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We present a detailed analysis of bipartite entanglement in the non-Abelian Moore-Read fractional quantum
Hall state of bosons and fermions on the torus. In particular, we show that the entanglement spectra can be
decomposed into intricate combinations of different sectors of the conformal field theory describing the edge
physics, and that the edge level counting and tower structure can be microscopically understood by considering
the vicinity of the thin-torus limit. We also find that the boundary entropy density of the Moore-Read state is
markedly higher than in the Laughlin states investigated so far. Despite the torus geometry being somewhat more
involved than in the sphere geometry, our analysis and insights may prove useful when adopting entanglement
probes to other systems that are more easily studied with periodic boundary conditions, such as fractional Chern
insulators and lattice problems in general.
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I. INTRODUCTION

Quantum correlations give rise to many exotic phases of
matter that cannot be characterized in terms of traditional
concepts, such as local order parameters and symmetry.
Recently, tools from the field of quantum information (QI)
have been used to quantify such correlations.1 Of special
interest among the applications are systems in which more
traditional condensed-matter methods are of limited use, for
example topologically ordered matter.2 Fractional quantum
Hall (FQH) states stand out as experimentally verified topolog-
ically ordered phases driven by interactions, and their possible
applications in the context of quantum computation are of
great current interest.3 The microscopic understanding of these
phases is mainly based on ad hoc, albeit brilliant, guesswork4–9

and numerical wave-function overlap calculations in small
systems. A fundamental problem with using wave-function
overlaps as a probe is, however, that it necessarily vanishes
in the thermodynamic limit (for any realistic interaction).
Recently, it has been realized that (bipartite) entanglement
measures, most saliently the von Neumann entropy10,11 and the
entanglement spectrum,12 can provide valuable insights into
these states—in principle even in the thermodynamic limit.

In this work, we focus our attention on entanglement in
the archetypical non-Abelian FQH state, namely the Moore-
Read state,5 which has received a tremendous amount of
attention recently as a potential platform for topological
quantum computation. Previous theoretical studies13 have
accumulated evidence that the ground state of the two-
dimensional electron gas at the Landau level filling fraction
ν = 5/2 is well described by the Moore-Read state, which
may be thought of as paired composite fermions and has
quasiparticles possessing fractional charge ±e/4 and obeying
non-Abelian braid statistics.5 In recent experiments, both the
fractional charge and non-Abelian braid statistics have been
claimed,14 but the interpretations of the experiments is still

under debate.15 Another possible host of the Moore-Read
state is the Bose-Einstein condensate under rapid rotation, in
which the bosonic state at ν = 1 is particularly promising.16

However, the experimental realization of the bosonic FQHE is
extremely challenging, although some strategies to overcome
the difficulties have been proposed.17

To study bipartite entanglement, we (artificially) divide a
system into two parts A and B (Fig. 1). In a tensor product
Hilbert space, H = HA ⊗ HB , any pure state |�〉AB can be
decomposed using the Schmidt decomposition,18

|�〉AB =
∑

i

e−ξi/2
∣∣ψA

i

〉 ⊗ ∣∣ψB
i

〉
, (1)

where the states |ψA
i 〉 (|ψB

i 〉) form an orthonormal basis for the
subsystem A (B) and the entanglement “energies” ξi � 0 are
related to the eigenvalues, λi , of the reduced density matrix,
ρA = trB |�〉AB AB〈�|, of A as λi = e−ξi .

For topologically ordered states in two dimensions, the
entanglement entropy contains topological information about
the state: SA = −tr[ρA ln ρA] = −∑

i λi ln λi = ∑
i ξie

−ξi is
expected to scale as

SA ≈ αL − nγ + O(1/L),

where L is the (total) block boundary length, n is the number of
disconnected boundaries, and γ characterizes the topological
field theory describing the state.10,11

Li and Haldane12 realized that the full so-called entangle-
ment spectrum (ES), {ξi}, contains much more information
than entanglement entropy. In particular, when plotted against
the natural quantum numbers of the system, it shows a
remarkable similarity with the conformal field theory (CFT)
describing the chiral edge states19 of the FQH states.

To make practical use of the entanglement concepts, it
is instrumental to find a protocol with which the theoretical
ideas can be (numerically) tested in realistic circumstances.
The most widely used concept of partitioning the system in
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FIG. 1. (Color online) The torus setup (a) compared with the
orbital partition on the sphere (b). The dark lines indicate the centers
of the single-particle states and the differently shaded regions denote
the approximate spatial partitioning corresponding to the half-block
orbital partitioning. Red arrows represent the artificial edge states
induced by splitting the system into A and B.

terms of the single-particle orbitals was introduced by Haque,
Zozulya, and Schoutens20 in their study of the topological
entanglement entropy in Laughlin states on the sphere. A
numerical determination of γ (and α) in realistic circumstances
requires information about SA for a number of different
boundary lengths, L. Because of its technical simplicity, early
attempts to obtain the entropy scaling in FQH states focused on
the sphere geometry.20 However, as recently demonstrated for
Abelian FQH states, a substantially better finite-size scaling
can be obtained on the torus where the boundary length
can be varied continuously by varying the aspect ratio21

[cf. Figs. 1(a) and 1(b)]. (The idea of obtaining entanglement
entropy scaling through varying discrete torus circumferences
was also used in Ref. 22 for the dimer model on the triangular
lattice.) Importantly, this extra degree of freedom available on
the torus also provides a handle on when the extrapolations
needed to extract γ can be trusted (and when they cannot).

With a few very recent exceptions,23–25 the efforts made in
the study of the ES in FQH states are also numerical.12,26–37

In addition to these works, there has been a large number of
recent studies extending the range of applicability of the ES to
an increasing number of physical systems.38 The studies of the
ES in FQH states have focused predominantly on the sphere
geometry. In this case, there is a genuine benefit with this
choice since it amounts to probing the physics of a single FQH
edge while the natural partition on the torus corresponds to two
oppositely oriented edges [cf. the red arrows in Figs. 1(a) and
1(b), respectively]. A benefit with the torus setup is, however,
that one can continuously connect to the exactly solvable thin-
torus limit39 from which many of the properties of the ES can
be understood microscopically.28

On the sphere one finds that the ES has a chiral structure12

that is intimately related to the squeezing rule of model FQH
states40 that holds on genus-0 manifolds. The structure of
the squeezed configurations also provides physical insight
similar to what is possible in the thin-torus limit. While the
squeezing rule does not hold on the torus (genus-1), the ES
can nevertheless be described by combining two edge spectra,
as was shown in Ref. 28 for the Laughlin state.

