rarely used [65-66] because optimized experimental setups for soft X-

rays (oxygen K-edge and cobalt L-edges) and hard X-rays (cobalt K-edge) are required. 

Combining the complementary structural information obtained by the measurements in the 

different energy domains, herein we derive a model of the atomic structure of the cobalt oxide 

nanoparticles and assess the structural role of the M2P ligand. 
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2. Material and methods 

H4M2P was prepared as described in ref [67]. [RuII(bpy)3](ClO4)2 was prepared by anion 

exchange from [RuII(bpy)3]Cl2 (Aldrich) and recrystallized from MeCN/Et2O. Co(Ac)2·4H2O 

(Aldrich), Co(ClO4)2·6H2O (Aldrich), Co(OH2)6(NO3)2 (Aldrich), Na2S2O8 (Aldrich) KH2PO4 

(AppliChem), K2HPO4 (AppliChem), LiCoIIIO2 (Aldrich) and CoII
3(PO4)2 (ABCR) were 

bought and used as received. 

2.1. Preparation of Co/M2P in solution 

Two samples (1 ml) containing Co(ClO4)2·6H2O (1.8 mM) and H4M2P (2.5 mM) in 50 mM 

KH2PO4/K2HPO4 buffer (KPi) with pH 7, were prepared in the dark. To each sample, 

[Ru(bpy)3](ClO4)2 (0.77 mg, 1 µmol) and Na2S2O8 (5.9 mg, 25 µmol) were added as powders. 

The solutions were ultrasonicated for 2 minutes to dissolve all powders. One sample was 

transferred to a cell equipped with a Clark electrode that was kept at 20 °C and deaerated 

using a flow of argon. The cell was sealed using a rubber stopper and illuminated for 5 min 

(470 nm LEDs, ~580 µE) after which an aliquot was withdrawn with a syringe. This aliquot 

(oxidized Co/M2P) was filled into a 1.5 mm thick plastic frame with 5 mm × 10 mm opening 

secured with 25 μm thick Kapton® foil. An aliquot from the non-illuminated sample 

(Co/M2P precursor) was filled into a second frame. The sample cells were immediately 

frozen in liquid nitrogen where they were kept until the X-ray absorption measurements.  

2.2. Preparation of Co/M2P as dried powders  

2.2.1. Preparation of Co/M2P precursor 

Two ml of a 0.10 M hot aqueous solution Co(Ac)2·4H2O (51.5 mg) was mixed with 2 ml of 

0.14 M aqueous solution of H4M2P (50.5 mg). The mixture equilibrated overnight and the 

resulting pink precipitate was collected using centrifugation (5 min, 14000 rpm; yield 

~30 mg.). 

2.2.2. Preparation of oxidized Co/M2P  

50 ml of 8.0 mM aqueous solution of Co(Ac)2·4H2O (100 mg), 50 ml of 11.2 mM aqueous 

solution of H4M2P (99 mg), 50 ml of 40 mM aqueous solution of Na2S2O8 (476 mg) and 

50 ml of deionized water were mixed together and then added to 200 ml of 0.1 M aqueous 

acetate buffer (pH 6.2; HAc/KAc) containing 100 mg of [Ru(bpy)3](ClO4)2. The obtained 

solution was stirred in an Erlenmeyer flask with a volume of 1 L and illuminated for 10 min 

with a 150 Watt tungsten lamp. The color of the solution turned from red-orange to dark-
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green. After illumination 400 ml of acetone was added to the reaction mixture. The resulting 

suspension was transferred into sixteen 50 ml polyethylene tubes and centrifuged for 5 min at 

5000 rpm. The supernatant was removed and the pellets were transferred into one tube and 

ultrasonicated with 50 ml of acetone. Centrifugation (5 min, 5000 rpm) of the suspension in 

acetone gave a dark-green material. The isolated material (yield ~55 mg) was dried in air 

before X-ray spectroscopic measurements and elemental analysis. Elemental analysis (C, H, 

P, Co) was performed by Analytische Laboratorien GmbH, Lindlar, Germany (Co, 31.73%; 

C, 4.16%; P, 8.76%; H, 2.39%). 

