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A decomposition of a molecular conformational space into sets or functions (states) allows for a re-
duced description of the dynamical behavior in terms of transition probabilities between these states.
Spectral clustering of the corresponding transition probability matrix can then reveal metastabilities.
The more states are used for the decomposition, the smaller the risk to cover multiple conforma-
tions with one state, which would make these conformations indistinguishable. However, since the
computational complexity of the clustering algorithm increases quadratically with the number of
states, it is desirable to have as few states as possible. To balance these two contradictory goals, we
present an algorithm for an adaptive decomposition of the position space starting from a very coarse
decomposition. The algorithm is applied to small data classification problems where it was shown
to be superior to commonly used algorithms, e.g., k-means. We also applied this algorithm to the
conformation analysis of a tripeptide molecule where six-dimensional time series are successfully
analyzed. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4830409]

I. INTRODUCTION

One challenging aspect in the simulation of biomolecules
is the high dimensionality of the corresponding conformation
space. The position states of a molecular system as individual
consecutive snapshots from a trajectory can be represented as
a set of points in the conformational space. Typically this con-
formational space is high-dimensional, which renders a rigor-
ous analysis in terms of individual states impossible. Under
the assumption, that the potential energy surface is separated
by well defined energy barriers, collections of similar states
(metastabilities) can be defined. In the conformational space
these metastabilities are characterized as subsets, where the
dynamical system spends a long time before it switches to an-
other metastability. Within each metastable set the dynamics
is fast mixing (cf. Fig. 1).

This set based point of view of metastabilities differs
from the classical definition of conformations as minima
of the free energy landscape because it also takes into ac-
count entropic barriers. Usually, there exist many more en-
ergy minima than metastabilities. Multiple minima can well
belong to one metastability if there are frequent transitions
between these minima. The identification of metastabilities
together with their life times and transition patterns is essen-
tial for the analysis of a system’s long term behavior. Ini-
tiated by the pioneering work of Dellnitz, Deuflhard, and
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Schütte, a multi-scale method, called conformation dynam-
ics, has been developed.1–4 Its main objective is the identi-
fication of metastabilities together with their life times and
transition patterns. This approach of partitioning the state
space and interpreting transition between these sets as a re-
alization of a Markov Chain (Markov State Models) has been
quite successful.5–14 In this mixed deterministic/stochastic ap-
proach, the dynamics is modeled as a Markov process in a dis-
cretized finite state space, which results in a nearly decompos-
able transition probability matrix. By considering the transi-
tion probabilities as similarities between the states, the appli-
cation of a cluster algorithm reveals the metastabilities. The
aggregation of single molecular configurations into a small
number of states in the molecule’s position space is necessary
for a large amount of configurational data obtained, e.g., from
molecular dynamics simulations where intuitive point-wise
clustering becomes impossible due to high complexity. If the
states are chosen in a naïve way, it might happen that one state
covers two or more metastabilities. When applying a clus-
ter algorithm relying on the transition probabilities between
the states only these conformations cannot be detected, since
the transition behavior within the states is disregarded. Thus,
the more states we use for the decomposition, the smaller the
risk to cover multiple conformations with one state. However,
since the computational complexity of most clustering algo-
rithm increases quadratically with the number of states, it is
desirable to have a small number of states. Moreover, the es-
timated transition probabilities might become statistically un-
reliable that the smaller the states and the fewer configurations
per state are available. In the last few years this problem has
been addressed by many authors combined with a strategy to
find the best trade off between accuracy and complexity.15–19

0021-9606/2013/139(19)/194110/11/$30.00 © 2013 AIP Publishing LLC139, 194110-1
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FIG. 1. Sketch of a potential energy along some reaction coordinate. The po-
tential has four local minima but only three metastable states for moderately
high temperature separated by the vertical dashed lines.

Based on a coarse decomposition of the state space, we
propose an adaptive scheme, which accounts for geometric as
well as for dynamical aspects of the states in each portion of
the decomposition. Our idea is to decompose the object space
� by a Voronoi tessellation, to build the transition probabil-
ity matrix based on these sets, and to apply the robust Perron
Cluster Cluster Analysis (PCCA+)6 in order to identify the
metastabilities. PCCA+ is the successor of the PCCA method
(3), where the primal version only allowed for a “hard” clus-
tering and the latter allows for a fuzzy clustering.20 At this
point our procedure is similar to the automatic state decom-
position algorithm proposed by Chodera et al.15 In contrast to
Ref. 15, we use an adaptive refinement scheme to detect and
refine exclusively those partitions that contain metastabilities.
This refinement is not only based on the geometric similarity
between objects in one cell, but also relies on intracell tran-
sition probabilities. Thus, only partitions that actually con-
tain more than one metastabilities will be refined. Thereby,
we avoid the risk of missing conformations that are covered
by the same state, while having a minimal set of partitions
at the same time. In the following we will first explain, how
the metastable clusters are derived from a given partitioning,
and subsequently describe the adaptive partitioning scheme in
detail.

