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Abstract
In this paper, we present a systematic transition scheme for a large class of ordinary differ-

ential equations (ODEs) into Boolean networks. Our transition scheme can be applied to

any system of ODEs whose right hand sides can be written as sums and products of mono-

tone functions. It performs an Euler-like step which uses the signs of the right hand sides to

obtain the Boolean update functions for every variable of the corresponding discrete model.

The discrete model can, on one hand, be considered as another representation of the bio-

logical system or, alternatively, it can be used to further the analysis of the original ODE

model. Since the generic transformation method does not guarantee any property conser-

vation, a subsequent validation step is required. Depending on the purpose of the model

this step can be based on experimental data or ODE simulations and characteristics. Analy-

sis of the resulting Boolean model, both on its own and in comparison with the ODE model,

then allows to investigate system properties not accessible in a purely continuous setting.

The method is exemplarily applied to a previously published model of the bovine estrous

cycle, which leads to new insights regarding the regulation among the components, and

also indicates strongly that the system is tailored to generate stable oscillations.

Introduction
When modeling biological phenomena, different levels of abstraction can be used to capture
the mechanisms of the underlying system [1]. Ordinary differential equations (ODEs) are well
suited to describe interactions based on concentration changes and allow for detailed predic-
tions. However, due to the complexity of the models, it is often not possible to perform a global
analysis of dynamical properties. Additionally, the model behavior strongly depends on the
current parameter values such as rate constants, and the quantitative data necessary to identify
them is often lacking [2]. In this case, qualitative modeling, e.g., using Boolean formalisms,
constitutes a fruitful alternative. Herein, the system is described on a higher level of abstraction
strongly based on the network structure and a logical description of interaction mechanisms.
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While the coarseness of such models does not allow for high resolution of model output, it
does permit a much more global analysis of a system due to a finite state space and has shown
to be capable of uncovering fundamental characteristics and functionalities [3].

Common to all modeling formalisms is the fact that a model always constitutes a simplifica-
tion of reality, focusing on particular aspects of interest and neglecting details either by design
or simply due to lack of knowledge. Utilizing different modeling approaches in parallel may
therefore help to produce a more rounded picture of a system’s capabilities and to highlight
modeling artifacts (see e.g. [4–6]).

We aim at exploiting the strengths and weaknesses of ODE and logical modeling by using
them in concert. Taking the opposite direction as [7], we start from an ODE system and pro-
pose a method to derive a Boolean model offering a new point of view on the system without
having to repeat an explicit modeling process to obtain the more abstract model. The simplicity
of the Boolean representation allows for a much more comprehensive analysis of its dynamics
to complement the more local results obtained from the ODE system. A global attractor analy-
sis as often infeasible for ODE models, e.g., allows to understand capabilities of the system in
terms of stable behavior and to uncover decision processes determining long-term dynamics.
In application, such insights are of particular interest when analyzing differentiation or multi-
stable response systems [8, 9]. The easy adaption of such models to knock-out/in scenarios
facilitates extensive perturbation studies [10]. In addition, the coarser representation allows for
easier identification of structural properties that are fundamental for specific dynamical effects,
e.g., based on a feedback circuit analysis [11].

The main result of our paper is a new, systematic and simple method to obtain a Boolean
from an ODE model for the purpose of enhancing system analysis. Existing approaches of
relating continuous and logical models can roughly be divided according to two different goals.
In one research line, the interest lies in capturing the way system properties are conserved
when discretizing continuous models in a rigorous mathematical way. Here, good results can
be achieved when focusing on small classes of ODE models where the translation into a discrete
setting is rather straightforward [12]. In [13], a method is proposed to map continuous models
of biochemical control networks, in which the control functions are continuous homologues of
logical control functions, to discrete models. For a restricted subclass of dynamical systems, a
correspondence regarding certain qualitative dynamical features has been proven. Later, the
authors in [14] analyzed transitions of dynamics in randomly constructed ODE analogues of
random Boolean networks.

In other works, the emphasis is more on the application side, aiming at deriving discrete
models useful for system analysis. As in [15], such methods are often only described closely
intertwined with a case study. This leads to an individual solution that depends on many regu-
lation-based distinctions and steady state assumptions. In [15], the transformation from ODEs
to Boolean networks is done in a controlled way, keeping the dynamical properties in mind.
They find that the transition is possible for differential equations which have monotonic sig-
moidal functions with distinct upper and lower asymptotes. Finally, the author show that the
Boolean model reproduces the results of the initial ODE model.