2.3. Preparation of electrodeposited CoCat 

The CoCat film was formed by anodic electrodeposition in 0.1 M KPi, pH 7. The 

electrochemical cell consisted of a custom made glass vessel, a glassy carbon plate (1 × 

2.5 cm) as working electrode, a Pt mesh as a counter electrode and an Hg/Hg2SO4 (saturated) 

reference electrode (650 mV vs. NHE). For deposition, an appropriate amount of 

Co(OH2)6(NO3)2 was added so that the final concentration of Co2+ ions was 0.5 mM. The 

CoCat film was deposited on the working electrode for 10 min at constant potential of 1.35 V. 

After the deposition, the CoCat was stored in a desiccator under low vacuum. Before any of 

the films were loaded into the sample chamber for synchrotron measurements, they were 

inserted into cobalt-free KPi, pH 7, and 1.35 V (NHE) was applied for 2 min.  

2.4. XAS measurements 
 
The XAS measurements were performed at the Helmholtz-Zentrum Berlin für Materialien 

und Energie (formerly BESSY II, Berlin). The measurements at the cobalt K-edge were 

acquired at the KMC-1 bending-magnet beamline at 20 K in a cryostat (Oxford-Danfysik) 

with a liquid-helium flow system. The XAS measurements at the oxygen K-edge and cobalt 

L2,3-edges were carried out at the U41-PGM undulator Beamline at room temperature using 

the Liquidrom endstation [68]. Further details are given in the Supplementary Material. 

 

3. Results  

The ligand M2P forms a complex with Co2+ (K = 12.03) [69]. This complex is the Co/M2P 

precursor. In the experiments presented here the amount of Co2+ that is not bound to M2P (for 

example as Co3(PO4)2) is kept at a very low level by adding the M2P in a 1.4 times excess 

[46]. The oxidation process is light-driven by using a photosensitizer and an electron acceptor. 
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When the illumination starts, an excited state, [RuII(bpy)3]*
2+, forms. This state can pass one 

electron to the electron acceptor resulting in formation of [RuIII(bpy)3]
3+, which is a powerful 

oxidation agent (E0 ≈ +1.3 V). [RuIII(bpy)3]
3+ then oxidizes the Co/M2P precursor and 

Co/M2P nanoparticles forms that catalyze the oxidation of water. The activity of the Co/M2P 

nanoparticles, both before and after isolation as a powder, was verified by a Clark electrode 

(for details see Supplementary Material). To elucidate the structure of the Co/M2P complex in 

the precursor (dark) state and the light induced structural changes in the Co/M2P complex, 

which lead to formation of an active water oxidizing catalyst, we employed X-ray absorption 

spectroscopy at the cobalt K- and L-edges and at the oxygen K-edge.  

 

3.1. X-ray absorption spectroscopy at the cobalt K-edge 

3.1.1. XANES spectra 

In K-edge XAS, the sample is illuminated with X-rays of sufficient energy to excite an 

electron from the inner most shell of the probed atom (1s shell).  In the case of the first row 

transition metals as Co, the transition is from the 1s shell to the partially unoccupied 3d levels 

(this transition result in the so-called pre-edge in the spectrum), and—for further increase of 

the energy—to the continuum.  As the 1s – 3d electron transition is dipole forbidden, the pre-

edge intensity of the transition metal complexes is often very low. Increased pre-edge 

intensity is anticipated only in the case of strong mixing of the metal 3d orbitals with ligand 

orbitals of p-character. This may occur in the case of very short oxo-bonds (for example in 

permanganates [70]) or by deviation from octahedral symmetry [71]. For Co, the 1s – 3d 

electron transition gives rise to the absorption around 7710 eV and the low intensity of the 

pre-edge corresponds to the octahedral coordination of the Co ions in the CoII
3(PO4)2 and 

LiCoIIIO2 references, as well as in the CoCat and the Co/M2P complexes. The octahedral 

coordination of the Co/M2P complexes was confirmed also by the EXAFS measurements (see 

below).  

