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In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron
dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling
of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave
functions sampling the density matrix are represented in the basis of singly excited configuration
state functions. The interaction with an external laser field is treated variationally and the response of
the electronic density is included to all orders in this basis. The coupling to an external environment
is included via relaxation operators inducing transition between the configuration state functions.
Single electron ionization is represented by irreversible transition operators from the ionizing states
to an auxiliary continuum state. The method finds its efficiency in the representation of the oper-
ators in the interaction picture, where the resolution-of-identity is used to reduce the size of the
Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration
interaction singles level or from a time-dependent density functional theory reference calculation.
The latter offers an alternative to explicitly time-dependent density functional theory which has the
advantage of remaining strictly valid for strong field excitations while improving the description
of the correlation as compared to configuration interaction singles. The method is tested on a
well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4948646]

I. INTRODUCTION

Ultrafast electron dynamics in intense laser fields is a topic
of increasing experimental importance.1–9 Understanding
the transient behavior of electrons on their natural time
scale is central to, e.g., predicting spectroscopic properties
of molecules. Electronic excitations have already been
used to induce nuclear rearrangements and to observe
chemical reactions. As first demonstrated in Zewail’s seminal
experiments,10,11 many electronic processes occur on a
femtosecond (fs, 1 fs = 10−15 s) time scale. In recent years, the
attosecond (as, 1 as = 10−18 s) barrier has been breached,12,13

providing a wealth of experimental information that requires
careful theoretical analysis.

From a theoretical perspective, great progress has
been made over the last decade in the description of
ultrafast electron dynamics.14–49 A popular solution is
offered by the explicitly time-dependent density functional
theory (TDDFT).50 Despite its computational efficiency and
transparent interpretation, it was shown to suffer from
shortcomings when dealing with strong field excitations,51,52

where non-linear effects can lead to false absorption spectra,
while some workarounds have been proposed.53 On the other
hand, wave function based approaches such as time-dependent
Hartree-Fock (HF)14 and multi-configuration time-dependent
Hartree-Fock25,26,30 appear promising in that respect despite
the obvious drawback stemming from the exponential scaling.

Our method of choice builds on the configuration interac-
tion (CI) methodology,54,55 which was recently extended and
applied to the explicitly time-dependent case.23,31,41,42,56–61 In

the time-dependent configuration interaction (TDCI) method,
the CI eigenstates calculated at a given level (CI Singles,
CI Doubles, etc.) are used as a dynamical basis to represent
and to propagate the N-electron wave function. The major
limitation of this method is its high computational cost,
restricting the description of electron correlation to at most
perturbative doubles for medium-sized molecular systems.
Fortunately, the physics of many interesting ultrafast processes
is dictated by single excitations. As was recognized by Sonk
and Schlegel,62 TDCI only requires the energies of the system
eigenstates and the associated transition dipole moments,
which can be directly obtained also from linear response
time-dependent density functional theory. The physics of the
electron dynamics can thus be interpreted in terms of single
excitations, while alternative choices of density functional
can yield a better treatment of electron correlation. In this
DFT-based TDCI formalism, spurious non-linear effects from
TDDFT are alleviated at the cost of using a very large
dynamical basis of eigenstates. Computing a large number of
N-electron eigenstates represents an important bottleneck of
the method and can rapidly become intractable for medium-
size systems.

To allow investigation of larger systems, we introduced
a reduced density matrix variant63 of the TDCI method
building on a system-bath separation, which we dubbed ρ-
TDCI.40,45,64,65 In this approach, only the explicit evolution of
the electron density matrix of the relevant part of the system
embedded in the surrounding environments is considered
explicitly, leading to a reduced-dimensionality dissipative-
type dynamics. The method was extended to treat ionizing
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systems using a heuristic one-electron rate model,45 in which
the loss of norm in the electron density is interpreted as
the time-dependent ionization probability. To reduce the
computational cost associated with storing and propagating
the density matrix, a dissipative system can alternatively be
treated using stochastic wave function approaches.66–73 The
evolution of the reduced density matrix is sampled by a
collection of wave functions evolving according to stochastic
differential equations. These define a probability distribution
on Hilbert space, which yields an estimate of the reduced
density matrix upon incoherent averaging.72,74 To ensure that
the waiting-time distribution are sampled properly, the scheme
requires that the stochastic wave packets remain normalized
at all times.

In this contribution, we propose a norm-conserving
stochastic propagation scheme for simulating N-electron
dynamics of dissipative, ionizing systems based on the
time-dependent configuration interaction formalism. The
stochastic wave packets are represented in a complete basis
of configuration state functions, which yields the most
accurate variational description possible of the field-matter
interaction. In the interaction picture, the exponential of the
Hamiltonian operator describing the coherent dynamics of
the system at all times is treated using the resolution-of-
identity approximation. This allows to reduce significantly
the size of the eigenstate basis required for the dynamical
simulation while not compromising the linear variational
description of the laser-molecule interaction. Ionization
is mediated by transition operators to an auxiliary state
belonging to the ionized continuum at a rate determined by a
modified kinematic one-electron model. The method retains
the desirable properties of the TDCI method and satisfies the
norm-conserving requirement of Monte Carlo wave packet
methods.75

This paper is organized as follows: In Sec. II, the
stochastic TDCI scheme is presented. In Sec. III, the method is
benchmarked using LiCN as a test system. Sec. IV summarizes
the properties of the method. Unless stated otherwise, atomic
units are used throughout the paper (~ = me = e = 4πε0 = 1).
They are, however, sometimes mentioned for clarity.

