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The electronic structure of the interface between the boron-doped oxygenated amorphous silicon

“window layer” (a-SiOx:H(B)) and aluminum-doped zinc oxide (ZnO:Al) was investigated using

hard x-ray photoelectron spectroscopy and compared to that of the boron-doped microcrystalline

silicon (lc-Si:H(B))/ZnO:Al interface. The corresponding valence band offsets have been determined

to be (�2.87 6 0.27) eV and (�3.37 6 0.27) eV, respectively. A lower tunnel junction barrier height

at the lc-Si:H(B)/ZnO:Al interface compared to that at the a-SiOx:H(B)/ZnO:Al interface is

found and linked to the higher device performances in cells where a lc-Si:H(B) buffer between the

a-Si:H p-i-n absorber stack and the ZnO:Al contact is employed. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4813448]

In the advancing field of thin-film photovoltaics (PV),

the cost-efficient production methods associated with hydro-

genated amorphous silicon (a-Si:H) technology ensures that

it will remain a major part of a consolidating PV market.1

The highest efficiencies in amorphous silicon p-i-n solar

cells are currently achieved with ZnO-based transparent con-

ductive oxide (TCO) as a front contact.2 Previous (mainly

empirical) work has shown that the cell efficiency can be

increased significantly3,4 by introducing a p-type microcrys-

talline Si (lc-Si:H) buffer between the a-Si:H p-i-n layer

stack and aluminum-doped ZnO (ZnO:Al) TCO (see Fig. 1).

This suggests an unfavorable electronic p-type a-Si:H/

ZnO:Al interface structure as a limiting factor in related so-

lar cell devices. State-of-the-art a-Si:H p-i-n solar cells addi-

tionally employ a p-type oxygenated a-Si:H (a-SiOx:H(B))

emitter to enhance transmission through this “window

layer”5 (also depicted in Fig. 1).

In order to examine the Si/ZnO contact properties and

explain the observed influence of the lc-Si:H buffer layer on

cell performance, hard x-ray photoelectron spectroscopy

(HAXPES) was utilized to probe the electronic structure of the

buried interface between ZnO:Al TCO and boron-doped

a-SiOx:H or lc-Si:H layers. By varying the x-ray excitation

energy and Si thicknesses, different portions of the layer stack

can be probed,6 allowing the buried interface to be studied

while minimizing the influence of surface contaminants/

oxidation on the measurements, as we discussed in some detail

in previous work.6 It was shown using surface-sensitive Si 1s

spectra that a pronounced downward band bending is presum-

ably limited to the very surface region of the investigated

a-SiOx:H(B)/ZnO:Al and lc-Si:H(B)/ZnO:Al layer stacks. To

avoid this unwanted influence of the surface on the determina-

tion of the electronic interface structure, the current study

focuses on more bulk-sensitive photoemission lines.

ZnO:Al layers were rf sputter-deposited onto Corning

Eagle
VR

XG glass from a planar ceramic ZnO:Al2O3 (99:1

wt/wt%) target in an in-line sputtering system using a sub-

strate temperature of 300 �C and 0.1 Pa pure argon.8 Using

plasma-enhanced chemical vapor deposition (PECVD), thin,

boron-doped, hydrogenated, and oxygenated amorphous

[a-SiOx:H(B)] and microcrystalline [lc-Si:H(B)] layers were

deposited onto the ZnO:Al TCO using standard conditions

for the preparation of p-type Si layers in superstrate solar

cells.9 Mixtures of SiH4, B(CH3)3, H2 (and CO2) precursor

gases were used at flow rates of 20.8/0.35/120(/42) sccm

FIG. 1. Schematic of a glass/ZnO:Al/p-i-n a-Si:H/ZnO:Al/Ag thin-film solar

cell with a lc-Si:H(B) buffer layer and a p-type a-SiOx:H window (modified

from Ref. 7).