II. STATE SPACE DECOMPOSITION BY MEMBERSHIP
BASIS FUNCTIONS

We seek for a clustering method that combines geomet-
ric and dynamic aspects. To do so a suitable decomposition
of the position space � is needed. In the literature (e.g.,
Ref. 3), a discretization of � into Voronoi cells is used to com-
pute transition probabilities between different subsets of the
position space. However, for our purposes such a discretiza-
tion is not sufficient, since only the dynamic aspects are mir-
rored, whereas the geometric aspects are unaccounted. This
is possible if the discretization of the position space � is not
based on sets but on membership functions having values be-
tween zero and one and thus allowing for the computation of
an overlap matrix providing the geometric information.

Let us consider a canonical ensemble (constant num-
ber of particles, constant volume, and constant temperature),

where the positions q and the momenta p of all atoms are
given according to the Boltzmann distribution:

π (q, p) ∝ exp(−βH (q, p)).

Here β = 1/kBT is the inverse temperature T multiplied
with the Boltzmann constant kB and H denotes the Hamil-
tonian function which is given by H (q, p) = V (q) + K(p),
where V (q) is the potential and K(p) is the dynamic en-
ergy. The canonical density can be split into a distri-
bution of momenta π (q) and positions η(p) where π (q)
∝ exp(−βV (q)) and η(p) ∝ exp(−βK(p)). In the forthcom-
ing we assume that the states {qi}i stem from a molecular
dynamics simulation (trajectory) being π distributed.

For the discretization step, we use n radial basis func-
tions with nodes {q̂1, . . . , q̂n} with the Gaussian similarity
measure exp (−α d(i, j)2) where the parameter α controls
the width of the neighborhoods and d(i, j ) = ‖qi − qj‖l2

=
√∑d

k=1(qik − qjk
)2. Following the partition of unity

method of Shepard21 we obtain

ϕi(qk) = exp(−α d(qk, q̂i)2)∑n
j=1 exp(−α d(qk, q̂j )2)

, i = 1, . . . n. (1)

The basis functions can be interpreted as membership func-
tions since they are non-negative

ϕi(q) > 0, ∀q ∈ �, i = 1, . . . , n, (2)

and form a partition of unity

n∑
i=1

ϕi(q) = 1, ∀q ∈ �. (3)

The basis function ϕi can be interpreted as a relaxation of a
Voronoi cell with center at q̂i . In the limit case as α → ∞
the Voronoi discretization is recovered. The shape parameter
α determines the overlap Mij between two basis functions ϕi

and ϕj defined as

Mij :=
∫
�

ϕi(x)ϕj (x)π (x)dx∫
�

ϕi(x)π (x)dx
≈

∑N
k=1 ϕi(qk)ϕj (qk)∑N

k=1 ϕi(qk)
=: K

(0)
ij .

(4)

The larger the α, the smaller is the overlap, as illustrated
in Fig. 2. The example is based on a small, artificial two-
dimensional (2D) data set that is partitioned by two basis
functions depending on different α values. The left part shows
how points in-between the two partitions share their member-
ship and thus create an overlap between the two soft parti-
tions, indicated by the orange color. In the middle we show
how the partition with large α becomes almost characteris-
tic (Voronoi cells). According to the colorization of the data
points, we have a very distinct separation and thus only a very
small overlap. In the right panel of the figure one can see the
partitioning with small α–value. Consequently, all data points
have almost the same membership values for both clusters,
indicated by the same color orange.

In the context of geometric clustering the membership
values of the basis functions represent the similarity of the
given data point qk to the current representative node q̂i with
respect to the similarity to the rest of the nodes, i.e., for each
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FIG. 2. Soft partitioning of a small, artificial data set by two membership functions. The center nodes q̂1 and q̂2 of the corresponding membership functions ϕ1
and ϕ2 are depicted only in the left picture as black crosses, but have the same position in all three data sets. In each picture the data points are colored by their
membership to a respective partition. Red for the upper left partition, yellow for the lower right partition, and orange for intermediate cases. From left to right:
α = 2, 100, 0.1.

state q ∈ � we calculate the relative similarity to all nodes
{q̂1, . . . , q̂n} (see Sec. I). Instead of seeking for a dynamic
similarity only, by using a Voronoi discretization, we intro-
duce the dynamic similarity which accounts for the geometric
as well as dynamic aspects between the different states. Be-
fore we explain our similarity indicator, we need to introduce
a time discretization parameter τ . Now and in the forthcoming
we assume that the states qi are given by a classical molecular
dynamics trajectory of a system, that is, a sequence of points
in the phase space which are connected in time with a time
step h (typically in the order of femtoseconds). By choosing
τ = ñh, ñ 	 1 we do not consider each state of the trajectory
but only every ñth step. Analogously to (4) we now can define
the dynamic similarity as K

(Lτ )
ij between two basis functions

ϕi and ϕj for a time lag Lτ as

K
(Lτ )
ij :=

∑N
k=1 ϕi(qk)ϕj (qk+L)∑N

k=1 ϕi(qk)
, (5)

where qk is the kth state of the system and qk + L is the
(k + L)th state of the molecular system. This indicator con-
siders the similarity of basis functions. More precisely it is an
estimate of the overlap between two basis functions. By nor-
malization the matrix K(Lτ ) is stochastic and thus the entries
K

(Lτ )
ij are bounded by 1. We now employ K(Lτ ) as a refinement

indicator in the following adaptive scheme.