II. THEORY

A. Stochastic density matrix for dissipative
N -electron dynamics

The reduced density matrix (RDM) formalism is a
potentially very efficient tool to study laser-induced many-
electron dynamics for systems in contact with an environment.
The evolution of the RDM operator associated with an
N-electron system, ρ̂(t), obeys the Liouville-von Neumann
equation

∂ ρ̂(t)
∂t
= −i[Ĥ(t), ρ̂(t)] + ˆ̂LD ρ̂(t), (1)

where ˆ̂LD is the dissipative Liouvillian. The first term on the
right-hand-side describes the coherent evolution of the system
under the influence of the time-dependent Hamiltonian, Ĥ(t).
For the simulation of laser-driven excitations, it is convenient

to write the time-dependent Hamiltonian in the interaction
picture, which in the semi-classical dipole approximation
reads

Ĥ(t) = −e+i Ĥel t/~µ̂F(t)e−i Ĥel t/~. (2)

The dipole operator is defined as µ̂ = −
N
i

eri +
NA
A

ZAeRA,

and F(t) denotes a time-dependent external electric field. The
field-free electronic Hamiltonian Ĥel for a system composed
of N electrons and NA nuclei can be written in the clamped
nuclei approximation as

Ĥel = −
1
2

N
i=1

∇2
i −

N
i=1

NA
A=1

ZA

ri A
+

N
i=1

N
j>i

1
ri j

, (3)

where ri j is the distance between the electrons i and j,
and ri A is the distance between the electron i and the
nucleus A with charge ZA. The last term in Eq. (1) is a
Liouvillian superoperator ˆ̂LD describing the dissipation of
the energy and phase in the system due to its contact with
the surroundings. The latter remains in thermal equilibrium
at all times and its influence on the system dynamics can be
revealed, e.g., by tracing out the associated degrees of freedom
from the equations of motion of the total system+bath.75 It
will be shown in Section II C how it can also be used to
describe photoionization processes.

The evolution of the RDM can be conveniently simulated
from incoherent averaging over an ensemble of Ntr wave
functions

ρ̂(t) = 1
Ntr

Ntr
j=1

Ψj(t)Ψ∗j(t). (4)

Each quantum trajectory Ψj(t) evolves according to a
stochastic Schrödinger equation (SSE), which usually takes
either the form of a quantum jump process67,70,73–75 or of
quantum state diffusion.66,71 Propagation of the stochastic
density matrix (SDM) alleviates its explicit storage and scales
linearly with the number of considered trajectories, i.e., NtrN2

tot
for stochastic wave packets of length Ntot, compared to N3

tot for
the explicit RDM. If the number of stochastic wave functions
to characterize the statistical behavior of the RDM is smaller
than the size of the basis, the computational cost of such the
SDM propagation can be reduced significantly.

For Markovian dynamics, the system can be understood as
following a piecewise deterministic evolution, with occasional
random jumps that are induced by coupling to the environment
(see, e.g., Ref. 75 and references therein). In this formal
unravelling of the Lindblad master equation, a swarm of wave
functions is incremented over a short time interval dt by
independent stochastic equations

|dΨj(t)⟩ = − i
~
*
,
ĤNL(t) + i~

2


k

γk∥Ĉk |Ψj(t)⟩∥2+
-
|Ψj(t)⟩dt

+

k

*
,

Ĉk |Ψj⟩
∥Ĉk |Ψj(t)⟩∥2

− |Ψj(t)⟩+
-

dξk(t). (5)

Here, Ĉk is a so-called Lindblad operator representing the kth
dissipative channel with rate γk. The Poisson increment dξk(t)
must satisfy the relations
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dξ j(t)dξk(t) = δ jkdξk(t),
E[dξk(t)] = γk∥Ĉk |Ψj(t)⟩∥2dt .

(6)

The first line describes the fact the stochastic processes are
independent (i.e., uncorrelated) and E[dξk(t)] stands for the
expectation value of the Poisson increment. The non-linear
operator ĤNL is defined by the field-free Hamiltonian in the
interaction representation (Eq. (2)) and the operators Ĉk, i.e.,

ĤNL(t) = −e+i Ĥel t/~µ̂Fe−i Ĥel t/~ − i~
2


k

γkĈ
†
k
Ĉk . (7)

In the following, the first term on the right-hand-side
will be labeled “coherent,” as opposed to the term
i~
2

k
γkĈ

†
k
Ĉk representing incoherent dissipation. In an

efficient implementation of Eq. (5), each wave function
follows a deterministic evolution driven by the Hamiltonian
ĤNL (Eq. (7)) leading to a loss of norm in the wave packet
that can be related to the waiting time distribution before a
jump occurs in the quantum trajectory.75 This loss of norm
is then compared to a random number, in order to decide
if a certain trajectory undergoes such an event (relaxation,
excitation, photoionization, etc.). In the next step, the wave
function is either renormalized (if no jump occurred) or
jumps to a statistically selected random state. This approach
is sometimes called the Monte Carlo wave packet method
and is described in more detail elsewhere.74 In the limit of
Ntr → ∞, the stochastic density matrix reproduces exactly the
Markovian evolution of the RDM following the Liouville-von
Neumann equation in its Lindblad form.75

B. The resolution-of-identity stochastic
time-dependent configuration interaction
(RI-sTDCI) method

In this work, the dissipative many-electron dynamics is
described within the time-dependent configuration interaction
framework. In its original formulation,23,40 the TDCI method
represents the RDM operator in the basis of approximate
eigenfunctions of the field-free Hamiltonian, although
alternate basis representations have been also proposed
for wave packet dynamics.76,77 The solutions of the time-
independent Hamiltonian, Eq. (3), are obtained as linear
combinations of spin-adapted excited Slater determinants,
or configuration state functions (CSFs). The excited CSFs
are typically constructed from a reference Hartree-Fock
calculation for the ground state of Eq. (3) and aim at
systematically and variationally build in correlation in the
N-electron eigenstates. The correlated eigenstates obtained
by diagonalization of the Hamiltonian matrix at a chosen
level of theory (CI Singles, CI Doubles, . . ., Full CI) are then
used as the dynamical basis. CI can be in principle improved
systematically, although these expansions can rapidly become
prohibitively expensive.