A major increase of the absorption is observed when the incident X-ray energy increases and 

the 1s electron is excited to the higher unoccupied orbitals (4p and higher). The position of 

this sharp increase of the absorption (main absorption edge) shifts to higher energy with an 

increase of the formal oxidation state of the probed element [72-73]. Comparison to the 

reference compounds with known oxidation state allows determination of the metal oxidation 

state in unknown compounds [70,74]. As seen from Fig. 1, binding of M2P ligand to the CoII 
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does not change the oxidation state of CoII ions, as the edge position stays the same as in the 

reference compound CoII
3(PO4)2 (Fig. 1).  

After illumination the Co/M2P system is oxidized and the Co/M2P edge position shifts to the 

position of the LiCoIIIO2 reference compound. This is paralleled by structural changes, 

mirrored in the change of the shape of the absorption edge. Visual inspection shows close 

similarity between the light-oxidized Co/M2P and the electrodeposited CoCat [75-76], but 

detailed information about structural changes can be deduced only from the oscillations after 

the absorption edge (EXAFS region). 
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3.1.2 EXAFS spectra 

The X-ray absorption above the edge (EXAFS region) is modified by the atoms, surrounding 

the Co absorber. In the Fourier transforms, FT, of EXAFS oscillations (Fig. 2), each peak 

corresponds to atoms surrounding the X-ray absorbing Co atom. The amplitude of the peak 

relates to the number of the ligands, and its position corresponds to the distance to the Co 

absorber. The distances that can be read directly from the FT plot are with 0.3 – 0.4 Å shorter 

than the real distances [72,77]. The surrounding atom types, number, and distances can be 

determined by simulation of the recorded EXAFS oscillations (Table 1). 

In solution, Co2+ binds to the oxygen atoms from the OH groups of the M2P ligand. Three 

possible structures for this coordination are shown in Fig. 3, b, c and d. The latter two have 

been observed in crystalline material [69]. In the FT of the Co/M2P precursor only one main 

peak is visible, which can be simulated with ~6 Co-O distances of 2.1 Å, corresponding to 

octahedrally coordinated Co2+ ions [78]. This observation rules out the structure presented in 

Fig. 3c, where the Co ion is 5-coordinated. 

Octahedral coordination is expected also for the Co ions, which are not bound to the ligand. 

To identify the presence of the bound M2P ligand, we should be able to resolve the Co-P 

distances predicted from the structures. Two Co-P distances at 3.3 Å are expected for the 

structure in Fig. 3b and four such distances for the structure shown in Fig. 3d [69]. In the 

EXAFS simulation, 3.3 Å Co-P vectors are indeed visible in the Co/M2P precursor with 

coordination number of around 2 (Table 1). The structure presented in Fig. 3d suggests also 

two Co-Co distances (per Co atom) of 3.7 Å, for which there is little support from the EXAFS 

simulations, but they cannot be excluded.  

After illumination with visible light, the first Co-O peak shifts to shorter distances, in line 

with the increase in the Co oxidation state from +2 to +3 [78]. In the oxidized state, a second 

peak in the FT is clearly visible, which can be assigned to short Co-Co distances of about 

2.8 Å. Such Co-Co distances are indicative of di-μ-oxo bridged Co3+ ions [79-82]. The overall 

shape of the EXAFS spectrum shows similarity to the electrodeposited CoCat [75-76,83]. The 

peak at 5.2 Å reduced distance corresponds to the doubled Co-Co distance (2 x 2.8 Å = 5.6 Å) 

and exhibits a very high amplitude in the spectrum of crystalline layered LiCoO2 reference 

(Figure 2). This peak can be more easily resolved for the light-oxidized Co/M2P than for the 

CoCat, which indicates a higher degree of order than present in the electrodeposited Co oxide 

film. Otherwise the atomic structure of both compounds appears to be highly similar.  
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The similarity of the spectrum of the Co/M2P nanoparticles obtained by light-oxidation of the 