III. ADAPTIVE ALGORITHM AND TRANSITION MATRIX

Since we use global basis functions, any initial parti-
tioning covers the complete state space �. In order to use
as few basis functions as possible, the nodes should be lo-
cated only in the relevant parts of the object space, i.e., parts
where many data objects are located. However, it is not pos-
sible to separate two different metastable sets in the process
of clustering if they are covered by only one basis function.
Therefore all relevant parts of the object space (i.e., all clus-
ters/metastabilities) must be covered sufficiently. That means,
we want to avoid partitions that are

� Redundant: strongly overlapping basis functions, since
they share the same substructure.

� Uninformative outsiders: small separated basis func-
tions, which contain only a very small amount of
data points and have a poor overlap with other partial
densities.

With the following locally adaptive partitioning algo-
rithm we aim to improve the initial selection of nodes and
thus find an optimal soft partition of the object space. The
main idea is to check each local basis function for the exis-
tence of further metastabilities and, if found, to refine the ba-
sis function by adding a user-defined number of s nodes that
represent the metastable sets.

For one specific basis function, ϕi, the algorithm has the
following structure:

1. Select all states qj with ϕi(qj) > ϕt(qj) ∀t 
= i.
2. Perform the k-means algorithm with s clusters on the

selected objects: Choose k cluster C = {C1, . . . , Ck}
which minimizes

k∑
j=1

min
q̄∈�

∑
qa∈Cj

‖qa − q̄j‖.

Select the states nearest to the k computed centroids
{q̄1, . . . , q̄k} as new temporal nodes {̃qi1, . . . , q̃is} (trials
for the center of new basis functions).

3. Compute the dynamic similarity matrix K(Lτ ) (5) based
on the temporal set of basis functions {ϕ̃i1, . . . , ϕ̃is} with

ϕ̃il(qk) = exp(−α d(q̃il , qk)2)∑s
j=1 exp(−α d(q̃ij , qk)2)

, l = 1, . . . , k.

4. Select from the trial nodes the ones for which

K
(Lτ )
ii > ρ, 1 − ε ∼ ρ < 1, i = 1, . . . , k,

where ε > 0 close to zero.
5. Replace the primal center node qi of the basis function

ϕi, by all accepted trial nodes.

After a successful iteration, the complete partitioning is
recomputed based on the updated list of nodes, and the above
algorithm is applied again to all newly added basis functions.
The iteration continues until no new basis functions are added.
The resulting transition probability matrix K(Lτ ) can now be
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used to detect metastabilities in the set of basis functions,
i.e., calculating a coarse grained transition probability matrix
Pc by applying spectral clustering (PCCA+) as described in
Sec. IV. We would like to give some detailed comments on
the proposed algorithm. If there are metastabilities within the
basis function, k-means will probably deliver center points in
different metastable regions. It might happen that the points
selected by the k-means routine represent molecular config-
urations with low statistical weights. Therefore, the objects
closest to the selected k-means center points are selected as
nodes for the temporal basis functions. Therefore it remains
to be checked whether the clusters proposed by the k-means
algorithm really separate different metastable sets. The k-
means algorithm will always deliver a local partitioning into
s clusters independent of the actual amount of metastabili-
ties covered by the basis function. Only in this case the ba-
sis function will be refined. For this purpose, we consider the
dynamic similarities between the temporal basis functions. A
new node qil generated by the k-means algorithm will only
be accepted if its temporal basis function has a self simi-
larity larger than a certain threshold ρ. To show the influ-
ence of the threshold ρ on the number of basis functions, we
performed simulations on another synthetic 2D data set with
three different thresholds (Fig. 3). The closer ρ approximates
one, the fewer basis functions are needed and the increase
of the number of basis functions is smaller than for lower
thresholds.

In order to interpret the entries of matrix KLτ as tran-
sition probabilities we have to minimize the overlaps be-
tween the basis functions (Voronoi tessellation). This can
be accomplished by setting α → ∞ such that each ba-
sis function ϕi becomes an indicator function, i.e., ϕi = 1Ai

where

1Ai
(q) :=

{
1 if q ∈ Ai

0 otherwise
.

Thus the set Ai corresponds to basis function ϕi. This allows
us now to compute the transition probabilities independently
of the shape parameter α which leads to the (set based) tran-
sition probability matrix P τ

ij :

P τ
ij ≈ #[qk ∈ Ai, qk+1 ∈ Aj ]

#[qk ∈ Ai]
, i, j = 1, . . . , N. (6)

On the basis of matrix Pτ we are now in a position to describe
the metastabilities as linear combination of the basis functions
{ϕi}i, i.e., each metastability CJ as a linear combination of the
basis functions {ϕi}ni=1:

CJ (q) =
n∑

i=1

GiJ φi(q), J = 1, . . . , nc. (7)