0003-6951/2013/103(2)/023903/5/$30.00 VC 2013 AIP Publishing LLC103, 023903-1
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(standard cubic centimeters per minute) and 2.7/0.012/1010

sccm for the deposition of a-SiOx:H(B) and lc-Si:H(B)

layers, respectively. By varying the PECVD process time,

“thin” layers with thicknesses of 12.8 nm [a-SiOx:H(B)] or

13.2 nm [lc-Si:H(B)] were grown, as well as “thick” samples

with 30.4 nm [a-SiOx:H(B)] or 38.5 nm [lc-Si:H(B)] layers.

The thicknesses were determined based on the attenuation of

Zn-related photoemission lines and verified by spectral

ellipsometry measurements.6 HAXPES measurements were

performed at the bending magnet Beamline KMC-1

(Ref. 10) (equipped with a double-crystal monochromator)

of the BESSY II synchrotron light source using the HIKE

endstation11 and at BL15XU12 of SPring-8 (equipped with a

helical undulator and a double-crystal monochromator). At

both beamlines a VG SCIENTA R4000 hemispherical ana-

lyzer is used for electron detection. BL15XU delivers higher

x-ray intensities and HAXPES energy resolution.13 Initial

investigations were performed on some selected samples at

SPring-8; however, as the complete sample set was charac-

terized at KMC-1, following discussions and spectra are

based on data acquired at BESSY II (if not stated otherwise).

Energy scales were calibrated using Au 4f core level

and Au Fermi edge (EF) measurements. Stated energy-scale

error bars were estimated based on the beamline resolution,10

the standard deviation of respective curve fits and data qual-

ity (i.e., signal-to-noise ratio). Valence band (VB) and core

level spectra were measured for every sample at various ex-

citation energies.

Figure 2 shows the VB spectra of the thick (30.4 nm)

a-SiOx:H(B) layer, the thick (38.5 nm) lc-Si:H(B) layer

(both on ZnO:Al) and the bare ZnO:Al TCO. For the TCO

both the spectra acquired at BESSY II (�) and SPring-8

(-r-) are shown. The spectra measured at BESSY II were

normalized to the maximum intensity in the �9 to 0 eV

range. The TCO spectrum taken at SPring-8 was scaled such

that the integral intensities in that region are equal for the

spectra taken at BESSY II and SPring-8. For both thin-film

Si samples the region between �5 and �1 eV can be

ascribed to the valence states of the Si capping layer.14 The

valence band maximum (VBM) of the thick lc-Si:H(B) layer

is at lower binding energy, i.e., closer to EF than that of

a-SiOx:H(B). Estimating the VBM value15 from the intersec-

tion of the linear approximation of the leading edge of the

VB spectrum and the background results in VBM values of

(�0.77 6 0.10) eV for a-SiOx:H(B) and (�0.25 6 0.10) eV

for lc-Si:H(B). Note that in Ref. 6, we reported a pro-

nounced downward band bending presumably limited to the

very surface of the same SiOx:H(B) and lc-Si:H(B) layers

studied here. This effect was found to be more pronounced

for lc-Si:H(B). Despite the significantly higher bulk

sensitivity of the VB measurements (compared to the high-

binding energy Si 1s core levels studied in Ref. 6), a poten-

tial impact of the observed downward surface band bending6

on the VBM must be considered. The significant “tail”

region which can be observed for the lc-Si:H(B) samples

might thus be explained by this more pronounced surface

band bending. Downward surface band bending means that

the VBM moves away from EF nearer the surface, and there-

fore we take the very leading edge of the measured VBM

region as being representative of the “real” VBM.