In spite of the technical difficulties involving two separate
edges, these issues are worth dealing with, in particular
since there are many physical systems of great interest that
are only approachable using periodic boundary conditions.

Specifically, regular two-dimensional lattices do not admit
generally a defect-free embedding onto the sphere (because of
their different Euler characteristics). In particular, the recently
proposed fractional Chern insulators41,42 appear to belong to
this category.

The two-edge picture on the torus is reportedly33,42 difficult
to extend to non-Abelian FQH states due to their nontrivial
ground-state degeneracies, which do not result from simple
center-of-mass translations as in the Abelian case. Thus, it is
not a priori clear how to choose the ground state, |�〉AB , in
Eq. (1) (or alternatively, how to define the density matrix of
the full system A ∪ B) out of this degenerate set. Note that the
issue of degenerate ground states does not occur in the sphere
case in which the model states are unique maximal density
zero modes of their respective parent Hamiltonians.

Here, we adopt a very simple and natural choice for the set
of |�〉AB and show that a similar, but significantly richer, two-
edge picture also holds true for the ES of non-Abelian FQH
states on the torus. Specifically, we disentangle the physics
of the edge modes appearing in the entanglement spectra in
each of the topologically distinct sectors of the Moore-Read
state of both fermions and bosons. We find that, even for a
given cut in one of the ground states, the resulting towers
are generated from combinations of different sectors of the
underlying conformal field theory.

We also carefully analyze the scaling of the von Neumann
entropy in the various sectors of the Moore-Read state. We find
that the total entropy as well as the area-law entropy density,
α, can be estimated (in particular quite accurately in the case
of bosons) while the extrapolation is too sensitive to faithfully
determine the topological part, γ .

The remainder of this paper is organized as follows. In
Sec. II, we introduce the physical model and the method we
use to obtain the ground states and calculate the ES. In Sec. III,
we analyze the ES from two distinct perspectives. On the one
hand, we explain the ES as the combination of edge modes
and discuss the quantitative relation in this combination. On
the other hand, we use the thin-torus limit and a perturbation
theory to illuminate the microscopic origin of the observed ES,
including the counting rules in different edge sectors. Finally,
we discuss the entanglement entropy in Sec. IV.

II. MODEL AND METHOD

We study a two-dimensional N -boson (fermion) system
subject to a perpendicular magnetic field on a torus with
periods L1 and L2 in the x and y directions. The full symmetry
analysis of this system was first provided by Haldane43—here
we use a convenient representation thereof. Periodic boundary
conditions require that L1L2 = 2πNs (in units of the magnetic
length), where Ns is the (integer) number of magnetic flux
quanta (the number of vortices for rotating Bose-Einstein
condensates). We choose a basis of normalized single-particle
lowest Landau level (LLL) wave functions as

ψj = 1√
L1π1/2

+∞∑
n=−∞

e
[i( 2πj

L1
+nL2)x−(y+nL2+ 2πj

L1
)2/2]

, (2)

where j = 0,1,2, . . . ,Ns − 1 can be understood as the single-
particle momentum in units of 2π/L1. Because ψj is centered
along the line y = −2πj/L1, the whole system can be divided

045119-2



EDGE-MODE COMBINATIONS IN THE ENTANGLEMENT . . . PHYSICAL REVIEW B 85, 045119 (2012)

into Ns orbitals that are spatially localized in the y direction
(but delocalized in the x direction). There are two translation
operators, Tα , α = 1,2, that commute with the Hamiltonian H

(and any translational invariant operator); they obey T1T2 =
e2πiN/Ns T2T1, and operators have eigenvalues e2πiKα/Ns ,Kα =
0, . . . ,Ns − 1. T1 corresponds to x translations and K1 =∑N

i=1 ji (mod Ns) is the total x momentum in units of 2π/L1.
T2 translates a many-body state one lattice constant L2/Ns =
2π/L1 in the y direction and increases K1 by N . At filling
factor ν = p/q (with p and q co-prime), T q

2 commutes with T1,
and T k

2 (k = 0,1, . . . q − 1) generate q degenerate orthogonal
states, which have different K1. This is the q-fold center-
of-mass degeneracy common to all eigenstates of a transla-
tional invariant operator in a Landau level. Thus, the energy
eigenstates are naturally labeled by a two-dimensional vector
Kα = 0, . . . ,Ns/q − 1, where e2πiK2q/Ns is the T

q

2 eigenvalue.
We use exact diagonalization to obtain the Moore-Read

states, which are zero-energy ground states of certain three-
body Hamiltonians (see Appendix A), in the orbital basis.
The Moore-Read states are non-Abelian states, for which the
degeneracy on the torus is enhanced (in this case by a factor 3)

compared to the q-fold degeneracy discussed above. It is
readily seen from the thin-torus configurations (the ground
states as L1 → 0) that they are not simply the translations
of each other44 (see below). To extract the ES, we choose
the ground states as eigenstates of T1 and T

q

2 and bipartition
the system into blocks A and B, which consist of lA consecutive
orbitals and the remaining Ns − lA orbitals, respectively. We
label every ES level by the particle number NA = ∑

j∈A nj

and the total momentum KA = ∑
j∈A jnj (mod Ns) in block

A, where nj is the particle number on the orbital j . (In this
work, we present data only for the case in which lA = Ns/2.)

To understand the ES, it is essential to understand what the
partitioning of the state looks like in the thin-torus limit. For
the bosonic case, there are three different thin-torus patterns
leading to the following partitions (for N = Ns = 16):

1111|11111111|1111
(3)

0202|02020202|0202 ± 2020|20202020|2020.