The matrix G relates the basis functions {ϕi}i to the confor-
mations (CJ)J, i.e., we seek for a linear combination of the
coefficients gJ = [G1J, G2J, . . . , GnJ] such that the dynamics
of the system shows a metastable behavior. More precisely,
the metastability criterion can be given by

P τ gJ ≈ gJ . (8)

IV. SPECTRAL CLUSTERING BY PCCA+
Having introduced the description of the metastable sets

as linear combinations of the sets {Ai}i by (7) and the metasta-
bility criterion by (8), we now aim at a coarse grained matrix

FIG. 3. (Left) Data set partitioned with three different thresholds. Black crosses are the center nodes of the basis functions. For threshold ρ = 0, 5/0.75/0.9 we
obtained 17/11/7 partitions. (Right) Number of basis functions in dependence of the number of iterations.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.133.152.56 On: Wed, 25 Nov 2015 08:47:43



194110-5 Haack et al. J. Chem. Phys. 139, 194110 (2013)

FIG. 4. Eigenvectors (a1, . . . , a1, b1, . . . , b1, . . . )T, (a2, . . . , a2, b2, . . . , b2,
. . . )T. . . of the transition matrix P. The rows of these eigenvectors (a1, a2, a3,
. . . ), (b1, b2, b3, . . . ) are piecewise constant and can be interpreted as vertices
of a simplex.

PC giving the transition probabilities between the metastable
sets, which can be described as a linear combination of the
(Ai)i. In earlier works, e.g.,22 the degree of membership of
each set (Ai) to a metastable state was confined to either one
(membership) or zero (no membership). This condition could
be relaxed6 and is briefly presented in the following.

In case of a decomposable Markov chain or, equiva-
lently, a disconnected similarity graph, an appropriate permu-
tation of objects according to their connectedness results in
a block-diagonal matrix Pτ with nC blocks. This matrix has
an nC-fold eigenvalue λ = 1. The corresponding eigenvectors
X = [x1, . . . , xnC

] are piecewise constant on the blocks and
can thus be used to identify the clusters. In fact, the rows of X
can be considered as vertices of an (nC − 1)-dimensional sim-
plex. Every object can be assigned to one of the nC vertices
and thus to one of the nC clusters (cf.6). Generally, the ma-
trix Pτ constructed from practical data is not decomposable.
However, if there are nC hidden clusters, P τ has a cluster of
eigenvalues 1 = λ1 > λ2 > . . . > λnC

> 1 − ε near the Per-
ron eigenvalue λ1 = 1.6, 23

The rows yi of the corresponding eigenvectors still nearly
form a simplex. Since the first eigenvector is always con-
stant, the rows can be considered as vertices of a (nC − 1)-
dimensional simplex, cf. Fig. 4.

The goal of PCCA+ is to identify the vertices of a sim-
plex σnC−1 such that all points yi are located within the sim-
plex. Then every point yi can be assigned to one of the nC

vertices and thus to one of the nC clusters by a certain mem-
bership vector gJ = [G1J, . . . , GnJ].

The identification of such a simplex is equivalent to find-
ing a non-singular transformation matrix A such that

G = XA

and

(1a) Gij ≥ 0 ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , nC}
(positivity),

(1b)
∑nC

J=1 GiJ = 1 ∀i ∈ {1, . . . , n}
(partition of unity).

Among the feasible transformation matrices we search
for a matrix A such that the resulting membership vectors gI

are as metastable as possible. Metastability is expressed by the
fact that the diagonal elements of PC are as close as possible

to 1 (the probability to leave a metastable set, given by the
sum of the off-diagonal elements, is as low as possible). It
has been shown that instead of maximizing the metastability a
maximization of the crispness of the membership functions is
also possible.24 This aims at a clustering which also allows for
an interpretation of PC as a Markov Chain. Crispness means
that the columns {G: j}j = 1, . . . , n should be as close to indicator
vectors as possible (crispness). We can measure this crispness
by

I (A; X,π ) = 1

nC

nC∑
I=1

〈gI , gI 〉π
〈gI , e〉π ≤ 1, (9)

where e denotes the vector with all entries equal to 1. The
closer I (A; X,π ) to one the more crisp is the decomposition
into metastabilities. In the PCCA+ algorithm this is achieved
by maximizing the objective function I (A; X,π ). One has to
maximize a convex function with linear constraints, which is
not a trivial task. However, the optimization problem can be
solved by the Nelder-Mead25 algorithm provided that a good
initial guess for A is available. This starting guess is obtained
by the inner simplex algorithm as described in Ref. 26. Once
the membership functions gi have been computed, one can
compute a coarse grained transition probability matrix Pc by
projecting the original matrix Pτ onto the metastabilities,27

Pc = (G�πDG)−1G�πDPG = A−1 �A, (10)

where πD denotes a diagonal matrix with the vector π on the
diagonal and � denotes a diagonal matrix with the eigenval-
ues λ1, . . . , λnC

on the diagonal. The matrix Pc is not nec-
essarily a stochastic matrix because it can get negative en-
tries when the membership functions χ i are far from being
characteristic. However, Pc has row sum one and is the cor-
rect propagator for densities restricted to the metastabilities.27

In contrast to Pτ , a set-based transition matrix Pc preserves
the Markov property in a “better way”: Under the assumption
that the trajectory reaches equilibrium within a conformation
(metastable subset) before exiting from it, the probabilities
of transitions to any other conformation are independent of
all but the previous conformation, i.e., there is no memory of
earlier conformations. Only if this condition is met, the dy-
namics can be modeled by a Markov chain which allows for
long time simulations.15, 28–31 For critical remarks on the va-
lidity of such models, see Ref. 32.