The variational convergence of laser-molecule interaction
Hamiltonian Eq. (7) can be very slow in strong electric
fields. For this reason, a large number of CI eigenstates are
required in the TDCI expansion, which comes at the cost
of computing matrix elements of the field-free Hamiltonian
(Eq. (3)), followed by a costly diagonalization. To ensure

variational convergence of the field-molecule interaction while
reducing the computational cost associated with generating the
dynamical basis, the Hamiltonian (Eq. (2)) can be alternatively
represented in the basis of singly excited configuration state
functions. For a molecule in a given spin state σ, the jth
time-dependent stochastic CIS wave packets can be defined
as

Ψ
(σ)
j (t) = D0, j(t)Ψ(σ)

0 +


a∈occ.


r ∈virt.

Dr
a, j(t)Ψr,(σ)

a , (8)

with {D0, j(t),Dr
a, j(t)} as the expansion coefficients and

{Ψ(σ)
0 ;Ψr,(σ)

a } as the configuration space functions (CSFs).78

This choice of basis is sufficient to describe the physics of
all one-electron dynamical processes, while providing only
an approximate description of correlation. In this basis, the
coherent part of the time-dependent Hamiltonian matrix takes
the form

H(t) = −


q=x, y,z

Fq(t) exp
(
iH

el
t
)
µ(q) exp

(
−iH

el
t
)
, (9)

where µ(q) denotes the qth component of the dipole moment
matrix, which can be trivially computed in the CSF basis
using the Slater-Condon rules. Since the total number of CSFs
can become intractable, computational saving is obtained by
inserting an incomplete, yet sufficiently large set of auxiliary
functions in Eq. (9)

H(t) ≃ −


q=x, y,z

Fq(t) U U† exp
(
iH

el
t
)

U U†µ(q)

×U U† exp
(
−iH

el
t
)

U U†, (10)

where U =
�
u0,u2, . . . ,uM

�
is a rectangular matrix containing

M ≤ N auxiliary vectors. This idea is sometimes called
resolution-of-identity in the context of density fitting of
electronic Coulomb integrals.79–82 Here, the N-electron wave
packets evolve mostly on the ground and other excited bound
states. All excited states above IP ionize rapidly and are only
involved in the coherent evolution of the N-electron system
to mediate indirect coupling with the continuum via multi-
photon excitations. Accordingly, the low-lying eigenstates
supported by the field-free Hamiltonian, H

el
um = Emum, up

to a given energy cutoff are expected to capture the physics
of the coherent dynamics up to this energy. Note that any
other subset of eigenvectors could be used to describe higher
quasi-resonant excitations. The evaluation of the propagator is
also simplified in this basis, as the exponential terms become
diagonal, i.e.,

H(t) ≃ −


q=x, y,z

Fq(t) U exp
(
iE

el
t
)

U†µ(q)U

× exp
(
−iE

el
t
)

U†, (11)

where E
el

is an M × M diagonal matrix of the energies
associated with the M lowest-lying eigenstates of the field-
free Hamiltonian. Propagation of a wave function requires the
application of the Hamiltonian matrix appearing in Eq. (11)
on a vector representing the state of the system at time
t. Provided the product of each matrix on a vector of
dimension Ntot is performed sequentially, the operation of the
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propagator in Eq. (11) thus scales as 4Ntot × M + 2M2 + N2
tot.

This products thus scales roughly as ∼N2
tot since the CSF basis

is generally much larger than the auxiliary eigenstate basis. In
Section III, it will be shown that great computational savings
can be expected from the resolution-of-identity without
compromising the quality of the dynamical simulations.

A great advantage of the proposed method is that it can
construct the TDCI propagator solely from the output of any
quantum chemistry program, as only the energies of selected
eigenstates and the associated eigenvectors are required. The
latter are necessary to compute the dipole moment matrix in
Eq. (11). Since CI Singles offers only a minimal description of
electron correlation, it can be useful to investigate alternative
quantum chemical methods to include correlation in the wave
functions without departing from the single excitation picture,
as was already recognized by others.62 Hence, we propose
computing the energies of excited states using linear response
time-dependent density functional theory and extract the
associated eigenfunctions from a correspondence principle
based on the Tamm-Dancoff approximation. By doing so,
the matrix elements of the dipole matrix can be computed
as in the CI Singles method while propagator, Eq. (11),
remains unchanged. This procedure gives access to a wide
range of exchange-correlation functionals that can be chosen
to improve the quality of the excitation spectrum, based on
conventional knowledge on their performance for a given type
of system.