For the fermionic case, there are six different thin torus patterns
and the following partitions (for N = 16,Ns = 32):

01010101|0101010101010101|01010101

10101010|1010101010101010|10101010

01100110|0110011001100110|01100110 ± 10011001|1001100110011001|10011001

11001100|1100110011001100|11001100 ± 00110011|0011001100110011|00110011. (4)

The bold block is our subsystem A. For bosons
in Eq. (3), we have two qualitatively different cuts:
11|11 · · · 11|11 and 02|02 · · · 02|02 (20|20 · · · 20|20 gives a
mirror image of this). For fermions in Eq. (4), we have four
qualitatively different cuts: 01|01 · · · 01|01 (10|10 · · · 10|10),
0110|0110 · · · 0110|0110, 1001|1001 · · · 1001|1001, and
1100|1100 · · · 1100|1100 (0011|0011 · · · 0011|0011).

We stress that, as long as the edges are sufficiently well
separated, one can understand the entanglement in terms of
two noninteracting edges whose details depend on the local
environment around the cuts.28 This holds true also for the
states that are connected to a thin-torus configuration, which is
a linear superposition of two individual terms—in these cases,
the ES is composed of two shifted and superimposed mirror
images corresponding to the ES of a single term, respectively.

Our procedure is different from that in Refs. 33 and
42, where the authors calculate the ES via a mixed state
density matrix of the form ρ = 1

d

∑d
i=1 |�i〉AB AB〈�i |, where

{|�i〉AB} denote d degenerate ground states. With this recipe,
one finds that the ES corresponds to the superimposed ES of
all the d thin-torus patterns. For the entanglement entropy,
such a mixed-state prescription essentially shifts SA(L) by a
constant and would thus result in a shifted prediction for the
topological contribution, γ . In the case of Abelian states, it
turns out that averaging the entropies (rather than the density
matrices) over the different sectors, or equivalently over the
possible translations of the region A, significantly reduces
finite-size corrections and yields results in excellent agreement

with theory.21 We note that the mixed-state prescription shifts
the entropies of Abelian states by a constant value, ln d, and
would thus lead to a topological entropy different from the
theoretical predictions for the spatial (as opposed to orbital)
cut—in fact, it would lead to γ = 0. For non-Abelian states,
it is not yet settled which orbital basis prescription would lead
to the same topological entropy as for the spatial cut.

III. ENTANGLEMENT SPECTRA: TWO-EDGE PICTURE
AND THIN-TORUS ANALYSIS

The most prominent NA sectors of the ES of the Moore-
Read state for N = 16 are displayed in Fig. 5 (ν = 1 bosons)
and Fig. 6 (ν = 1/2 fermions). The gross features of the
Moore-Read ES on the torus are very similar to that of the
Laughlin state—in both cases, multiple towers are formed.28 In
this section, we analyze the ES from two different perspectives:
We explain the tower structure in terms of combinations of
edge modes and highlight intriguing relations between the
ES levels within the towers as well as between the levels in
different particle number sectors. Moreover, we use the exactly
solvable thin-torus limit and perturbation theory to understand
the formation of various edge environments and towers.

The observed towers in the numerical ES can be repro-
duced by first assigning the edge modes of individual edge
environments and then combining them appropriately. The
number of independent edge modes at momentum �k in an
edge environment is determined by the underlying edge theory.

045119-3
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FIG. 2. (Color online) The edge modes of the environment in the
left panel (black dots) and the environment in the middle panel (green
dots) can combine to form a tower in the right panel (blue crosses).
The relation in Eq. (5) is shown by the parallelogram. The edge mode
at �k = −1 marked by the solid black arrow and the edge mode at
�k = 1 marked by the solid green arrow can generate the level at
�k = 0 marked by the solid blue arrow. These data come from the
ES of bosons in the 11 sector (see Fig. 5).

The edge theory of the Moore-Read state is richer than that
of the Laughlin state and contains a free boson branch as well
as a Majorana fermion branch.45 The details are recapitulated
in Appendix B for completeness. It is important to note that
there are different sectors of the edge theory and that they
come with different predictions for the counting of states as
a function of momentum. This is reflected in our numerically
obtained ES, where we observe the edge environments with
different counting rules. It is interesting to see that two edge
environments with different counting rules can also combine
to form a tower.

There are intriguing quantitative relations in the combi-
nation of edge modes as first pointed out for the Laughlin
state in Ref. 28. An explicit example of how two edges, with
different dispersion, add up to a tower is given in Fig. 2. More
generally, each edge mode can be labeled by three parameters:
the edge environment X to which it belongs, its momentum
shift �ki compared with the bottom mode of the environment
X , and the change of the subsystem particle number �NX

A in
the environment X compared with the thin-torus state. Two
edge modes with entanglement energy ξ (X ,�ki,�NX

A ) and
ξ (Y,�kj ,�NY

A ), respectively (here we assume �ki � 0 and
�kj � 0), combine to form a level in the XY tower with
entanglement energy

ξ
(
XY,�ki + �kj ,�NX

A + �NY
A

)
= ξ

(
X ,�ki,�NX

A

) + ξ
(
Y,�kj ,�NY

A

)
− 1

2

[
ξ
(
X ,0,�NX

A

) + ξ
(
Y,0,�NY

A

)]
. (5)

The validity of the two-edge picture is insensitive to
the circumference L1 as long as the edges are sufficiently
well separated from each other, i.e., given that d ∼ L2/2 =

FIG. 3. (Color online) A plot of the main tower(s) of the ES in
the 0101 fermionic Moore-Read state for various L1 (NA = 8,N =
Ns/2 = 16). For small enough L1 (in this case L1 � 7 or so), the
edges are well enough separated (d ∼ L2/2 = πNs/L1) and the two-
edge prediction (black crosses) reproduces the numerically obtained
ES levels (blue squares). For larger L1, the edges are spatially closer
and the two-edge prediction gradually breaks down.