The VB spectra of the bare ZnO:Al TCO exhibit (for

both the BESSY II and SPring-8 data) an onset at

(�3.65 6 0.15) eV. The optical band gap for undoped ZnO is

reported to be Eg¼ 3.3 eV (Refs. 16 and 17) which is signifi-

cantly lower than the derived VBM. However, highly doped

ZnO:Al exhibits a Burstein-Moss shift of EF into the conduc-

tion band (CB),21,22 resulting in optical band gap values of

up to 3.8 eV.23 We detect significant spectral intensity above

the VBM near EF. The inset of Fig. 2 shows a magnification

of the respective range of the higher-resolution spectrum13

taken at SPring-8. In a first approximation24 the asymmetry

of this contribution was accounted for by a fit using two

Voigt profiles and a linear background. The shape of the

peak is well-represented in this way; the fit is optimized

when the main peak (m) is centered at (�0.26 6 0.10) eV

and the secondary peak (s) is at (�0.8 6 0.2) eV. The separa-

tion between the main peak and the previously determined

VBM [DE¼ (3.39 6 0.14) eV] corresponds (within the error

bar) to the reported optical band gap of undoped ZnO

(Eg¼ 3.3 eV,16,17 as indicated in the inset of Fig. 2).

The ratio of the intensity of the main peak (Im) of the

above-VBM feature to that of the O 2p VB states (IVB, in the

range of �9 eV to �4 eV) Im/IVB is (2.1 6 0.5)&. Note that as

in Refs. 25 and 26, we assume similar photoionization cross

FIG. 2. HAXPES spectra (recorded with excitation energies of 3.0 and

3.2 keV) of the valence band region of the 30.4 nm thick a-SiOx:H(B) (top

spectrum, �), the 38.5 nm thick lc-Si:H(B) layer (center spectrum, �), and

the bare ZnO:Al TCO (bottom spectra). Note that for the last both the

BESSY II (�) and SPring-8 (-�-) data are presented. The VBMs are deter-

mined by linear approximation of the leading edge (red lines); the experi-

mental uncertainty of the derived VBM values is 60.10 eV for the Si and

60.15 eV for the ZnO:Al data. The inset magnifies the spectral region

around the Fermi edge, EF, of the SPring-8 ZnO:Al TCO data on the same

energy scale. A two-component fit (red curve) together with the residuum is

also shown. The optical band gap (Refs. 16 and 17) Eg¼ 3.3 eV, of undoped

ZnO and 2.6 eV (representing the prominent “blue-green” luminescence

reported in literature (Refs. 18–20) are indicated relative to VBM. Note that

the respective arrows do not represent the actual distance to the main (m)

and secondary (s) above-VBM feature.

023903-2 Gerlach et al. Appl. Phys. Lett. 103, 023903 (2013)
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sections for the above-VBM and O 2p VB. The VB electron

density of ZnO can be calculated by nVB ¼ 6� q� Na=M
[with the density of ZnO q¼ 5.68 g cm�3,27 the Avogadro con-

stant Na¼ 6.02� 1023 mol�1, the number of valence electrons

(6) and the molar mass of ZnO M¼ 81.39 g mol�1]27 to be

2.52� 1023 cm�3. Hall measurements of our ZnO:Al thin films

typically indicate carrier concentrations of ne¼ (5 6 1)

� 1020 cm�3 (Ref. 28), and thus the corresponding ne/nVB ratio

is (2.0 6 0.5)&. Comparing ne/nVB with the computed Im/IVB

intensity ratio reveals an excellent agreement (note that

Imþs/IVB is significantly larger),29 suggesting that the main

peak contribution (m) of the above-VBM feature exclusively

represents occupied conduction band states.24

Occupied states within the band gap of degenerated

ZnO:Al films and for undoped ZnO were previously

observed using HAXPES by Li et al.;25 the intensity of the

above-VBM features in the HAXPES measurements for the

undoped ZnO were significantly lower, and all were attrib-

uted to oxygen vacancies (VO). For ZnO (Refs. 18 and 19)