C. Treatment of dissipation and photoionization

As discussed in Section II A, the stochastic propagator,
Eq. (7), can be used to represent Markovian dissipative
dynamics of the Lindblad type. The dissipative Liouvillian
in parent equation, Eq. (1), takes the form

ˆ̂LD ρ̂(t) = −1
2


k

([Ĉk ρ̂(t),Ĉ†k] + [Ĉk, ρ̂(t)Ĉ†k]), (12)

where the Lindblad operators Ĉk can be used to mediate
various physical processes. The Lindblad semigroup
formalism ensures semi-positivity of the reduced density
matrix operator and enables probabilistic interpretation of its
diagonal elements as populations of the zeroth order states
used for its representation.

In the RI-sTDCI method, energy excitation/relaxation
induced by contact with the environment is described using
raising/lowering operators in the CSF basis

Ĉk →
√
γa,r→b,s |Ψs

b⟩⟨Ψr
a |, (13)

where γa,r→b,s is the rate associated with population transfer
from CSF Ψr

a to CSF Ψs
b
. In the present work, we choose

to calculate the relaxation rates using the so-called Surface-
enhanced Relaxation Approach (SERA) model, which mimics
the effect of an electron-rich environment on the local
dynamics

γa,r→b,s = 4n|µtot
a,r→b,s |2

|ωa,r→b,s |3
3c3

0

. (14)

Here, |µtot
a,r→b,s

|2 = 
q=x, y,z

(µq
a,r→b,s

)2 is the total transition

dipole moment, c0 is the speed of light in vacuum, and
~ωa,r→b,s =

�
εs + εa − εr − εb

�
is the transition frequency

between different configurations (εi is the energy of spatial
orbital i). n is an effective refractive index (n = 1 for
vacuum) used to scale the rates to typical time scales for
metallic environments, on the order of a few to hundreds
of femtoseconds. The excitation rates can be obtained
from the relaxation rates via detailed balance, i.e., γa,r→b,s

= γa,r←b,s exp (−~ωa,r→b,s/kBT). Note that the toy system
proposed here investigates an intramolecular charge transfer
in an artificial electron-rich environment. The SERA model
is introduced as an example and solely used to test the
behaviour of the present methodology. The system is tailored
so that ionization dominates over the energy relaxation
channels.

Photoionization is treated in a similar way. In previous
work, each zeroth order eigenstate of the field-free
Hamiltonian was attributed a lifetime, computed from the
CI Singles eigenfunctions and corresponding to a simple
kinematic model describing the above-threshold ionization.
This leads to a loss of norm in the RDM, which was interpreted
as the ionization yield. This formulation is incompatible with
the stochastic density matrix description proposed here, which
requires renormalization of the wave packet at each time step
(see Section II A). To circumvent this problem, an auxiliary
state representing the ionization channel is added to the basis
of configuration state functions, leading to a norm-conserving
propagation scheme. This element does not undergo coherent
evolution and is only accessible via an irreversible population
transfer operator, which can be written in the Lindblad form
Ĉk →


Γa,r→I |I⟩⟨Ψr

a |. The ionization rate for the ground
state Hartree-Fock configuration is defined as zero, and so
is the one associated with all transitions to bound orbitals
defined according to Koopmans’ theorem. For any other CSF
an ionization rate is calculated analogously to the heuristic
model developed by Klamroth and co-workers42 according
to

Γa,r→I =




√
εr

d
, if εr > 0,

0, else,
(15)

where εr is the energy of the virtual orbital to be filled in
this CSF. The rational behind this model is that the excess
energy from the excitation to an unbound orbital is completely
transferred to the kinetic energy of the electron. As in previous
work,42,45,62,83 the parameter d represents the escape length of
the electron, at which it is irreversibly lost to the ionization
continuum. Note that using the CSFs as the basis, a restriction
(εr > 0) is only imposed on the electron in the excited
orbital, while the second restriction to the ionization rate
as in Klamroth’s model (En ≥ IP) is not applied. Within
the RI-sTDCI method, all eigenstates of the system used in
the resolution-of-identity expression for the propagator are
considered stationary. It will be shown in Section III that the
physical picture proposed by the two models concur with each
other. Finally, an important difference to the model proposed
by Rohringer et al.84 for electron dynamics in strong optical
laser fields is that all orbitals, configuration state functions,
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and eigenstates used in the RI-sTDCI approach are real-
valued. A similar non-unitary dynamics is obtained here by
propagation using a non-unitary operator, which is defined in
Eq. (11).

III. BENCHMARK CALCULATIONS: CHARGE
TRANSFER DYNAMICS IN LICN

A. Static calculations

To benchmark the RI-sTDCI method, let us look at
the charge transfer dynamics in a prototypical system, lithium
cyanide (LiCN). All singlet states of a linear LiCN molecule in
its equilibrium geometry, optimized at the restricted Hartree-
Fock level of theory (RLi−C = 3.683 a0, RC−N = 2.186 a0), are
computed without frozen core using a 6-31G∗ basis set85 on all
atoms. The excitation energies and associated wave functions
are calculated with the G 07 program package86

using either configuration interaction singles (CIS) or linear
response time-dependent density functional theory (TDDFT).
A total of Norb = 45 orbitals (Nocc = 8 occupied and Nvirt = 37
virtual) were used to generate singly configuration state
functions from the reference, resulting in 297 excited singlet
configuration state functions. For the TDDFT reference,
different exchange-correlation functionals (namely, PBE,87,88

CAM-B3LYP,89 and B3LYP90–92) are used to assess the quality
of the description of the charge transfer dynamics. The number
of bound orbitals, defined from the orbital energies as εr < 0,
is found to be Nb = 9 for CIS and CAM-B3LYP and Nb = 11
for PBE and B3LYP. The remaining orbitals are coupled to
the continuum according to Eq. (15).