πNs/L1 is large enough, which is equivalent to small enough
L1 for a given system size. This is illustrated in Fig. 3, where
the breakdown of the two-edge picture is signaled for the larger
L1 values, which is indeed a confirmation of the fact that the
decomposition of the entire ES into a combination of edge
modes is highly nontrivial. Note that this breakdown occurs
despite the fact that the numerically exact Moore-Read state is
obtained for all L1.

The relative pseudoenergies of the assigned single-edge
modes depend smoothly on the torus thickness L1, to some
degree even after the two-edge prediction breaks down.
For a given L1, the edge levels correspond well to the
single-edge levels extracted from the ES on a sphere with
a corresponding length of the equator, as shown in Fig. 4.
For large boundary lengths, the dispersion of a single edge
becomes nonmonotonic—at least in the case of fermions [cf.
Fig. 4(b)], as can be inferred from the original data obtained
by Li and Haldane.12 This does not imply that the two-edge
picture will eventually break down, but it does imply that the
edge assignment becomes much more cumbersome at large L1

as the �k = 0 levels no longer play the role of vacuum levels
of each tower. Also, for this reason it is very useful to follow
the evolution of the edge levels down to small L1 where the
dispersion is monotonic in order to eventually understand the
ES also at large L1.

The adiabatic connection to the thin-torus (L1 → 0) limit
also enables us to understand more detailed features of the ES
by perturbing away from this solvable limit.28 The perturbation
theory is, however, hard to perform in a rigorous way, as was
recently performed for the ES of one-dimensional models.46

The reason for this is that the exponential behavior of the
matrix elements implies that higher-order contributions from
local terms come with amplitudes of the same order as longer-
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FIG. 4. (Color online) The single-edge modes identified from the
ES as a function of L1. (a) The edge modes corresponding to
the 0|2 cut in the bosonic Moore-Read state for N = Ns = 12. (b) The
edge modes corresponding to the 0|0 cut in the fermionic Moore-Read
state for N = 12, Ns = 24. The rectangles contain the single-edge ES
levels in the spherical geometry,47 here shifted: {ξi} → {ξi + const},
for the best comparison with the torus results at L1 = 14 for bosons
and L1 = 16 for fermions. The number of flux quanta on the sphere
N

sp
s is chosen as the integer nearest to L2

1/(2π 2) so that the length
of the equator of the sphere is nearly the same with L1. Here
N = 12,N

sp
s = 10 for bosons and N = 8,N

sp
s = 13 for fermions.48

One can see that in (b) the red dot is slightly lower than the black
circle at L1 = 13, meaning that a nonmonotonic dispersion of the
edge appears.

range terms contribute at lower orders. Nevertheless, many
insights can be gained from a perturbative perspective, as we
discuss below.

It is instructive to divide the perturbations, which are three-
particle hopping processes, into three different classes. In the
first class, three particles belong to the same subsystem and
none of them move across the edge. These processes do not
qualitatively alter the entanglement between two subsystems.
In the second class, two particles belong to one subsystem
and one particle belongs to the other, but still none of them
moves across the edge. In the third class, some of the particles
move across the edge. As we show below, the processes in the
second class are responsible for generating new levels within a
tower, and those in the third class lead to levels in new towers
stemming from new edge environments. The entire ES of the
Moore-Read state is built from successive combinations of
many of the processes in each of these three classes.

With the knowledge of the microscopic environment near
a cut in the thin-torus limit, the counting of each edge
follows from the exclusion principle that no more than two
bosons (fermions) occupy two (four) adjacent orbitals. Similar
exclusion rules are, in addition to the thin-torus limit,44 also
showing up in related approaches40,49 such as the squeezing
rules related to Jack polynomials and the patterns of zeros
approach.

A. Bosons

We now give a more detailed account of the Moore-Read
ES in the case of bosons.

We first consider the 11 sector and systematically explain
the ES in this sector, which is shown in Fig. 5. The lowest ES
level is found in the NA = 8 sector at �KA = 0, corresponding
to the thin-torus configuration,

1111|11111111|1111.

At L1 = 0, this is the only entanglement level. We call the edge
environment 1111|1111 AB, where the subscript B indicates
the environment is for bosons. Here the subsystem on the left
(right) side of this edge environment is A when we consider
the right (left) edge of A. By definition, �N

AB
A = 0. (In the

following, when we discuss �NX
A of an edge environment

X , we suppose the subsystem A is on the left side of X .
If A is on the right side, one only needs to put a minus
sign before the value that we give.) All other levels in the
ABAB tower (ABAB denote the edge environments on the
left and right edge of subsystem A) are generated from this
level by the momentum-conserving hopping processes, which
conserve NA. For example, a hopping process at the right edge
of subsystem A, 1111|1111 → 1102|2011, gives the lowest
level at �KA = 1.

Some processes do not conserve NA; e.g., 1111|1111 →
1103|0111 or 1111|1111 → 1110|3011. We call the new kind
of edge environment in this example BB. It is clear that
�N

BB
A = ±1. Two BB edges create the BBBB tower in the

NA = 8 sector, whose dominant thin-torus configurations are

1103|01111103|0111

1110|30111110|3011 .

Similarly, we can find another new edge environment.
When applying a hopping process to the edge environment
BB: 1103|0111 → 1005|0011 or 1110|3011 → 1100|5001,
we obtain the edge environment CB with �N

CB
A = ±2. Two

CB edges create the CBCB tower in the NA = 8 sector, whose
thin-torus configurations are

1005|00111005|0011

1100|50011100|5001 .

The different edges can combine with each other to form
towers in other NA sectors. For example, in the NA = 7 sector
we predict and observeABBB,BBAB,BBCB, and CBBB towers.
In the NA = 6 sector, we can observe another BBBB tower and
ABCB and CBAB towers.

The AB, BB, and CB edges are sufficient to accurately
reproduce the ES of the 11 sector up to ξ = 30 for L1 = 5.5,
as shown in the upper panels of Fig. 5. For larger L1, more
towers appear and can be explained along the same lines.