Co/M2P precursor with the spectra of the CoCat and LiCoO2 (reference compound with 

layered structure) suggests that the nanoparticles contain, at the atomic level, Co-oxide 

fragments that consist of highly interconnected complete (closed) or incomplete (open) 

cubanes with Co and O atoms on the corners of the cubes [75]. The Co-P vector is still present 

in the nanoparticles obtained by light-oxidation of Co/M2P complexes, but the number of 

Co-P distances per Co atoms is decreased. This result points towards binding of the M2P 

ligand to only part of the Co atoms, presumably at the periphery of the complex. 

While the cobalt K-edge XANES and EXAFS spectra reveal immediately the high similarity 

between the nanoparticle-catalyst and the electrodeposited CoCat with respect to its cobalt-

oxo structure, the identification of the binding mode of the M2P ligand is more difficult. The 

Co ligand environment was further studied with soft X-ray measurements at the cobalt L-edge 

and the oxygen K-edge, both being more informative with respect to metal ligands [65,84-86]. 

 

3.2. X-ray absorption spectroscopy at the cobalt L-edge 

In L-edge XAS, the relevant transitions involve core holes in the 2s level (L1-edge) or 2p 

levels (L2- and L3-edges) and final states in the 3d level [87]. The positions of the peaks 

visible in the spectra shift to higher energies with increasing metal oxidation state [88-89] and 

the shape of the XAS spectra can be related to the electronic structure of the materials [89-

90].  

Figure 4 shows the L3- and L2-edges of the Co/M2P precursor as well as in the light-oxidized 

Co/M2P, the spectral contribution of CoIII ions to the oxidized sample of the Co/M2P catalyst, 

the spectrum of electrodeposited CoCat, and two reference compounds. When going from 

bottom (CoII reference) to top (CoIII reference), the number of peaks decreases and the peak 

with highest intensity shifts to higher energies (dotted lines in Fig. 4). As the fluorescence 

yield is highest for the L3-edge [91], we will focus our discussion at the part of the spectrum 

between 770 eV and 785 eV.  

The cobalt L-edge spectra confirm the results obtained at the cobalt K-edge, namely that the 

cobalt oxidation state in the Co/M2P precursor is +2. We may suggest a high-spin electronic 

configuration because the spectrum of the precursor resembles the spectrum of a high-spin 

CoII reference (CoO in Fig. 4) [65,86-87] and also calculated spectra of high-spin CoII 

ions [90].  
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The interpretation of the spectrum from light-oxidized Co/M2P is less conclusive as for the 

CoII precursor. Upon light illumination, the Co oxidation state increases toward CoIII, but a 

CoII contribution is clearly visible for the colloidal Co/M2P. The cobalt K-edge position of a 

sample prepared by a similar protocol suggested a Co oxidation state of +3, as discussed in 

section 3.1.1. (Fig. 1). The spectral contribution of the CoIII ions in the L-edge spectrum can 

be revealed by subtracting the spectrum of the Co/M2P precursor from the spectrum of the 

light-oxidized Co/M2P (multiplied by a scaling factor, details given in the Supplementary 

Material). The result of this extraction is denoted as ‘CoIII/M2P’ in Fig. 4. The thereby 

obtained spectrum of the CoIII ions is similar to the spectrum of the electrodeposited CoCat, 

confirming the similarity between the Co/M2P nanoparticles and the electrodeposited CoCat. 

The ratio between the main peak and the low-energy and high-energy shoulders is different, 

possibly due to the present of the M2P ligand in the periphery of the Co oxide particles.  

The CoII contribution in the spectrum of the light-oxidized Co/M2P material could relate the 

(largely unavoidable) handling of the material under ambient conditions during preparation of 

the sample for measurements at the L-edge; also X-ray photoreduction during data collection 

at room temperature might contribute [92]. The K-edge measurements most likely yield the 

correct oxidation state because the samples used for these measurements were preserved in 

liquid nitrogen immediately after preparation. 