The energies of the low-lying eigenstates obtained with
all four dynamical bases are shown in Fig. 1, along with the
first ionization potential according to Koopmans’ theorem.93

As one can see, the fundamental gap decreases from CIS
over CAM-B3LYP, B3LYP to PBE. This is expected because
CIS tends to overestimate excitation energies, while pure

FIG. 1. Shown are the energy schemes for the lowest excited states in LiCN,
using CIS (left panel), CAM-B3LYP (second panel), B3LYP (third panel),
and PBE (right panel). All results are obtained at the optimized Hartree-Fock
geometry, using the basis set 6-31G∗ on all atoms and without frozen core.
The red dashed lines show the first ionization potential according to Koop-
mans’ theorem. The blue arrows show the intended excitation (lower arrows)
and a competing second absorption process (upper arrows).

density functionals such as PBE often underestimate excitation
energies. The transition to the first charge transfer state to be
used as a target in dynamical simulations (the second excited
state or S2) is indicated by the lower blue arrows in each case.
The excitation corresponds mainly to an electron transfer
from cyanide to lithium, i.e., Li+ CN− → (Li0CN0)∗ and can
be identified by visual inspection of the orbitals forming the
dominant character of the depicted transitions. The lifetime
of the target state is defined to be 66 fs according to the
SERA model at the CIS level of theory. The transition
energy decreases from ~ω0,2 = 0.2418 Eh (6.58 eV) for
CIS to ~ω0,2 = 0.1579 Eh (4.30 eV) for PBE. For lack of
experimental data, the EOM-CCSD transition frequencies
are used as references. Among the time-dependent density
functional methods, the CAM-B3LYP result (0.1958 Eh
or 5.33 eV) compared best to a reference EOM-CCSD
calculation for the selected state (0.2306 Eh or 6.28 eV),
whereas the density of state is larger in the latter case than
in any of the spectra presented in Fig. 1. Interestingly, the
transition dipole moment obtained from the eigenstates is
strong for CIS (µx

0,2 = 0.3015 ea0 (0.7663 D)) but significantly
weaker for CAM-B3LYP (µy

0,2 = 0.2323 ea0 (0.5904 D)), PBE
(µx

0,2 = 0.2075 ea0 (0.5274 D)), and B3LYP (µy
0,2 = 0.1787 ea0

(0.4542 D)). A weaker transition dipole moment implies
that a higher electric field intensity will be required for
laser induced excitation and will lead to a higher probability
of multi-photon excitations. The sequential absorption of a
second photon to quasi-resonant states originates from so-
called dynamical broadening and is indicated by the upper
blue arrows in Fig. 1. It leads to population of states located
far above the ionization threshold, which rapidly decay to the
continuum.

The ionization rates computed using Eq. (15) depends
on the orbital energies. Both Hartree-Fock (−εHOMO

= 0.3881Eh) and CAM-B3LYP (−εHOMO = 0.3289Eh) yield
physically sound values for the first ionization potential as
compared to the energy difference between neutral and ionic
ground states (∆SCF = 0.3470Eh and ∆DFT = 0.3877Eh,
respectively). On the contrary, PBE (−εHOMO = 0.2133Eh

vs. ∆DFT = 0.3710Eh) and B3LYP (−εHOMO = 0.2619Eh

vs. ∆DFT = 0.3788Eh) perform poorly. This is due to the
incorrect asymptotic behaviour of the latter two functionals.
In all cases, the ionization rates obtained from the orbital
energies are at least one order of magnitude larger than the
timescales of the excitation dynamics (circa 10 fs) and of
energy relaxation (circa 50 fs). Consequently, their exact
value will not affect the dynamics significantly. Their relative
value is of importance to determine the preferred ionization
channel, which will be the subject of future work.

B. Influence of the resolution-of-identity

An important aspect of the RI-sTDCI method is the
definition of a small subset of eigenstates for which the
coherent dynamics is described exactly. To evaluate how
the resolution-of-identity affects the transient dynamics, the
population evolution of selected states driven by an electric
field is investigated for various sizes of the auxiliary eigenstate
basis. An x-polarized laser field is chosen here as
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F(t)= f (t) cos(ω(t − tp)),

f (t)=



f
0
cos2(π(t − tp)

2σ
), if |t − tp | < σ,

0, else.

(16)

Here, f (t) is the time-dependent shape function of the pulse,
consisting of a cos2 function and an amplitude f

0
, tp is the time

at the pulse maximum, and σ is the full width at half maximum
(FWHM) of the pulse. Finally, ω is the carrier frequency of
the laser pulse. Note that, by symmetry, similar results would
be obtained with y-polarized pulses and, consequently, only
the former simulations are presented. A first guess for the
pulse parameters can be made from the π-pulse condition,
tailored to a complete inversion of population in an idealized
two-level system within the rotating wave approximation. The
amplitude can be calculated from the transition dipole moment
µ
f , i

and the FWHM as

f
0
=
~π

σµ
f , i

. (17)

In all simulations, the number of trajectories is set to 50,
reasonable for both a proper description and a reduction of the
computational cost, as compared to the full RDM propagation.