Now we turn to the (asymmetric cut in the) 02 + 20 sector,
for which the ES possesses more complicated structures than
that in the 11 sector, as shown in Fig. 5. For simplicity, we
start our analysis from only one term in the superposition
of the thin-torus configuration, for example from the term
0202|02020202|0202. The entire ES in the 02 + 20 sector
is recovered by superposing two mirror images of the ES
stemming from the single term.
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1111|11111111|1111

0202|02020202|0202

FIG. 5. (Color online) The ES of bosonic Moore-Read states in the 11 sector at L1 = 5.5 (upper panels) and the 02 + 20 sector at L1 = 6
(lower panels) for N = Ns = 16. The origin of �KA is chosen to match the Tao-Thouless state. The blue squares represent numerically obtained
data. The assigned edge modes are labeled by dots with different colors corresponding to different edge environments we describe in the text.
The combination of two identical edge environments is marked by the crosses with the color of that edge environment. The combination of two
different edge environments is marked by the squares filled with two colors, the left (right) one of which corresponds to the edge environment
on the left (right) edge of the subsystem A. Here we do not differentiate the edge environments D′

B to I ′
B from the edge environments DB to IB

because the former are just the mirror symmetries of the latter and have a momentum shift ±Ns/2.

In the thin-torus limit, the only entanglement level at
�KA = 0 corresponds to the configuration

0202|02020202|0202.

We refer to this edge environment 0202|0202 as DB. All other
levels in the DBDB tower are generated from this level by
the momentum-conserving hopping processes, which conserve
NA.

Through applying leading hopping processes, we can
generate all edge environments we have observed in the ES (at
L1 = 6):

DB : 0202|0202,�N
DB
A = 0,

EB : 0201|2102,�N
EB
A = −1,

FB : 0200|4002,�N
FB
A = −2,

GB : 0104|0102,�N
GB
A = 1,

HB : 0006|0002,�N
HB
A = 2,

IB : 0100|6001,�N
IB
A = −3.

These edges combine with each other to form towers in
each NA sector. For example, in the NA = 8 sector we predict
and observe DBDB, EBEB, FBFB, GBGB, and HBHB towers,
in the NA = 7 sector we find DBEB, EBFB, GBDB, HBGB, and
FBIB towers, and in the NA = 6 sector we find DBFB, GBEB,
HBDB, and EBIB towers.

Similarly, we can start the analysis from the other term
2020|20202020|2020 in the thin-torus configuration. We also
predict and observe the six edge environmentsD′

B to I ′
B, which

are just the mirror symmetries of the edge environments DB

to IB for the term 0202|02020202|0202. For example, the
edge environment D′

B is identified as 2020|2020, which is the
mirror symmetry of DB. Moreover, the combination of edge
environments D′

B to I ′
B can form towers in each NA sector.

For example, in the NA = 7 sector we can observe the E ′
BD′

B
tower as the mirror symmetry of the DBEB tower.

We are also able to understand the counting rule of each
edge environment from a simple exclusion rule in their
thin-torus configuration. Here we take the edge environment
AB in the 11 sector and DB in the 02 + 20 sector as
examples. When analyzing the counting rule, we imagine the
subsystem on the left (right) side of the edge environment as
a quantum Hall system with an open right (left) edge, and
then we move particles to the orbitals with higher (lower)
momentum to increase (decrease) the momentum of the
system. Meanwhile, the generalized exclusion rule40,44 of the
Moore-Read state, namely no more than two bosons (fermions)
on two (four) consecutive orbits, should not be violated.
Through the analysis, we can find that the counting rule of
the edge environment AB in the 11 sector is consistent with
that of free bosons plus periodic Majorana fermions, while
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the counting rule of the edge environment DB in the 02 + 20
sector is consistent with that of free bosons plus antiperiodic
Majorana fermions with an even F (see Appendix C). For
some edge environments, only one side of it satisfies the
generalized exclusion rule, for example the edge environment
EB = 0201|2102 in the 02 + 20 sector. In this case, we
only need to analyze the subsystem on its left side. Through
analysis, we can predict the counting rules of some edge
environments and compare them with the counting rules that
we observe in our numerical data. In the 11 sector, we have

AB : 1,2,4,8,14, . . . ; [1,2,4,3];

BB : 1,2,4,8,14, . . . ; [1,2,3,1];

CB : 1,2,4,8,14, . . . ; [1,2,1]

and in the 02 + 20 sector, we have

DB : 1,1,3,5,10, . . . ; [1,1,3,3,1];

EB : 1,2,4,7,13, . . . ; [1,2,3,2,1];

FB : 1,1,3,5,10, . . . ; [1,1,2,1];

GB : 1,2,4,7,13, . . . ; [1,2,2];

HB : 1,1,3,5,10, . . . ; [1,1];

IB : 1,2,4,7,13, . . . ; [1],

where we, for each edge environment, first give the ex-
pected counting rule and then list the observed result from
our numerical data, as shown in Fig. 5, in the brackets.
For example, AB : 1,2,4,8,14, . . . ; [1,2,4,3] means that the
expected number of edge modes for edge environment AB

is 1,2,4,8,14, . . . at �k = 0,1,2,3,4, . . ., while the observed
number of edge modes is 1,2,4,3 at �k = 0,1,2,3. We see that
the numerically observed count never exceeds the theoretical
expectations (that are derived for an infinite system). There
are two reasons for this. First, our data are only numerically
accurate up to some finite ξ , and thus we count only the
levels that are free of numerical noise. Second, the counting is
truncated by the finite system size similar to the situation on
the sphere12,34 and should be expected in any geometry.

B. Fermions

The thin-torus and edge analysis of the fermion ES (Fig. 6)
is entirely analogous to the boson case, and thus we only
provide a condensed exposition of the analysis here. Note,
however, that the edge assignment would have been much
trickier in the fermion case if we would have started out by
considering the large L1 regime where the edge dispersion is
nonmonotonic.12

In the 0101 sector, we can observe three edge environments:

AF : 01010101|01010101,�N
AF
A = 0,

BF : 01010100|11100101,�N
BF
A = −1,

CF : 00011111|00010101,�N
CF
A = 1.