Since the number of clusters nC is unknown in advance,
it is recommended to run the cluster algorithm several times
with different input values for nC and to choose the “best”
solution. Since I (A; X,π ) ≤ 1, we choose the number nC for
which I (A; X,π ) is maximal.

V. EXAMPLE

A. Geometric clustering of simple 2D examples

A common practice to characterize newly derived clus-
tering algorithms is to use simple two-dimensional data sets.
In contrast to complex high-dimensional data sets, artificial
2D examples can be directly represented in terms of two-
dimensional scatter plots, which is particularly useful for
the comparison of different cluster algorithms. To evaluate
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the presented adaptive spectral clustering (ASC) algorithm
we applied it to several classification problems and com-
pared the results with the k-means (KM)33 and the common-
nearest-neighbor-cluster (CNN)34 algorithm, which is a mod-
ified variant of the Jarvis-Patrick algorithm.35 It is based on
the local data-point density around a certain point i. In con-
trast to the original Jarvis-Patrick algorithm, the local den-
sity is measured by the number of common nearest neighbors
within a certain cut-off distance from that point i. All three
clustering algorithms have been applied with varying param-
eters to each of the synthetic data sets to gain optimal re-
sults for any of the algorithms. For the CNN, both parameters,
the nearest-neighbor-number cutoff and the nearest-neighbor-
distance cutoff, had to be defined by the user prior to cluster-
ing. With regard to the adaptive spectral clustering, the thresh-
old ρ was kept fixed at 0.9.

We created five synthetic 2D data sets that represent com-
mon geometrical classification problems. The data sets have
been initially seeded with 5 nodes, and extended to 15–25 ba-
sis functions by adaptive partitioning. Based on the soft par-
titions, the data sets were clustered by PCCA+. Note that the
classification of these examples is solely based on geometric
similarity (4). A combination of dynamic and geometric sim-
ilarity will be presented in Sec. V B when applying our algo-
rithm to a conformational analysis of a tripeptide molecule.
The results of each clustering algorithm applied to the test
data sets are shown in Fig. 5. All three cluster algorithms suc-
cessfully clustered the first data set. For the remaining ones,
CNN and ASC gave similar results, whereas k-means could
not resolve the underlying clusters.

Obviously our adaptive spectral clustering algorithm is
capable of handling typical geometrical classification prob-
lems, like spherical shapes as well as elongated structures.
More importantly, for all test cases our adaptive partitioning
scheme decomposed the state space, such that all hidden clus-
ters could by successfully identified by the subsequent clus-
tering algorithm regardless of shape and structure. We thus re-
ceive a soft partition of the state space that sufficiently covers
all clusters/metastabilities with a minimal set of membership
basis functions. The obtained set of basis functions can be
subsequently used for geometric clustering, as done here with
simple 2D examples; or for dynamic clustering as discussed in
Sec. III and exemplified in Sec. V B. Thereby, the clustering
is performed on n � N basis functions, instead of a complete
similarity matrix N × N that is typically needed for spectral
clustering, with N and n being the number of states and basis
functions, respectively, c.f. Eqs. (1)–(4). Hence, the adaptive
spectral clustering has a significantly reduced computational
complexity, while obtaining the same or even slightly better
results compared to other established clustering methods, like
k-means or CNN.

B. Application: Conformations of model tripeptide

1. Choice of model system

As another application of the clustering algo-
rithm, we study the conformational dynamics of
ZAibProNHMe (benzyloxycarbonyl–aminoisobutyryl-L-

prolyl-methylamide) tripeptide molecule (see Fig. 6) as a
model system for the adaptive algorithms introduced above.
For this molecule a relation between the conformational
structures and their mid–IR spectra has been established
previously by means of density functional theory (DFT) and
normal mode calculations36, 37 and also preliminary work on
adaptive spectral clustering has been published in Ref. 38.
In addition, the reason for this choice is that sequences of
the rare amino acid Aib (α aminoisobutyric acid) and Pro
(proline) are of considerable pharmaceutic interest as β sheet
breakers in antibiotic peptides.39, 40 For example, an Aib-Pro
sequence occurs at the amino terminal of alamethicin, an
antibiotic produced by trichoderma fungi, which can act as
a voltage-dependent ionophore in cell membranes. Aib-Pro
sequences are also found in other peptaibols which are used
to reduce bacteria and fungal plant pathogens in the soil.41

The combination of the two methyl groups (in Aib) and the
steric restrictions introduced by the pyrrolidine ring (in Pro)
causes a strong competition between γ (C7 ring) and β (C10

ring) turn structures in ZAibProNHMe,39 see Fig. 6, which
are found at similar energies.36–38