For lithium cyanide, there are two physically motivated
basis sizes that can be used as references: the complete basis
of 297 eigenstates, or a truncated eigenstate basis of 186 states
corresponding to the frozen core approximation. In this first
example, the latter is chosen for comparison of the population
evolution. The π-pulse parameters for the charge transfer
process are chosen resonant to the S0 → S2 transition energy
for the each method represented. For example, at the CIS
level, these are: ~ω = 0.2418 Eh (6.58 eV), tp = σ = 200 ~

Eh

(4.84 fs), and f x0 = 5.21 × 10−2 Eh
ea0

(26.8 GV/m). The
propagation ends at t f = 454.8 ~

Eh
(11 fs), slightly after the

pulse end to evaluate the effect of energy relaxation. The
resulting populations for the ground state as the initial state,
the second excited state as the target state, and the norm
loss to the ionization continuum are shown in Fig. 2. As
one can see, the temporal development of the populations is
very similar in all cases, especially for the ground state and
the target state. Due to the very short duration of the pulse
and the comparatively long energy relaxation lifetime of the
excited states according to the SERA model, no significant
effect of energy relaxation is observed in the simulations.
For the ground state population, the final value is found in
a range between 0.10 and 0.15. While the final population
for the 100 and 150 subsets approximately matches that of
the reference subset with 186 states, it is found to be lower
with 50 states. The final target state populations also behave
similarly, where the resolution-of-identity with 50 states gives
a slightly lower population at the end of the pulse than for
the reference system. Consequently, the ion yields at the end
of the propagation are seen to be slightly overestimated with
the smallest auxiliary basis: ∼0.70 for 150 and 100 states
and 0.78 for 50 states, the reference resulting in an ionization
yield of 0.72. This figure provides a first evidence that the
original basis of 297 CSFs can be truncated to a subset with
100 auxiliary eigenstates without affecting the dynamics in

FIG. 2. Populations of the ground state (S0, solid), the charge transfer state
(S2, dashed), and ionization continuum (Ion., dotted) for an RI-sTDCI simu-
lation based on CIS results with 186 states (red), 150 states (blue), 100 states
(green), and 50 states (maroon).

the frozen core approximation, which a reduction down to 50
states would not even alter significantly.

To evaluate the effect of the frozen core on the resolution-
of-identity, Fig. 3 shows the final population of the two
selected states (S2, top panel, and S0, central panel) and the
ionization yield (bottom panel) as a function of the auxiliary
basis size in the range M ∈ [4; 297]. The results are presented
for a CIS reference (solid red), as well as for three different
functionals (dashed green: CAM-B3LYP, dotted blue: B3LYP,
dashed-dotted maroon: PBE). Note that the simulation with
the minimal auxiliary basis, M = 4, already includes explicitly
all states involved in the coherent dynamics. For all references
presented here, the smaller bases fail to reproduce even the
qualitative trends at the end of the dynamics. This indicates
that the auxiliary basis is too small to describe the electronic
density response and the resolution-of-identity is of poor
quality. From about 50 to 186 states, the dynamics is seen

FIG. 3. Final populations of the target state (upper panel), the ground state
(middle panel), and the ion yield (lower panel) for an RI-sTDCI simulation
of a π-pulse excitation to S2 based on CIS (solid red, marked with X),
CAM-B3LYP (dashed green, marked with circles), B3LYP (dotted blue,
marked with squares), and PBE results (dashed-dotted maroon, marked with
diamonds) with increasing quality of the resolution-of-identity. The number
of trajectories is set to Ntr= 50.
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to have reached a plateau for all quantities shown. Beyond
this largest frozen core basis, the ionization yields reduce
and the bound population is distributed equally among the
remaining S0 and S2 states. A possible explanation is that
the core excitations to low-lying virtual orbitals stabilize
these bound configurations by means of hole correlation,
that is, via the terms of the form

r
a,b

|Ψr
a⟩⟨Ψr

b
| that appear

in the stochastic density matrix. In the reported simulations,
an energetic criterion is used to select a subset of field-
free Hamiltonian eigenstates, Helum = Emum, as a basis for
the resolution-of-identity in equations of motion, Eq. (11).
This choice is by no means unique. For example, selecting
all eigenstates with significant contributions from excitation
to bound orbitals could improve the description of hole
correlation and, consequently, the dynamics beyond the frozen
core approximation. As an alternative, all quasi-resonant
excitations corresponding to multi-photon processes could be
used instead to improve the description of the laser-molecule
coupling. Despite the potentially small but non-negligible
effect of dynamical hole coupling on the ionization dynamics,
the subset using only 50 states is still a good approximation
for the frozen core reference. Thus, this approximation will
be used in all following simulations.

C. Selective laser excitation

In this section, the focus is put on the effect of the
different functionals on the static properties of the molecules,
and the dynamics obtained using RI-sTDCI is benchmarked
against the full ρ-TDCI simulations. To this end, we performed
four propagations using sTDCI with 297 configuration state
functions and 50 states, averaged over 50 trajectories. The
pulses tailored to drive the charge transfer dynamics are
chosen to be of duration tp = σ = 200 ~

Eh
(4.84 fs) in all

cases. The frequency is chosen resonant to the associated
S0 → S2 transition energy and the pulse amplitude is chosen
according to π-pulse conditions, Eq. (17). The pulse is linearly
polarized along the Cartesian axis with the largest transition
dipole moment (see right panel of Fig. 4). The population of
selected states obtained from the sTDCI simulation is shown
in Fig. 4. At the CI Singles level, the ground state remains
uncorrelated and the S0 state is simply the Hartree-Fock (HF)
configuration. The major CSF contribution to the target state
S2 state involves the transition between the orbitals depicted
in the right panel. In all cases, it is the transition from
a bonding orbital in the cyanide anion to an antibonding
orbital between the cyanide carbon and the lithium cation.
The CSF that contributes most to the target state is the
HOMO − 1 → LUMO transition (for CIS, CAM-B3LYP,
and PBE), except for B3LYP, where it is the HOMO − 2
→ LUMO transition. As can be recognized from the shape
of the orbitals involved, all excitations to the second excited
state possess a strong charge transfer character.