Their counting rules are

AF : 1,2,4,8,14, . . . ; [1,2,4,4,1];

BF : 1,2,4,8,14, . . . ; [1,2,3,1];

CF : 1,2,4,8,14, . . . ; [1,1],

which are the same as those for the 111 bosonic state. The
combinations of edge environments can form towers in each
NA sector:AFAF,BFBF, and CFCF towers in the NA = 8 sector,
AFBF and CFAF towers in the NA = 7 sector, and CFBF tower
in the NA = 6 sector.

In the 0110 + 1001 sector, first we start our analysis from the
term 01100110|0110011001100110|01100110. We find two
edge environments:

DF : 01100110|01100110,�N
DF
A = 0,

EF : 01001111|00100110,�N
EF
A = 1,

01100100|11110010,�N
EF
A = −1,

whose counting rules are expected as

DF : 1,1,3,5,10, . . . ; [1,1,3,3,2,1];

EF : 1,2,4,7,13, . . . ; [1,2,1].

If we start from the other term,
10011001|1001100110011001|10011001, we also find
the following two edge environments:

D′
F : 10011001|10011001,�N

D′
F

A = 0,

E ′
F : 10011000|11110001,�N

E ′
F

A = −1,

10001111|00011001,�N
E ′

F
A = 1,

with counting rules being

D′
F : 1,2,4,7,13, . . . ; [1,2,4,3,1];

E ′
F : 1,1,3,5,10, . . . ; [1,1,2,1].

The combination of these edge environments can generate
DFDF, EFEF, D′

FD′
F, and E ′

FE ′
F towers in the NA = 8 sector;

DFEF, EFDF, D′
FE ′

F, and E ′
FD′

F towers in the NA = 7 sector;
and EFEF and E ′

FE ′
F towers in the NA = 6 sector.

In the 0011 + 1100 sector, if we start from the term
00110011|0011001100110011|00110011, we find the follow-
ing four edge environments:

FF : 00110011|00110011,�N
FF
A = 0,

GF : 00110010|11010011,�N
GF
A = −1,

HF : 00110000|11111100,�N
HF
A = −2,

IF : 00011111|00010011,�N
IF
A = 1,

with counting rules being

FF : 1,1,3,5,10, . . . ; [1,1,3,3,1];

GF : 1,2,4,7,13, . . . ; [1,2,3,2,1];

HF : 1,1,3,5,10, . . . ; [1];

IF : 1,2,4,7,13, . . . ; [1].

The combination of edges generates towers in each NA sector:
FFFF and GFGF towers in the NA = 8 sector, FFGF, GFHF,
and IFFF towers in the NA = 7 sector, and FFHF and IFGF

towers in the NA = 6 sector. If we start from the other
term, 11001100|1100110011001100|11001100, we find edge
environments F ′

F to I ′
F which are just the mirror symmetries of

FF to IF with the same counting rules. For example, the edge
environment F ′

F is identified as 11001100|11001100, which is
the mirror symmetry ofFF. Moreover, the combination of edge
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01010101|0101010101010101|01010101

01100110|0110011001100110|01100110
10011001|1001100110011001|10011001

11001100|1100110011001100|11001100

FIG. 6. (Color online) The ES of fermionic Moore-Read states in the 0101 sector at L1 = 7 (upper panel), the 0110 + 1001 sector at L1 = 8
(middle panel), and the 1100 + 0011 sector at L1 = 8 (lower) for N = 16, Ns = 32. The origin of �KA is chosen to match the thin-torus ground
state. The blue squares represent numerically obtained data. The assigned edge modes are labeled by dots with different colors corresponding
to different edge environments as described in the text. The combination of two identical edge environments is marked by the crosses with the
color of that edge environment. The combination of two different edge environments is marked by the squares filled with two colors, the left
(right) one of which corresponds to the edge environment on the left (right) edge of the subsystem A. Here we do not differentiate the edge
environments F ′

F to I ′
F from FF to IF because the former are just the mirror symmetries of the latter and have a momentum shift ±Ns/2.

environments F ′
F to I ′

F forms towers in different NA sectors.
For example, in the NA = 7 sector we predict and observe the
G ′

FF ′
F tower as the mirror symmetry of the FFGF tower.

IV. ENTANGLEMENT ENTROPY

The entanglement entropy of the Moore-Read state was
studied earlier on the sphere and disk geometry,50 and the
topological part, γ , has been reported to be consistent, albeit
not in perfect agreement, with the theoretical predictions.
However, the limitations of these geometrical setups make
it very hard to verify whether the scaling regime (2) is reached

or if the approximate agreement with theory is accidental. In
addition, there are large finite-size effects on the disk due to the
(large) physical edge of the system. Here we revisit this issue
using the torus setup that allows for superior control of the
entanglement scaling properties as demonstrated for Abelian
FQH states in Ref. 21. This method of partitioning implies
two disjoint edges between the blocks, each of length L1, so
the entanglement entropy should satisfy the following specific
scaling relation:

SA ≈ 2αL1 − 2γ + O(1/L1),

where γ is the topological entropy whose theoretical value is
ln(

√
4) for bosons and ln(

√
8) for fermions.10,11 (See Ref. 51
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FIG. 7. (Color online) The bosonic Moore-Read state entropy SA, its derivative dSA/dL1, and the intercept of its linear approximation
SA − L1 × dSA/dL1 as functions of L1 for N = Ns = 12 and N = Ns = 14 in the 11 sector, 02 + 20 sector, and 02-20 sector. The theoretical
value of the topological entropy 2γ = − ln 4 is indicated by the black line. In a rather large window of L1, the entropy properties of the
Moore-Read states in the 11 sector and 02 + 20 sector are quite similar.

for the scaling relation of entanglement entropy in various
physical systems.)

Figures 7 and 8 show the entropy SA, its derivative
dSA/dL1, and the intercept of its linear approximation,
SA − L1 × dSA/dL1, as functions of L1 in different sectors for
different system sizes. Arguably the boson results (Fig. 7) look
more promising. In this case, the entropy in the different sectors
differs for small L1, as can be expected from the thin-torus limit
where the 20 ± 02 states have an entropy of ln 2 while the 11
sector has zero entropy. However, from L1 ≈ 7 the entropies,
SA, in the three sectors are very similar (left panel), although
the more sensitive indicators dSA/dL1 (middle panel) and
in particular SA − L1 × dSA/dL1 (right panel) show some
differences. The density entropy in the bosonic Moore-Read
state appears to be about α ≈ 0.25. In the case of fermions
(Fig. 8), we find that the scaling regime is not yet reached,
even though one may make a crude estimate of the entropy
density, α ≈ 0.2.