In this paper, we do not focus on conservation of desired dynamical properties during the
translation process. Instead, we propose a systematic and thus easily accessible, step-wise pro-
cedure of translation with subsequent validation and analysis suitable for a large class of ODE
models interesting for application. Discretization of the continuous system is based on the
Euler method, a well-known tool for the numerical approximation of continuous dynamical
systems (see e.g [16] for a general reference and [17], Chapter 8, for a related application). We
only use the structure and monotonicity behavior of the right hand side functions of the ODEs
for directly deriving the discrete model. Since in general conservation of specific dynamical
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properties cannot be predicted a priori, we proceed with a validation step to check if at least the
properties of interest are preserved. This allows for the construction of feasible models without
the prerequisite of fulfilling specific mathematical assumptions in advance. Nevertheless, the
corresponding Boolean model preserves the qualitative biological information comprised in
the ODE model, namely the underlying network structure and the processing logic of regula-
tory effects, and thus includes the information that would be incorporated in a traditional bot-
tom-up modeling procedure for Boolean networks.

The validation step ensures that the derived Boolean model satisfies the given requirements
in terms of property conservation. It can be conducted utilizing Boolean-like biological data,
aiming at a model capturing all important biological observations. A different possibility is to
validate the Boolean with respect to the ODE model by generating data from the simulation of
the latter for the purpose of validation. In particular, this might be of interest if data on the real
system is lacking or if analysis of the Boolean model aims at providing pointers for a more tar-
geted analysis of the ODE model. When the system functionality of interest is governed by
qualitative regulation processes, as often the case, e.g., in differentiation, bistable switching or
signal processing, validation is very likely to succeed. Note that, even if validation would fail,
we always gain information on the system since the discretization procedure pinpoints pro-
cesses whose functionality crucially depends on certain quantitative processes. Analysis of the
Boolean model then concludes the procedure. As mentioned, the focus can either lie on gather-
ing new insights into the modeled system or aiming at a more comprehensive analysis of the
ODE model.

In the first part of this paper, we present the general approach to deriving a Boolean from a
given ODE model. Then, since the validation step depends on the availability of data as well as
on the intended purpose of the model, we describe some validation possibilities often of use in
application. Similarly, we shortly discuss possible analysis approaches for the discrete model to
round off the description of the method. To illustrate the procedure, we apply the approach to
a medium-sized model of the bovine estrous cycle, named BovCycle, that has been presented in
[18, 19]. Utilizing the generated Boolean model, we investigate stability, prerequisites for cer-
tain observed component activities, and the impact of self-regulatory effects. In contrast to
steady states, proving conservation of cyclic attractors in a purely mathematical setting is noto-
riously difficult. The proposed validation method demonstrates how to check the conservation
of oscillatory behavior and is suitable for both transient trajectories and attractors. It nicely
illustrates the potential of our more pragmatic approach in application.

Results
In this section, we present our procedure for deriving a discrete model from an ODE model.
We formulate assumptions for the ODE model (Step 0), and perform an Euler-like discretiza-
tion (Step 1) which leads to a Boolean model. We then propose strategies for validation (Step
2) and analysis (Step 3) of the discrete model according to the given specifics.

Proposed Method for the Discretization of an ODEModel
In the following, we describe the four steps of our discretization scheme.

Step 0: Preliminaries and Assumptions. As starting point, we consider an autonomous
system of ODEs in the form

y0ðtÞ ¼ f ðy; pÞ; yð0Þ ¼ y0

with time variable t 2 R�0, state vector yðtÞ ¼ ðy1ðtÞ; . . . ; ynðtÞÞT 2 R
n, model parameters
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p 2 R
q, and right hand side f : Rn�q 7!R

n. For simplicity of notation, the parameter vector p
will be omitted in the following.

Throughout the paper, we assume that all continuous variables yi(t) are normalized to the
interval [0, 1]. This can easily be achieved for every given ODE system by rescaling of model
variables and parameters. Accordingly, initial values y(0) are also non-negative and bounded
by one.