 

3.3. X-ray absorption spectroscopy at the oxygen K-edge 

The features in the oxygen K-edge XANES arise from oxygen 2p states that have 

contributions from partially occupied and unoccupied cobalt orbitals. Therefore oxygen 

K-edge XAS can probe directly the ligand-metal bond covalency [93]. The features in the pre-

edge region (530 eV and below) are assigned to transitions from the oxygen 1s orbital to a 

hybridized state involving oxygen 2p and predominantly cobalt 3d states [84-85]. The main 

absorption edge and the region beyond it are attributed to transitions from the oxygen 1s to 

hybridized orbitals of oxygen 2p with cobalt 4s and 4p states [66,85].  

Detection of the oxygen K-edge spectra provides further insights into the role of the M2P 

ligands (Fig. 4). The oxygen XANES spectrum of the M2P ligand alone (without Co) is very 

similar to the spectrum of the K2HPO4 reference (Fig. 5). This can be predicted from the 

structure of the M2P ligand, which can be viewed as two phosphate groups bridged with a 

methylene residue (–CH2–). Both in potassium phosphate and in the M2P ligand, oxygen has 
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the same coordination environment. Binding of the Co to the M2P ligand in the precursor 

modifies only slightly the oxygen K-edge spectrum. This indicates that only a fraction of the 

oxygen atoms changes their coordination, likely by formation of Co-O bonds, but without 

breakage of P-O bonds (see Fig. 2) [69]. 

Upon light oxidation, the Co/M2P spectrum changes significantly and becomes similar but 

not identical to the spectrum of the electrodeposited CoCat. The most dramatic change occurs 

in the pre-edge region, which is strongly influenced by the interaction between oxygen 2p and 

metal 3d orbitals [84-85]. The strong increase in the pre-edge suggests that major fractions of 

the oxygen atoms are coordinated to Co ions, such that Co-oxide fragments are formed in the 

light-oxidized Co/M2P. The presence of two separate peaks visible in the pre-edge is 

attributed to the octahedral coordination of the cobalt ions.  The octahedral crystal field of 

oxygen ions splits the energy level of the 3d-states of Co, into eg- and t2g-levels, with the t2g-

level being lower than the eg-level [94]. Exchange interactions further split these states into 

spin-up (↑) and spin-down (↓) states. A more comprehensive understanding of the shape of 

the oxygen K-edge spectrum can be achieved by means of ab-initio DFT calculations [95-96], 

but this is beyond the scope of this article. 

The oxygen K-edge spectrum of the light-oxidized Co/M2P is clearly different from the 

spectrum of the electrodeposited CoCat. We attribute the differences between the oxygen 

K-edge spectra of Co/M2P and CoCat to the presence of the M2P ligand in the former. Some 

of the oxygen atoms in the periphery of the complexes are bound only to phosphorus in form 

of oxo- or hydroxo groups, and as a result, the main edge shifts toward lower energies, as in 

the pure M2P ligand.  

 

4. Discussion 

The goal of this study was to gain insight into the atomic structure of water-oxidizing cobalt 

oxide nanoparticles which have been shown previously to be limited in size to 10-60 nm 

radius by employment of a M2P ligand [46]. We performed XAS measurements at the cobalt 

and oxygen absorption edges. The XAS measurements of the cobalt K-edge reveal a cobalt-

oxide core structure similar to that of the electrodeposited CoCat films [75-76,83]. In both 

catalysts, octahedrally coordinated CoIII ions likely form fragments of a layered cobalt oxide 

characterized by extensive di-µ-oxo bridging (edge-sharing of CoO6 octahedra); the presence 

of Co4(µ-O4) cubanes cannot be excluded. The size or intrinsic order of the oxide fragments 
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appears to be higher in the nanoparticles than in the electrodeposited CoCat film. However, 

this is not indicative of a principal structural difference as also for electro-deposited CoCat 

films the cluster size has been found to vary, depending on the anions used during the 

electrodeposition procedure [97]. 