The entropy density of a state is an indicator of how
challenging it is to simulate the state on a classical computer,
through a one-dimensional algorithm such as DMRG,52,53

which has already been applied to the FQHE problem,54 or
through recently proposed true two-dimensional algorithms
such as PEPS55 or MERA.56 The larger entropy densities

of Moore-Read states imply that they are more difficult to
simulate than the Laughlin states.

Even for our largest system sizes, where we have obtained
data for a range of L1 values (N = 14 for bosons and N = 16
for fermions), we cannot extract a reliable topological entropy
(see Figs. 7 and 8). However, we can observe some interesting
phenomena. First, the entropy densities α = dSA/d(2L1) of
Moore-Read states are significantly larger than that of the
fermionic Laughlin state at ν = 1/3 (Ref. 21) and the bosonic
Laughlin state at ν = 1/2.57 Second, the entropy properties of
bosonic Moore-Read states in the 11 sector and those in the
02 + 20 sector become similar at large L1. Their curves of SA,
dSA/dL1, and SA − L1 × dSA/dL1 overlap after L1 ≈ 10.

Let us also highlight some of the finite-size features. For
small L1, the finite-size convergence is essentially perfect and
the curves for different system sizes are on top of each other
in a given sector. At larger L1, the curves show a stronger
dependence on Ns . The Ns dependence shows up first for
the smallest system size and at increasing L1 for progressively
larger system sizes. This reflects the fact that, for any finite-size
system, at very large L1 the edges of block A get too
close and cannot be thought of as independent. In particular,
once L1 exceeds some value, we enter the thick-torus limit,
and the entanglement entropy goes to some (N -dependent)

FIG. 8. (Color online) The fermionic Moore-Read state entropy SA, its derivative dSA/dL1, and the intercept of its linear approximation
SA − L1 × dSA/dL1 as functions of L1 for Ns = 28 and 32 in the 0101 sector, the 0110 + 1001 sector, and the 0110-1001 sector. The theoretical
value of the topological entropy 2γ = − ln 8 is indicated by the black line. The cut in the 0011 ± 1100 sector is equivalent to a translation of
the cut in the 0110 ± 1001 sector. Therefore, we make an average over their entropies and only show the averaged results (referred to as the
0110 ± 1001 sector above).
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saturation value. Corresponding to the saturation of SA, the
derivative dSA/dL1 drops to zero after some L1. Therefore, the
appropriate scaling regime of the entropy, SA, may be expected
to be valid only in a window of L1, after the O(1/L1) term is
small enough but before SA saturates. This analysis was shown
to provide excellent results for Abelian FQH states in Ref. 21.
However, as already mentioned, we find that the finite-size
corrections to the scaling are too large to faithfully determine
the topological part, γ , of the entropy for the Moore-Read
state. Given the limitations encountered also in other geome-
tries, we conclude that an accurate and reliable determination
γ for the Moore-Read state remains a challenge for the future.

V. DISCUSSION

We have investigated the entanglement spectrum (ES) and
the von Neumann entropy of bosonic and fermionic Moore-
Read states on the torus. The ES on the torus is much more
intricate and the analysis thereof poses a number of challenges
compared to the sphere geometry where there is a single edge
and a unique ground state. One such challenge is that in a given
particle number sector, several towers appear due to possible
compensating charge transfer across the two boundaries.

The study of the entanglement in this geometry is neverthe-
less well motivated as it provides new insights, for instance
by connecting to the vicinity of the microscopically well
understood thin-torus limit, and also because it may provide
guidance for future studies of entanglement in other many-
body systems where no natural analog to the quantum Hall
sphere exists. In particular, the recently suggested fractional
Chern insulators41,42 are most naturally studied using periodic
boundary conditions, i.e., on a torus.

In this work, we have suggested a procedure in order to
resolve the problem of the nontrivial ground-state degeneracy
on the torus: we used exact diagonalization and chose
to calculate the entanglement in the pure (simultaneous)
eigenstates of H , T1, and T

q

2 . This is different from the
mixed-state recipe of Refs. 33 and 42, for which we expect a
superimposed entanglement spectrum and a shifted prediction
of the topological entropy γ .

For the ES, we found a tower structure similar to, but
significantly richer than, what was found earlier in the ES
of the Laughlin state. We used two complementary ideas
in order to disentangle the ES by extending the results of
Ref. 28 to non-Abelian states. The first approach is based
on a combination of two chiral CFT edges. Each of these is
individually similar to the edge spectrum previously extracted
from ES studies on the sphere. This interpretation is powerful
as it reproduces the entire ES through the assignment of
a few levels. It also reflects the intricate structure of the
correlations in the Moore-Read state: Even for one cut of our
system, edges corresponding to different topological sectors
with different counting rules combine to form towers. Our
second approach uses the adiabatic connection to the thin-torus
limit: A perturbation analysis away from the thin-torus states
yields the locations of the towers, and the counting rule of
each edge environment follows from a generalized exclusion
principle in the occupation number basis.

A further difficulty encountered when disentangling the
torus ES is the nonmonotonic dispersion that appears for

fermions at large L1, as the lack of a natural vacuum level at the
bottom/center of each tower severely increases the difficulty
of the assignment of the edge modes. In the present case,
this difficulty can be circumvented by following the smooth
dependence of the edge levels to the small L1 regime, where
the dispersion is always monotonic.

For the von Neumann entropy, we found that the area-law
entropy density, α = dSA/dL1 ≈ 0.20–0.25 (per magnetic
length), is larger than in the Laughlin states for both bosons and
fermions. However, the comparable smallness of α is neverthe-
less encouraging regarding the possibilities of simulating the
Moore-Read state using entanglement-based algorithms. Our
results also show that an accurate and reliable determination γ

for the Moore-Read state on the torus remains a challenge for
the future. It is likely that alternative methods, such as DMRG
in a cylinder setup, will be needed to reach this goal.