In addition, we assume that the right hand side functions f(y) = (f1(y), . . ., fn(y))
T consist

only of sums and products ofmonotone functions Fi,j(yj),

y0iðtÞ ¼ fiðFi;1ðy1Þ; . . . ; Fi;nðynÞÞ; i ¼ 1; . . . ; n; ð1Þ

whereby each monotone function Fi,j(yj) only takes values in [0, 1], which can be achieved by
appropriate shifting and scaling. An example for such a function Fi,j(yj) is the increasing Hill
function

Hþðyj;T; rÞ ¼
yrj

yrj þ Tr

with model parameters T and r. An example for the combination of two monotone functions is
the product of two species

Fi;jðyjÞ � Fi;kðykÞ ¼ yj � yk

as it typically occurs in the modeling of a bimolecular reaction. Monotonicity is not a strong
requirement in the context of modeling biological systems because classical mass action kinet-
ics as well as Michaelis-Menten kinetics, Goldbeter-Koshland kinetics or Hill kinetics all fall
into the class of monotone functions.

Step 1: Translating the ODE System into a Logical Model by an Euler-like Discretiza-
tion. In the discrete counterpart of the ODE model, each real-valued variable yi(t), i = 1, . . .,
n, is represented by a corresponding discrete variable xi. In the following, we will focus on
deriving a Boolean network from the ODE model, i.e., each variable xi takes values in the set {0,
1}, yielding the state space {0, 1}n.

For this purpose, the update function g : {0, 1}n ! {0, 1}n of the Boolean model needs to be
constructed. The goal is to capture the regulatory effects given by the ODE model, expressing
them in an explicit form describing the state transitions directly rather than the implicit form
of the ODE system. Clearly, the coarser nature of the logical model will emphasize certain
effects while smoothing out others. However, the qualitative behavior of the ODE model
should be preserved.

In our method, the expression “Euler-like step” refers to its similarity with the explicit Euler
method for the numerical integration of ODEs. The idea is to evaluate the difference between a
current state s of the ODE system and the state obtained by one Euler step, i.e., the state
obtained by approximating the trajectory starting in s by the tangent in s and following it for a
step of given length. In the discrete setting, we will discretize the impact of the regulators and
only evaluate whether the tangent in s indicates a value increase, decrease or no value change at
all.

To this end, we replace all continuous variables y1, . . ., yn in the right hand side functions
fi(y) by their discrete counterparts x1, . . ., xn. Thereby, every monotonically increasing function
Fi,j(yj) is mapped to xj, and every monotonically decreasing function Fi,j(yj) is mapped to (1 −
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xj). We thus define an operator

TðFÞ :¼
Id ; if F is monotonically increasing;

1� Id ; if F is monotonically decreasing;

(

and map the right hand sides fi(y1, . . ., yn) in Eq (1) to discrete counterparts hi(x1, . . ., xn),

fiðFi;1ðy1Þ; . . . ; Fi;nðynÞÞ7!fiðTFi;1ðx1Þ|fflfflfflffl{zfflfflfflffl}
x1 or 1�x1

; . . . ;TFi;nðxnÞ|fflfflfflffl{zfflfflfflffl}
xn or 1�xn

Þ ¼: hiðx1; . . . ; xnÞ;

for all i = 1, . . ., n.
Note that the values of the thus defined functions hi : f0; 1gn ! R depend not only on the

values of the Boolean variables x1, . . ., xn, but also on the model parameters p. Depending on
these values, hi(x) = hi(x1, . . ., xn) can either be negative, positive, or equal to zero. The sign of
hi(x) then determines the update rule for the Boolean variables. The update function g is
defined as g : {0, 1}n ! {0, 1}n with

gi : f0; 1gn ! f0; 1g : x 7!giðxÞ :¼

1 ; if sgnðhiðxÞÞ > 0

xi ; if sgnðhiðxÞÞ ¼ 0

0 ; if sgnðhiðxÞÞ < 0

8>>><
>>>: ; i ¼ 1; . . . ; n ð2Þ

This can be interpreted as an Euler discretization step yielding the successor state xk + 1 for a
current state xk in the form

xkþ1
i ¼ giðxkÞ ¼ xki þ_ sgnðhiðxk1; . . . ; xknÞÞ;

where þ_ denotes the operation 0þ_ ð�1Þ ¼ 0 and 1þ_ 1 ¼ 1 and the usual addition in all other
cases.