The XAS experiments with hard X-rays at the cobalt K-edge alone provide only insufficient 

information about the binding of the M2P ligand, as the EXAFS peaks related to 

backscattering of the photoelectron by phosphorous are close to the noise level. The XAS 

experiments with soft X-rays at the cobalt L-edge and oxygen K-edge support a specific mode 

of binding of the M2P ligand to the catalytically active Co-oxide core. 

The XAS data, especially the oxygen K-edge spectra, suggest that the M2P ligand is 

coordinated to Co ions also in nanoparticles obtained by light-oxidation of the Co/M2P 

complex. (We cannot exclude definitively that the M2P ligand does not bind to the cobalt 

oxide core at all but forms a separate phase; however, we consider this option to be clearly 

less likely.) Formation of much larger particles (agglomerates) of Co oxide of micrometer size 

upon light illumination is observed when the M2P ligand is not present in the solution [46]. 

This observation in conjunction with the herein reported XAS results suggesting that M2P 

ligands bind preferentially at the edges (periphery) of the Co oxides nanoparticles preventing 

formation of large agglomerates.  

Figure 6 shows an illustration of a possible building block of the colloidal nanoparticles. The 

shown model satisfies the constraints for Co-O, Co-Co and Co-P vectors given by EXAFS 

simulations (Table 1). Note that the representation of the atomic structure in Fig. 6 is highly 

idealized. The real particles exhibit a size of 10-60 nm, as found by light-scattering 

experiments [46]. Thus, it clearly exceeds the size of the planar structure shown in Fig. 6. The 

particles size of 10-60 nm may be explainable by formation of stacks of cobalt-oxide layer 

fragments which are similar to the one shown in Fig. 6. 

The herein identified Co-oxo core structure of the Co/M2P nanoparticles and of the 

electrodeposited CoCat exhibit structural motifs also found in the Mn-Ca core of the oxygen-

evolving complex (OEC) of the biological catalysts in oxygenic photosynthesis (with Co 

instead of Mn). The electrodeposited CoCat, however, is an extended solid-state material. It is 

not well suited for employment in synthetic systems that mimic photosynthetic water 

oxidation by attachment of a photosensitizer to the catalyst. In the biological system (PSII), 

the photosensitizers are chlorophyll molecules, linked by the protein matrix of PSII to the 

Mn4O5Ca core of the OEC [9,11-13]. 
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To mimic the biological process closely, the photosensitizer molecule (in this case 

[Ru(bpy)3]
2+) needs to be bound covalently to the Co-oxide catalysts employing a molecular 

linker. In future systems, a modified M2P ligand can serve as an anchor point for the 

molecular linker. For such biomimetic system the small particle size of the Co/M2P core is of 

high importance for more efficient coupling between the photosensitizer and the nanoparticle, 

as it will allow binding of more electron acceptors per Co atom. Furthermore, it was 

suggested that smaller cluster sizes are beneficial for high water-oxidation activity [97].  

 

5. Conclusions 

The Co/M2P catalytic system studied here is an important step toward development of an 

artificial catalyst, which mimics the water oxidation function of Photosystem II in green 

plants and cyanobacteria. By employing X-ray absorption spectroscopy at multiple absorption 

edges we showed that the catalytically active part of the Co/M2P complex is CoIII oxide with 

a structure similar to the structure reported previously for the electrochemically deposited 

CoCat [75-76]. The M2P molecules bind as ligands at the periphery of the oxide particles, 

preventing in this way their agglomeration upon light oxidation. After appropriate chemical 

modification these M2P ligands can be used to connect directly the photosensitizer to the 

catalytically active particles thus building a system for direct utilization of the solar energy. 