The generalization of the analysis given here for the
Moore-Read state to more generic non-Abelian FQH states
should be straightforward, but nevertheless interesting. The
generalization to fractional Chern insulators is more challeng-
ing, but is likely to be rewarding.
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APPENDIX A: HAMILTONIAN GENERATING
MOORE-READ STATES

The bosonic and fermionic Moore-Read states on the torus
are the unique zero-energy ground states of translational
invariant three-body interaction Hamiltonians

H =
∑
{k}

δ′
k1+k2+k3,k4+k5+k6

V{k}a
†
k1

a
†
k2

a
†
k3

ak4ak5ak6 , (A1)

where {k} = k1,k2,k3,k4,k5,k6, ak (a†
k) annihilates (creates) a

boson or a fermion in the state ψk in Eq. (2),

V{k} =
+∞∑

{s},{t}=−∞
δ′
s1,k1−k6

δ′
s2,k2−k5

P ({s},{t})

× exp

{
−2π2

L2
1

(
s2

1 + s2
2 + s1s2

) − 2π2

L2
2

(
t2
1 + t2

2 + t1t2
)}

× exp

{
iπ

Ns

t1(2k3 − 2k1 + 2s1 + s2)

}

× exp

{
iπ

Ns

t2(2k3 − 2k2 + s1 + 2s2)

}
,

and δ′ is the periodic Kronecker delta function with period Ns .
P ({s},{t}) is a certain polynomial of s1,s2,t1,t2, the exact form
of which depends on the targeted filling fraction.

We use exact diagonalization to obtain the ground states of
(A1) after choosing a proper form of P . Up to a constant factor,
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TABLE I. In this table, we analyze the counting rule of the edge environment AB in the 11 sector, which is 1,2,4,8,14, . . . at �k =
0,1,2,3,4, . . . .

�k = 0 �k = 1 �k = 2 �k = 3 �k = 4

1111111111|0000 1111111110|1000 1111111110|0100 1111111110|0010 1111111110|0001
1111111102|0000 1111111101|1000 1111111101|0100 1111111101|0010

1111110202|0000 1111110201|1000 1111110201|0100
1111111020|1000 1111111020|0100 1111111020|0010

1111111100|2000 1111111100|1100
1111020202|0000 1111020201|1000
1111102020|1000 1111102020|0100
1111111011|1000 1111111011|0100

1111110200|2000
1111110111|1000
1111111010|2000
1102020202|0000
1111102011|1000
1110202020|1000

when P = 1, (A1) can generate the bosonic Moore-Read states
at filling factor ν = 1, while when P = −(4π2)3(s2

1/L
2
1 +

t2
1 /L2

2)[(s1 − s2)2/L2
1 + (t1 − t2)2/L2

2], (A1) can generate the
fermionic Moore-Read states at filling factor ν = 1/2.

APPENDIX B: EDGE EXCITATION OF THE MOORE-READ
STATE

Compared with the Laughlin state, the edge excitations of
the Moore-Read state are richer. It has one branch of free
bosons and one branch of Majorana fermions obeying either
antiperiodic (B1) or periodic boundary conditions (B2).

For free bosons plus antiperiodic Majorana fermions, the
excitation spectrum is described by the Hamiltonian

H AP
edge =

∑
m>0

[Eb(m)b†mbm + Ef (m − 1/2)c†m−1/2cm−1/2],

(B1)
where b and b† (c and c†) are standard boson (fermion) creation
and annihilation operators, Eb(m) [Ef (m)] is the dispersion re-
lation of bosons (fermions), and the total momentum operator
is defined as K = ∑

m>0[mb
†
mbm + (m − 1/2)c†m−1/2cm−1/2].

The counting rule of the edge excitations, namely the number

of energy levels at each K , depends on the parity of the
number of fermions (−1)F ,F = ∑

m>0 c
†
m−1/2cm−1/2. For even

F , the counting rule is 1,1,3,5,10, . . . at �k = 0,1,2,3,4, . . .;
for odd F , the counting rule is 1,2,4,7,13, . . . at �k =
0,1,2,3,4, . . . . Here �k is defined as K − K0, where K0 is
the lowest momentum (K0 = 0 for even F and K0 = 1/2 for
odd F ).

For free bosons plus periodic Majorana fermions, the edge
excitation Hamiltonian is

H P
edge =

∑
m>0

[Eb(m)b†mbm + Ef (m − 1)c†m−1cm−1], (B2)

for which the total momentum is K = ∑
m>0[mb

†
mbm + (m −

1)c†m−1cm−1]. Through a similar analysis with that for the
antiperiodic case, one can get that the counting rule is
1,2,4,8,14, . . . at �k = 0,1,2,3,4, . . . for both even and odd
F = ∑

m>0 c
†
m−1cm−1.

The counting of each edge environment observed in our ES
should be consistent with one of the four sectors here before the
finite-size effect truncates the series after some �k depending
on the system size.

TABLE II. In this table, we analyze the counting rule of the edge environment DB in the 02 + 20 sector, which is 1,1,3,5,10, . . . at
�k = 0,1,2,3,4, . . . .

�k = 0 �k = 1 �k = 2 �k = 3 �k = 4

0202020202|0000 0202020201|1000 0202020201|0100 0202020201|0010 0202020201|0001
0202020200|2000 0202020200|1100 0202020200|1010
0202020111|1000 0202020111|0100 0202020111|0010

0202020110|2000 0202020110|1100
0202011111|1000 0202011111|0100

0202020200|0200
0202020102|0100
0202020020|2000
0202011110|2000
0201111111|1000
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APPENDIX C: THE COUNTING RULES OF EDGE
ENVIRONMENTS

Here we analyze the counting rules of the edge environment
AB in the 11 sector and the edge environment DB in

the 02 + 20 sector. The results are obtained by applying
the generalized exclusion rule on their thin-torus limit. All
possible edge excitations at each �k are listed in Tables I
and II.
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