Remark: Step 1 can be applied in a generic manner to all ODE models satisfying the given
conditions and results in a fully specified Boolean model. The following two steps, validation
and analysis of the Boolean model, are highly dependent on the available data and the intended
purpose of the model. Consequently, we aim at illustrating the two steps by discussing possible
goals and well-established techniques.

Step 2: Validation of the Boolean Model. As mentioned before, the Boolean model can
on one hand be considered as another representation of the biological system or, alternatively,
it can be used to complement the analysis of the original ODE model. Depending on the pur-
pose, two different data sources can be used to validate the model. In the first case, one should
use available experimental data from the biological system of interest. In this case, the Boolean
model, regardless of its construction, is in some sense uncoupled from the ODE model. The
validation proceeds just as in the case of a model directly constructed from biological data.

In the second case, one should check whether the Boolean model conserves the behavior of
the corresponding ODE model, or at least specific aspects of the behavior deemed to be of cen-
tral interest. Note that we generally cannot ensure such a conservation based on the formal
relation between the two models, as is possible to mathematically prove under more rigorous
conditions [13, 14]. In this case simulated data from the ODE can be used for the validation
procedures. Note that in general one would use simulations that are a good fit to the experi-
mental observations underlying the ODE model, so indirectly this amounts to a validation
according to the biological observations as well.

For the validation we concentrate on the dynamical behavior of the model, i.e., its state tran-
sition graph. Here, we consider the asynchronous update strategy to derive the state transitions
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(see Materials and Methods). This update strategy can be viewed as an over-approximation of
the system behavior since it takes all possibilities for time delay orderings of regulatory pro-
cesses into account. The result is a non-deterministic representation, which has been shown to
include highly realistic trajectories [17].

We now shortly describe two validation strategies particularly useful in application. For
both strategies, either data originating from lab experiments or from the simulation of the
ODE model can be utilized.

One common approach exploits time series data. Within the discrete modeling formalism,
we can utilize time series measurements as well as more qualitative observations, e.g., a
sequence of activation events. Whenever a time series with quantitative measurements is avail-
able, we first need to discretize it. For a discussion of suitable discretization methods see [20,
21] and references therein. A discrete time series can be seen as a sequence of states that the
system needs to visit in the given order. Additional constraints can be formulated to pose more
strict demands on the trajectory, e.g., that component values are not allowed to oscillate
between measurements or that the trajectory does not exceed a certain length. To validate the
model we thus check whether the model is capable of generating such a trajectory. This can be
done very efficiently using formal verification methods (see e.g. [22]).

Another type of data that is readily exploited for validation of discrete models is data from
knockout or knock-in experiments. Here, the Boolean model is easily adapted to the perturbed
system by fixing the update function of the over- or under-expressed components to the corre-
sponding value [3]. The altered and the non-perturbed model dynamics can then be compared
with the experimental observations, e.g., with respect to steady state behavior. Similarly, differ-
entiation capabilities of a system, e.g., represented by bi-stability, can be verified by checking
for corresponding attractors of the model.

If validation fails, the next step is to pinpoint the problematic aspects of the model (see e.g.
[3, 22] for possible approaches). Comparison with the underlying ODE model can help to iden-
tify mechanisms dependent on gradual responses, e.g., concentration gradient dependent pro-
cesses, that can not be easily captured in a Boolean setting.

Correcting the model, e.g., by adapting the update function of a specific component or add-
ing components to achieve a finer resolution, can then yield a model capable of generating the
observed behavior that can be used for further analysis of the biological system. Naturally, the
necessary changes need to be analyzed in light of their biological interpretation. Usually, many
different changes are possible, and adapting the model can be seen as hypothesis generation for
not fully understood mechanisms that need to be more closely investigated experimentally.

Step 3: Analysis of the Boolean Model. Once the Boolean model is validated, it can be
analyzed with respect to the properties of interest. Again, we give some examples of analysis
methods that are particularly useful in application.