The final population of the target state is highest for CIS
(approximately 0.10), while all TDDFT references predict
almost complete ionization. Among them, the CAM-B3LYP
reference behaves most similarly to the CIS simulations, with
a final target state population of about 0.01. The target state
population at the pulse end is much lower at the PBE (about
3.5 × 10−3) and B3LYP (∼0) levels. Similar observations can
be made for the ground state population dynamics: it is
highest for CIS (about 0.10), and the CAM-B3LYP results
(about 0.086) are closer to the CI Singles than the other
functionals. In all cases, the molecule is seen to be almost
completely ionized after the pulse, again with CAM-B3LYP
(∼0.90) providing the closest agreement with the CIS result
(∼0.78). The high ion yield obtained using the CAM-B3LYP
and B3LYP references is due to multiphoton excitations.
Indeed, the intensities of the short π-pulses used here are

FIG. 4. Left figure: Populations of the ground state (S0, solid black), the charge transfer state (S2, dashed red), the ionization channel (Ion., dotted magenta), and
the sum thereof (S0+S2+ Ion., solid blue line) during a sTDCI simulations based on CIS (upper left panel), TD-CAM-B3LYP (upper right panel), TD-B3LYP
(lower left panel), and TD-PBE (lower right panel). All calculations are performed in a basis of 297 CSFs and 50 states are used for the resolution-of-identity,
averaged over 50 trajectories. Right figure: dominant orbital contribution for the charge transfer state (isocontour value at 0.05a−3/2

0 ). The lithium, carbon, and
nitrogen atoms are, respectively, depicted in green, black, and blue.
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rather high, which increases the probability of such processes.
In particular, it can be seen from Fig. 1 that the two-photon
process is resonant in these cases, mediating a strong coupling
with the continuum. The large ionization yield in the PBE
simulation finds its origin in the larger density of ionizing
states at an energy close to the two-photon transition, as well
as the smaller number of bound states as compared to the CIS
case. The sum of ground and excited state populations and
of the ion yield reveals the importance of including a large
number of CSFs in the simulation to properly take into account
laser-induced polarization effects. Whereas the depicted states
represent the dynamics completely at the beginning and at
the end of the pulse, the sum of populations is lower than
one in the middle of the propagation, between 2 fs and
6 fs. This is a proof that other configurations are transiently
populated as well, although not resonant with the pulse. The
supplementary configurations allow for the correct description
of the molecule polarizability and hyperpolarizabilities, which
are included variationally to all orders in all TDCI methods.
Those configurations are affected by ionization as a competing
process, as the coupling with the continuum and the relaxation
rates is treated as additive dissipation channels. Neglecting
transient population of those intermediate configurations can
lead to an erroneous description of the electron dynamics in
strong laser fields.

For comparison purposes, the same laser-induced charge
transfer simulations were performed using the parent method.

In the ρ-TDCI formalism, the Hamilton operator is modified
so as to associate an intrinsic lifetime to each CI eigenstate

Ĥel → Ĥel − i

k

Γ
(ion)
k

|k⟩⟨k |, (18)

where |k⟩⟨k | is a projector on the CI eigenstate and Γ(ion)
k

is the
ionization rate. Consequently, the evolution under the action
of the field-free Hamiltonian is not coherent. In a first attempt,
we use the model proposed above to compute the state-specific
ionization rates, where restrictions are only applied through
the energies of the orbitals in respective CSFs. A second
one uses Klamroth’s ionization scheme with a supplementary
constraint on the eigenstate energies. The results for both
models, based on the CIS and CAM-B3LYP references,
are shown in Fig. 5. Note that here the populations of the
eigenstates are shown. Interestingly, the resulting population
dynamics for the model without an eigenenergy constraint
are very different from those obtained from the sTDCI
calculation. By the end of the propagations, no population
is found in the target states and the majority of the molecules
have been ionized, with the remaining population found in
the ground state. As one can see from the population sum
(S0 + S2 + Ion.), there is no population in other states than
the ones shown in the figure and very little effect of the
polarizability is seen even at the field maximum. The reason
for the peculiar behavior of the target state, which reaches a
higher maximum for CAM-B3LYP than for CIS, resides in

FIG. 5. Populations of the ground state (S0, black), the second excited state (S2, red), the ionization yield (Ion., dashed magenta), and the sum thereof
(S0+S2+ Ion., blue) for a ρ-TDCI simulation of a resonant π-pulse excitation, based on a CIS (left panels) and TD-CAM-B3LYP (right panels) references. The
present ionization model contains orbital restriction only (upper panels), and it is compared to the kinematic model of Klamroth and co-workers (lower panels).
The reduced density matrix is represented using the complete basis of 297 CIS eigenstates.
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the lower ionization rate of the target state in the former case
(ΓCAM

2 = 6.9 × 10−3 Eh
~

vs. ΓCIS
2 = 2.6 × 10−2 Eh

~
). The pulse

leads to a longer-lived population of the second excited
state, which ultimately decays to the ionization channel.
This is an artifact of the present ionization model applied
to the eigenstate basis, which constrains only the orbitals
and consequently overestimates the coupling of quasi-bound
eigenstates embedded in the continuum. More specifically,
an ionization rate is calculated for each CSF involving a
transition to a virtual orbital with a positive MO energy.
Consequently, using the ρ-TDCI formalism, only the ground
electronic state does not ionize for the test molecule studied
here. All other states are assigned an intrinsic finite lifetime.
In contrast, the RI-sTDCI ansatz considers all states used
in the resolution-of-identity as bound states. Only their CSF
components belonging to ionizing orbitals contribute to their
decay rate, and the other CSF contributions remain bound.
That means, the coupling of the eigenstates to the ionization
continuum is only indirect via the CSFs, while they couple
directly in the case of ρ-TDCI. In RI-sTDCI, the interaction
picture Hamiltonian, Eq. (11), drives a coherent wave packet
dynamics, and dephasing due to ionization and relaxation only
appears when averaging over many trajectories.