and ZnO:Al (Ref. 20) a prominent 2.6 eV (blue-green) lumi-

nescence is reported in literature. The origin of this lumines-

cence is still under debate––VO states and/or zinc vacancies

are the most likely candidates.30 The 2.6 eV luminescence

coincides (within the experimental uncertainty) with a transi-

tion between the VBM and the secondary peak of our above-

VBM feature: 3.65 eV – 0.8 eV¼ (2.85 6 0.22) eV (see inset

of Fig. 2). Considering this, the observed secondary feature

(s) may be attributable to localized (trapped) electrons in

defect states within the gap. Thus, we would interpret the

above-VBM feature as a superposition of occupied conduc-

tion band [! feature (m)] and defect-related [! feature (s)]

states. This explanation can be reconciled with the conclu-

sions of Li et al.25 if the doping/charge carrier concentrations

of the studied ZnO:Al material differ significantly (i.e.,

higher in the current case).

In a first approximation, the separations between the

VBM of the TCO and the Si cover layers provide estimates

of the valence band offsets (VBO) at the respective interfa-

ces [neglecting any impact of an interface induced band

bending (IIBB)]. For the a-SiOx:H(B)/ZnO:Al and the lc-

Si:H(B)/ZnO:Al interfaces, we thus estimate VBO values of

(�2.88 6 0.18) eV and (�3.40 6 0.18) eV, respectively.

To account for any IIBB, we used the procedure

described in Ref. 31. The Si 2s and Zn 3s core level spectra

of the thin (bottom panels) and thick (top panels) Si samples

and the bare ZnO:Al (center panels) were measured and are

shown in Fig. 3. For the thick Si samples only a Si 2s contri-

bution can be observed, while for the ZnO:Al only a Zn 3s

contribution is detectable. The thin Si samples show a domi-

nant Si 2s line, but close inspection reveals an additional

contribution from Zn 3s photoemission from the buried

ZnO:Al substrate. The Si 2s line exhibits a shoulder at higher

binding energies that is more pronounced for thin samples

and a-SiOx:H(B). For a more detailed evaluation, all spectra

were fitted simultaneously with two Voigt profiles for Si 2s

and one single Voigt profile for Zn 3s including a linear

FIG. 3. Si 2s and Zn 3s HAXPES

spectra of a-SiOx:H(B) (left panels)

and lc-Si:H(B) (right panels) meas-

ured at 2.1 keV excitation energy. The

spectra of the thinnest (bottom panel)

and thickest (top panel) Si layers are

compared to that of the bare ZnO:Al

substrate (identical spectra; center pan-

els). The Si 2s and Zn 3s peaks were

fitted with Voigt profiles including a

linear background. Dots represent the

measured data and lines the fit (red),

individual contributions (gray), and

residua (green). The insets show a

magnification of the Zn 3s region for

the thin samples. Fitted line positions

are indicated and values for the Si

2s–Zn 3s energy difference are given

(60.14 eV).
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background. Comparing the binding energies with reference

data,32 the high and low binding energy Si 2s components

can be ascribed to Si-Ox and Si-Si bonds, respectively, and

the Zn 3s photoemission line can be attributed to ZnO. In the

case of lc-Si:H(B), the presence of Si-Ox bonds can mainly

be attributed to surface oxidization. For the a-SiOx:H(B)