Despite the long way to go to its practical application, the approach described in this article 

could pave the road for development of a colloidal catalytic system for light-driven water 

oxidation.   
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Footnotes 

1H4M2P is the fully protonated methylenediphosphonic acid (H2O3PCH2PO3H2). At pH 7 the 

HM2P3- and H2M2P2- forms dominate, for brevity M2P will be used to indicate all 

protonation states.  
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Figures 

 

Figure 1. XANES spectra measured at the cobalt K-edge. The spectra of Co/M2P in the 

precursor complex and upon light oxidation are compared to the spectra of the 

electrodeposited CoCat and two reference compounds, CoII
3(PO4)2 and LiCoIIIO2. The 

position of the edge rise is indicative for the mean oxidation state of the Co ions.  
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Figure 2. Fourier transformed EXAFS spectra measured at the cobalt K-edge (from top to 

bottom: LiCoO2, CoCat, light oxidized Co/M2P, Co/M2P precursor). Simulations are shown 

as thin black lines (see Table 1 for the simulation parameters; the simulation parameters for 

the LiCoO2 are given in the Supplementary Material). The structural motifs corresponding to 

main peaks in the Fourier transformed EXAFS spectra are also shown. 
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Figure 3. Co-M2P binding motifs. (a) H4M2P, (b) possible CoIIM2P complex and  

coordination geometry around Co2+ in the Co/M2P precursor based on EXAFS data and the 

structure of Co(M2P)(NH3)4Cl [99]. The O atoms coordinated to the Co atom could be water 

or hydroxyl ligands. (c) and (d) Co-M2P chains observed in two CoIIM2P network structures 

[69]. In (c) the axial O atom on the Co is part of an M2P ligand in a neighboring Co-M2P 

chain. This structure features 5-coordinated Co which is not supported by the XAS data of the 

Co/M2P precursor. 
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Figure 4. Co L-edge spectra. From top to bottom: LiCoIIIO2, CoCat, calculated CoIII/M2P 

spectrum, Co/M2P light-oxidized (experimental spectrum), Co/M2P precursor, CoIIO. The 

calculated spectrum was obtained by subtracting the experimental spectrum of the Co/M2P 

precursor from the spectrum of the light-oxidized Co/M2P sample (further detail is provided 

in the text). The dotted lines indicate the positions of the L2- and L3-edges of CoIII and thus 

help to identify a shift of these positions for CoII ions. 
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Figure 5. XANES spectra measured at the oxygen K-edge. The spectrum of the M2P ligand is 

compared to the spectrum of the K2HPO4 reference and to the spectrum of the Co/M2P 

precursor and Co/M2P after light oxidation. The oxygen K-edge spectrum of the 

electrodeposited CoCat is also shown. 

 



 26

 

Figure 6. Possible structural motif deduced from XAS data for a Co/M2P nanoparticle as 

obtained by light-oxidation of Co/M2P precursor complexes (CoO6 are presented as octahedra 

and M2P ligands are presented as dimmers of PO3 tetrahedra interconnected by a carbon 

atom).  

 

 



Tables 

 

Table 1. Simulation results of cobalt K-edge EXAFS
a
 

 CoM2P 

precursor 

(darkness) 

 CoM2P 

oxidized 

(light) 

 CoCat  

 R (Å) N R (Å) N R (Å) N 

Co-O 2.1±0.01 6.1±0.5 1.90±0.01 5.8±0.3 1.89±0.01 5.9±0.2 

Co-Co n/a n/a 2.81±0.01 3.5±0.2 2.80±0.01 3.4±0.2 

Co-P 3.4±0.04 1.6±0.9 3.6±0.04 1.2±0.8 n/a n/a 

Co-Co n/a n/a 5.6±0.02 1.1±0.5 5.62±0.04 0.5±0.3 
a
= 63×10

-3
 Å for all shells and all simulations. Error calculation as in ref [98]. 

Table 1



2H2O 

4H+ 

4e- 
O2 

M2P 

Co oxide 

Graphical Abstract



 atomic structure of water-oxidizing Co oxide/methylenediphosphonate 

nanoparticles by X-ray absorption spectroscopy 

 methylenediphosphonate prevents particle agglomeration during the catalytic 

reaction  

 water is oxidized and oxygen is produced in a process directly driven by light 

 system shows prospects for direct linking of a photosensitizer 
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