Imposing the restriction that the eigenstate energies lie
above the ionization threshold helps removing this artifact in
the ρ-TDCI simulations. The resulting population evolutions
are shown in the lower panels of Fig. 5 for the CIS and
CAM-B3LYP references. In both cases, the curves show a
better agreement with respect to the stochastic TDCI result,
albeit not quantitatively. The population of the ground state
is almost zero at the end of the pulse and the effect of
electronic response at the pulse maximum can be seen from
the sum population curve (S0 + S2 + Ion.). For the CIS-based
simulations, the restriction on the energy reduces the ion
yield since very few states in the continuum states allow
for resonant two-photon processes, contrary to the CAM-
B3LYP case. For the excitation probability to the ionization
continuum to be large, the transition frequency must be quasi-
resonant with one or more quanta excitations and have a
large transition dipole moment. This is the case for CAM-
B3LYP, where the 2 → 30 transition has an energy of 5.43 eV
(µx

2→27 = 0.526ea0) comparable to the 0 → 2 transition
(δE0→2 = 5.40 eV), but a larger transition dipole moment
(µx

2→27 = 0.526ea0 vs. µx
0→2 = 0.232ea0, respectively). This

means that, at high field intensities, population brought to
target state |2⟩ will preferentially absorb a second photon to
reach the quasi-resonant ionizing state |27⟩, which almost
instantaneously decays to the continuum. A similar situation
is observed for the two other functionals. In comparison,
the only quasi-resonant ionizing state at the CIS levels
(δE2→30 = 6.46 eV δE0→2 = 6.58 eV) is barely accessible
via dipole transition (µx

2→30 = 0.047ea0 vs. µx
0→2 = 0.302ea0,

respectively). Hence, in the latter case, the indirect coupling
to the ionization continuum via two-photon quasi-resonant
excitation is much weaker than in the TDDFT-based CI
simulations.

Finally, it was demonstrated that the ionization model
used in ρ-TDCI is qualitatively correct, providing a simple
but sound physical interpretation for the ultrafast ionization

dynamics. For example, the heuristic approach allows to
accurately simulate high-harmonic generation spectra83 and to
reproduce the correct trends for ionization rates in polyenes.62

From the comparison of Figs. 4 and 5, it should thus appear
that the RI-sTDCI yields a dynamical picture of similar
quality, although at only a fraction of the numerical cost.
Other computationally demanding approaches using complex
absorbing potentials have also been proposed84,94,95 and might
provide an even more accurate description of the ionization
process.

IV. CONCLUSIONS

In conclusion, we have introduced a norm-conserving
stochastic method for studying dissipative electron dynamics
in presence of ionization. Both energy dissipation and
ionization are represented on an equal footing using Lindblad
operators with rates determined from physically motivated
models, while an auxiliary continuum state describes the
ionized population. Electronic response to strong field
excitation with ultrashort laser pulses is treated variationally
using a large basis of configuration state functions at the
single excitations level, as physically simplest basis for one
electron dynamical processes. This linear treatment of the
field-matter interaction avoids the non-linear dependence of
the time-dependent Kohn-Sham potential that plagues real-
time TDDFT for strong field excitations. The representation
of the operators in the interaction picture allows to the reduce
numerical cost associated with the propagation by using the
resolution-of-identity for the coherent part of the propagator.
To improve the energetics of the zeroth-order states used in
the resolution-of-identity, it is proposed to use linear response
time-dependent density functional theory for the energies.
The transition dipole moments required by the method
are computed using the configuration interaction singles
wave functions that can be obtained from a Tamm-Dancoff
correspondence principle. This combination of methods can
be viewed as a TDDFT-based variant of the explicitly time-
dependent configuration interaction singles with perturbative
corrections to the energies.

From benchmark calculations of the laser-driven charge
transfer in LiCN, it is shown that the resolution-of-identity
and the stochastic wave packet representation of the reduced
density matrix can lead to significant numerical savings
without affecting the dynamics. Comparison to reference
calculations of the full reduced density matrix using the
parent ρ-TDCI method reveals that the simpler model used
for ionization in the RI-sTDCI captures the same physics.
Finally, it is shown that the choice of reference (CIS, B3LYP,
CAM-B3LYP, PBE) can affect the dynamical simulations
markedly. As a rule of thumb, it can be inferred that conven-
tional knowledge about the appropriate choice of functional
for a given system can be used to guide the choice of a basis
for the dynamics. For example, CAM-B3LYP should perform
significantly better to describe ionization because of the
better behaviour of the functional at long range. Whereas the
RI-sTDCI relies on the choice of functional for the energetics
involved and consequently cannot offer a better representation
than the underlying functional, the linear coupling to the laser
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ensures a well-behaved, variational description of electron
dynamics even in strong and rapidly oscillating fields.
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