layer a significantly higher Si-Ox contribution is present due

to the deliberate material oxygenation. From the fit of the

thick a-SiOx:H(B) samples a Si-Ox/Si-Si intensity fraction of

(26 6 2)% can be derived. However, this fraction must be

considered a higher-bound approximation of the “true” Si-Ox

bulk contribution because of the impact of surface oxides on

the intensity ratio. Note that both thin Si samples exhibit a

higher Si-Ox contribution, presumably due to the higher sur-

face/bulk ratio and, potentially, the previously observed oxi-

dation at the Si/ZnO:Al interface.6,33,34

The IIBB is determined by subtracting the binding energy

difference between the core levels of the capping layer

and the substrate of the thin silicon sample [e.g., ESi 2s

(12.8 nm a-SiOx:H(B)) – EZn 3s (12.8 nm a-SiOx:H(B))¼ (10.30

6 0.14) eV] from the respective energy difference of the cover

layer core level of a thick silicon layer and the substrate core

level of the bare substrate reference [e.g., ESi 2s (30.4 nm

a-SiOx:H(B)) – EZn 3s (ZnO:Al)¼ (10.29 6 0.14) eV]. We cal-

culate an IIBB of (0.01 6 0.20) eV for the a-SiOx:H(B)/ZnO:Al

and (0.03 6 0.20) eV for the lc-Si:H(B)/ZnO:Al layer stack.

Subtracting the IIBB from the difference of the

VBM values of Si and ZnO:Al finally results in the VBO

of (�2.87 6 0.27) eV for the a-SiOx:H(B)/ZnO:Al and

(�3.37 6 0.27) eV for the lc-Si:H(B)/ZnO:Al interface. A

schematic presentation of the resulting electronic structure of

the Si/ZnO:Al interfaces is shown in Fig. 4. As the electrical

contact at this interface is achieved through a tunnel junction,35

not the derived VBO values but rather the energetic distance

between Si VBM and ZnO:Al CB minimum, CBM (i.e., the

tunnel junction barrier height, eVb), determines the electronic

quality of this contact. To approximate the ZnO:Al CBM posi-

tion, the optical band gap of the undoped ZnO

(Eg¼ 3.3 eV)16,17 was used and added to the corresponding

VBM value. eVb can then be estimated by adding the (nega-

tive) VBO to Eg. We find a lower barrier height for the

lc-Si:H(B)/ZnO:Al interface [(�0.07 6 0.27) eV] than for the

a-SiOx:H(B)/ZnO:Al interface [(0.43 6 0.27) eV]. Moreover,

the lower doping efficiency found in amorphous silicon36 com-

pared to that in microcrystalline silicon could result in a much

larger depletion width of the space charge region at the inter-

face and therefore a larger tunnel distance for holes. Thus,

charge transport across the Si/ZnO tunnel junction is energeti-

cally more favorable for the lc-Si:H(B)/ZnO:Al than for the a-

SiOx:H(B)/ZnO:Al interface.

The practical effect of such a difference in a solar cell

device is that the photogenerated holes are more likely to

tunnel into the TCO front contact (where they can contribute

to the current) if a p-type lc-Si:H(B) is used as a buffer

between the a-Si:H p-i-n cell and the ZnO:Al TCO. This

finding might explain the underlying mechanism for the

empirically found better performance of a-Si:H p-i-n based

solar cells employing a lc-Si:H(B) buffer.

In summary, HAXPES valence band spectra revealed

that the investigated ZnO:Al layer is degenerated, with the

Fermi level lying within the conduction band. The valence

band offsets at the a-SiOx:H(B)/ZnO:Al and the lc-Si:H(B)/

ZnO:Al interfaces were found to be (�2.87 6 0.27) eV and

(�3.37 6 0.27) eV, respectively. Using the measured posi-

tion of the valence band maximum of ZnO:Al and the

reported optical band gap energy of undoped ZnO, the posi-

tion of the conduction band minimum of the ZnO:Al TCO

was approximated. Together with the measured valence band

offsets, the tunnel junction barrier height between the va-

lence band maximum of the silicon layers and the conduction

band minimum of the ZnO:Al TCO was estimated. The

lower barrier height for the lc-Si:H(B)/ZnO:Al interface cor-

responds to the previously reported3,4 increase in solar cell

efficiency when a lc-Si:H(B) buffer is introduced between

a-Si:H p-i-n absorber stack and ZnO:Al front contact. Based

on the methods and findings described here, it is expected

that further knowledge-based optimization of the p-type

a-Si:H/ZnO:Al interface will result in higher efficiencies of

amorphous Si thin-film PV devices.
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