2. Minimum energy structures

In the present work the ZAibProNHMe peptide in vacuo
is modeled in terms of the Merck Molecular Force Field
(MMFF).42, 43 The parameterization is achieved with the help
of the tool EPOS, which is a part of the amiraMol libraries.44

As a first step to characterize the conformational landscape,
minimum energy structures have been obtained using the con-
jugate gradient method,45 starting from the minimum energy
conformations of our previous DFT calculations.37 Our re-
sults are given in Table I where we use the notation of Refs.
36 and 37. The γ (A) and β (I, II’) turn structures differ
mainly in the ψ2 angle while up- and down-puckering of the
pyrrolidine ring (U, D) can be distinguished from the val-
ues of the angles χ1, χ2. Furthermore, the various A struc-
tures (A1, A2, . . . ) differ essentially in their Aib orienta-
tions specified by torsion angles φ1, ψ1 where primed and
unprimed structures denote sign changes of those angles. All
major classes of conformations found in our previous quan-
tum chemical DFT based calculations (see Table I and sup-
plementary material of Ref. 37) also represent local minima
of the MMFF model, with very similar values of the di-
hedral angles. Even the relative energies are in most cases
within a few kJ/mol from the previous DFT results, as indi-
cated in the last column of Table I. Notable exceptions are
the II’bU and the A3bU, A5bD, A5’bD, and A6’bD struc-
tures where the MMFF energies are more than 10 kJ/mol
higher than the corresponding DFT values. Of particular im-
portance is a rather broad basin encompassing A1bD, A2’bD,
IbU, and IbD conformations, the first and last of which rep-
resent the global minima of the DFT and MMFF potential
energy surface. Within that basin, interconversion between γ

and β turn structures is expected to accessible at relatively
low energies. In addition to the A-type conformers with all
peptide bonds being in trans position, also D-type conformers
with the three ω angles being cis-trans-cis are found in our
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FIG. 5. Results of three different clustering algorithms on various sets of 2D test data. Left: k-means (KM), Middle: common-nearest-neighbor (CNN), Right:
adaptive spectral clustering algorithm (ASC) based on geometric similarity. The color of the data points indicates the assigned cluster memberships. Note that
for ASC the color of the points indicates the cluster with the highest degree of membership.
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FIG. 6. Primary structure of ZAibProNHMe model peptide including defini-
tion of dihedral angles.37

T = 900 K trajectory discussed below. They are not included
in our Table I because all φ, ψ Ramachandran angles deviate
by no more than a few degrees from those of the correspond-
ing A-type structures.

3. Clustering of trajectory data

The clustering methods introduced in Secs. II–IV shall
be illustrated here for a molecular dynamics simulation of the
ZAibProNHMe model peptide. To this end, a 39 ns trajec-
tory is generated using the ZIBgridfree software package.46

The size of the time step is h = 1.3 fs and we use every
60th step of the trajectories in the further data processing, i.e.,
τ = ñh = 78 fs. We employ the Nose-Hoover algorithm47, 48

to approximately sample a canonical (NV T ) ensemble for
T = 900 K. While we are aware that this temperature is not
realistic in peptide chemistry we have chosen this rather high
value because the barriers between different conformations
of a peptide are typically much higher in the gas phase than

TABLE I. Minimum energy structures for ZAibProNHMe model tripeptide
from MMFF force field: Dihedral angles (φ, ψ , χ in degrees (◦)) and relative
energies (�E in kJ/mol). An (n = 1, 2, . . . , indicating different Aib orienta-
tions) are all-trans (ω0, 1, 2 ≈ 180) conformations of γ turn structures, where
the prime denotes an inversion of the signs of φ1 and ψ1. Classes I and II’
are β turn structures. U, D indicate up- and down-puckering of the Pro ring.
In all cases, the Z–cap is in b orientation. For comparison, DFT results from
Ref. 37 are shown in the last column.

Conformation φ1 ψ1 φ2 ψ2 χ1 χ2 �EMMFF �EDFT

A1bD 176 174 − 80 75 30 − 38 2.2 0.0
A2bD 60 46 − 81 76 30 − 38 3.9 2.9
A2′bD − 58 − 44 − 80 72 34 − 36 0.1 1.9
A2′bU − 60 − 41 − 74 77 − 11 30 10.5 1.7
A3bD 70 − 167 − 81 72 34 − 36 12.4 9.9
A3bU 70 − 167 − 75 76 − 13 31 24.3 13.1
A3b′D − 73 169 − 81 75 31 − 37 10.1 11.8
A4bD − 172 52 − 79 73 31 − 39 6.3 11.0
A4b′D 173 − 52 − 79 76 30 − 38 7.0 10.2
A5bD 77 − 101 − 83 68 34 − 38 28.5 13.1
A5b’D − 75 110 − 81 76 32 − 37 26.7 11.5
A6bD − 139 53 − 79 77 30 − 38 12.7 10.9
A6b′D 118 − 50 − 81 75 33 − 36 22.8 11.8

IbD − 56 − 40 − 81 − 9 32 − 37 0.0 1.9
IbU − 57 − 34 − 69 − 24 − 22 36 2.9 2.2
II′bD 72 − 169 − 83 51 36 − 37 12.9 11.7
II′bU 65 − 149 − 69 − 18 − 28 37 24.3 15.5

in aqueous solutions. In addition, when comparing with our
600 K trajectory (not shown here) we found that the 900 K
simulation displays not only more conformational freedom
but also a richer hierarchy of conformations which renders
this case more challenging for our clustering algorithms. The
clustering techniques are applied to the time series of the six
torsional coordinates ω0, φ1, ψ1, ω1, ψ2, ω2, see Fig. 6. We
omit here the Z–cap orientation as well as the ring pucker-
ing, partly to keep our model calculations not unnecessarily
complicated, but also because these degrees of freedom are
essentially independent of the other backbone torsional an-
gles, see our previous work.37 Furthermore, it is noted that φ2

is essentially blocked inside the Pro ring, see Fig. 6.
The extraction of torsional angles from the molecular tra-

jectory and the subsequent analysis by means of adaptive,
spectral clustering has been carried out by our software pack-
age “MetaStable” which is available via the SourceForge web
site.49 In the first step we examined the influence of the thresh-
old ρ (Sec. III) on the number of basis functions for the 900
K trajectory by setting the maximum number of iterations to
three and observing the number of basis functions (Fig. 7). We
started with 40 seed nodes in a Voronoi tessellation and used
a time lag of Lτ = 20 × 78 fs. As expected, the lower thresh-
old leads to more basis functions which is in good agreement
with the results from Sec. III. As can be seen in Figure 7 alter-
ing the threshold from 0.4 to 0.5 reduces the number of basis
functions drastically, since with larger threshold the criterion
for generating a new function becomes more demanding. We
also computed the second largest eigenvalue of the transition
matrix Pc, as an indicator for the inherent slowest time scale
in the dynamics. No clear trend of increasing or decreasing of
λ2 in dependence of the threshold or number of basis func-
tions could be observed. However, the second largest eigen-
value decreases with longer lag time Lτ as shown in Figure 7.
This result is in good agreement with the theory for a lag time
which equals the original time step τ of the trajectory, each
state would be a metastable state and thus λ2 = 1.

In the second step, the spectral clustering technique is
applied to approximately determine the eigenvectors of the
transfer operator and hence detect the metastable regions of
the conformational space spanned by the ZAibProNHMe tor-
sion angles. Here we use a partitioning of the peptide’s con-
formational space generated for a time lag of Lτ = 64 × 0.078
≈ 5 ps. Starting from 42 initial Voronoi seed functions, the
basis is adaptively refined leading to 153 basis functions after
3 iteration steps. Subsequently, we perform the metastability
analysis by means of the PCCA+ technique. The spectrum of
the corresponding transition matrix Pτ is shown in the upper
part of Fig. 8. The second eigenvalue, λ2 = 0.97887, imply-
ing a time scale of 234 ps, characterizes the slowest dynamics.
Separated by a small spectral gap, the following eigenvalues
λ3. . . λ9 are found between 0.92 and 0.72, with time scales be-
tween 60 and 15 ps. After another small gap, the eigenvalues
λ10. . . λ17 are lying between 0.67 and 0.56, with time scales
between 12 and 9 ps. After yet another, very pronounced gap,
the remaining eigenvalues are below 0.4, with time scales of
5 ps and below.

Next, we consider the metastability criterion, i.e., the ob-
jective function I (A; X,π ) versus number of clusters, cf. (9).
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It can be seen that this indicator has a decreasing tendency.
The two local maxima at nC = 10 and nC = 17 are based on
the fact that a decomposition into nC = 9 or nC = 13, 14,
15 appears to be unfavorable. Note that the maxima of the
objective function are approximately (but not exactly) coin-
ciding with the spectral gaps mentioned above. First, let us
consider the case of two clusters which represents the most
metastable decomposition. Inspection of the time series of
the torsional coordinates reveals that in the major cluster all
three peptide bonds are in trans position, ω = ±180◦, corre-
sponding to the all-trans structures of class A and I listed in
Table I. The minor cluster contains class D conformations
where the first and third peptide bonds are in cis position,
ω0 ≈ ω2 ≈ 0, ω1 ≈ ±180◦. Note that these conformations
do not play a role for peptides at room temperature but are
found here due to rather high temperature (T = 900 K) of our
test calculations. The weights of the two clusters are 0.887
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FIG. 8. Spectral clustering of 900 K/39 ns trajectory for ZAibProNHMe pep-
tide by PCCA+ technique. Upper part: Spectrum of transition matrix PC.
Lower part: Objective function/crispness of decomposition into metastable
sets. For clarity, only the first twenty states are shown.

and 0.113 which corresponds to a free energy difference of
about 15 kJ/mol (by simple Boltzmann inversion). The life-
times of the D-type structures are on the order of a few 100 ps,
thus qualitatively agreeing with the implicit time scale in-
ferred from the second eigenvalue of the transition ma-
trix. When choosing a decomposition into three clusters, the
D-type cluster splits up into two clusters with weights 0.084
and 0.029. While the former one still encompasses several,
unresolved D structures, the latter one is essentially centered
around the D2 local minimum energy structure (numbering of
Aib orientations in analogy to that of the A structures as given
in Table I). When choosing four clusters, the former D-cluster
spawns off a cluster around the D2′ minimum, with a statisti-
cal weight of 0.012 only. When further increasing the number
of clusters, also the major cluster encompassing the all-trans
structures decays into sub-clusters.

A typical case is the result for 10 clusters given in Fig. 9
where histograms of the most important dihedral angles (ω0,
φ1, ψ1, ψ2) of the peptidic backbone are shown. As can be
seen from the distribution of ω0 angles in the upper part of
the figure, the five leading (and the tenth) clusters have all
their peptide bonds in trans positions while for the remaining
ones ω0 (as well as ω2, not shown) are in cis position. Their
weights sum up to 0.889 and 0.111, almost in coincidence
with the results for only two clusters, which again confirms
that the trans(A)–cis(D) flipping of the planar peptide bonds
arrangements gives rise to the main metastability, i.e., the one
with the longest implicit time scale. The lower part of Fig. 9
reveals that all ten clusters exhibit rather broad distribution of
ψ2 angles, encompassing both the regimes around ψ2 ≈ 80
(γ turn, type A, D) and ψ2 ≈ 0 (β turn, type I) so that these
classes cannot be uniquely resolved on the basis of the present
clustering of the torsional degrees of freedom. However, clus-
ter #5, preferentially (but not exclusively) located in the type
I regime, presents the only exception. In contrast, the assign-
ment of the cluster memberships based on the Ramachandran
angles φ1, ψ1 is essentially clear. While the leading all-trans
cluster #1 is still delocalized, clusters #2, #3, #4 can be as-
signed to A2′, A4′, and A2 structures, respectively, where #2
appears to contain also type I structures. This observation that
A2′ and I cannot be clearly distinguished in our clustering
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procedures is in agreement with the broad basin and low bar-
riers in the potential energy surface.37 A similar picture arises
for the cis structures (D-type). While cluster #6 corresponds
to an unresolved mixture of several D structures, it is straight-
forward to assign clusters #7, #8, and #9 to minimum energy
structures D2, D4′, and D2′, respectively.

Although not explicitly included in our metastability de-
composition of the (torsional!) state space, it is also instruc-
tive to look at the histogram of the O–H distances characteriz-
ing the formation of γ or β turns through hydrogen bonds by
closing 7– or 10–membered rings, respectively. Fig. 10 shows
that most of the ten conformations detected in the metasta-
bility analysis of the torsional angles display wide distribu-
tions, encompassing both H–bonded (≈0.2 nm) as well as
non-bonded situations. Nevertheless, a few tendencies can be
seen in the upper part of that figure: Out of the all-trans clus-
ters, #2 can form β turns, while #3, #4 as well as the D-type
(cis) conformations (#6. . . #9) are incompatible with this sec-
ondary structure element. The situation for the formation of γ

turns is even less clear, see lower part of Fig. 10. While clus-
ters #1. . . #8 do not exhibit clear preferences, only clusters #5
and #10 are found at rather large O. . . H distances of 0.6 nm
where H–bonding can be safely ruled out.

Finally, it is mentioned that a further refinement of the
decomposition beyond the case of ten clusters displayed in
Figs. 9 and 10 does not necessarily lead to more detailed in-
formation. We investigated the situation for 17 clusters (local
maximum of objective function in lower part of Fig. 8)
and found an essentially unchanged picture. The important
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trajectory of ZAibProNHMe peptide, decomposed into 10 clusters. O. . . H
distance corresponding to formation of a β turn (upper) and a γ turn (lower
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the legend.

conformations are centered at the same potential minima as
in the 10 cluster analysis, with the only exceptions of two
new clusters centered in the A4 and D4 regions. All additional
clusters bear statistical weights below 0.001 and are thus of no
statistical significance.

In summery, our scheme clearly reveals relations between
the identified metastable clusters and minimum energy struc-
tures of the molecular system. Moreover, by changing the
number of clusters , nC, a hierarchy of clusters has been identi-
fied. A coarse clustering only shows basins separated by high
free energy barriers, while a fine clustering resolves more and
more local minima of the PES.

VI. CONCLUSION

For high-dimensional data sets containing many single
data points an adaptive clustering approach is proposed. This
means that the high-dimensional space is decomposed into
subsets and these subsets are assigned to different clusters.
The decomposition has to be fine enough to resolve the barri-
ers between the clusters and coarse enough to provide locally
enough statistical data to discriminate between densely popu-
lated and sparsely populated regions.

The main idea of our adaptive approach is to decide,
whether a given subset of the data space has to be refined
or not. Our approach is thus based on a discretization of the
state space the main problem of which is the curse of dimen-
sionality. While a method, which, e.g., is based on a systemat-
ical splitting of the space along its coordinates, would suffer
from this, our method circumvents a coordinate based split-
ting by using internal distances only. Solely the total number
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of sampled states, their pairwise distances, and the number of
metastabilities determine its run time.
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