First, analysis of the network structure can be conducted utilizing the dependency graph of
the Boolean model. Edges in this graph represent component interactions with an observable
impact in the model dynamics (see Materials and Methods). Comparison with the dependen-
cies as captured in the ODE model highlights essential regulatory effects while uncovering oth-
ers not of importance for generating the qualitative dynamical characteristics. A higher level
structural analysis focuses on the feedback circuit functionality which allows to relate subnet-
works to important dynamical phenomena such as multistability and oscillations [11].

With respect to the dynamical behavior, analysis as well as validation can be focused on spe-
cific trajectories, but also on global properties [3]. Commonly, an attractor analysis is con-
ducted to obtain an overview of the possible asymptotic behavior. Additionally, a perturbation
analysis, both concerning temporary as well as maintained perturbations, often uncovers sys-
tem characteristics related to robustness and mechanisms governing decision processes.

Complementing ODE-Based System Analysis Using Boolean Networks
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All mentioned methods have been implemented in various software packages, e.g., GINsim
[23] and BoolNet [24]. Sophisticated algorithms for finite transition systems utilizing, e.g.,
symbolic encodings allow for very efficient analysis. As already discussed, this can provide a
much more comprehensive view of the system dynamics than can be achieved in the ODE set-
ting alone. On the one hand, this might yield possibilities to refine the ODE model analysis,
e.g., by discovering additional attractors. These might then also be found in the ODE model
when exploiting the rough information about their position in state space derived from the dis-
crete representation. On the other hand, comparison and integration of the results obtained
from both models gives a much more rounded picture of the design and functionality of spe-
cific model mechanisms as well as a clearer understanding on the system level.

Application to the Model BovCycle
We now apply the above described scheme to the ODE model BovCycle [19] of the bovine
estrous cycle. The model describes the growth and decay of the follicles and the corpus luteum,
as well as the change of the key reproductive hormones, enzymes, and processes over time. It
generates hormone profiles of successive estrous cycles with several follicular waves per cycle.
The model consists of 10 ODEs and 38 parameters and is described in more detail in the Mate-
rials and Methods section.

Step 0: Preliminaries and Assumptions. The model is an autonomous system of ODEs
normalized in such a way that all variables take values in [0, 1]. This has been achieved as in
[15] by running a simulation of the unscaled ODE system over a time interval I and then using
the maximum values ymax

i ¼ maxt2IyiðtÞ to rescale all variables to yi=ymax
i .

The right hand sides include only terms representing mass action or Hill kinetics, thus they
consist only of sums and products of monotone functions taking values in [0, 1]. Hence, we
can proceed with Step 1.

Step 1: Translating the ODE System into a Logical Model by an Euler-like Discretiza-
tion. The discrete functions hi(x) take the following form:

hGnRHðxP4; xE2; xGnRHÞ ¼ mGnRH
E2;P4 � ð1� xP4Þ � xE2 � cGnRH � xGnRH;

hFSHðxInh; xFSHÞ ¼ mFSH
Inh � ð1� xInhÞ � cFSH � xFSH;

hLHðxP4; xGnRH; xLHÞ ¼ mLH
GnRH;P4 � ð1� xP4Þ � xGnRH � cLH � xLH;

hFollðxFSH; xP4; xLH; xFollÞ ¼ mFoll
FSH � xFSHð1þmFoll

Foll � xFollÞ � ðmFoll
P4 � xP4 þmFoll

LH � xLHÞ � xFoll;
hCLðxLH; xFoll; xIOF; xCLÞ ¼ SFCL �mFoll

LH � xLH � xFoll þmCL
CL � xCL �mCL

IOF � xIOF � xCL;
hP4ðxCL; xP4Þ ¼ kP4CL � xCL � cP4 � xP4;
hE2ðxFoll; xE2Þ ¼ kE2Foll � xFoll � cE2 � xE2;
hInhðxFoll; xInhÞ ¼ kInhFoll � xFoll � cInh � xInh;

hPGFðxE2; xP4; xPGFÞ ¼ mPGF
E2 � xE2 � xP4 � cPGF � xPGF;

hIOFðxPGF; xCL; xIOFÞ ¼ mIOF
PGF;CL � xPGF � xCL � cIOF � xIOF:

To obtain the Boolean update functions for all components, we now need to evaluate the
signs of the function hi(x) for all Boolean states x. Apart from the component values xj appear-
ing on the right hand side of the function equations for each hi, the value of hi(x) depends on
the model parameter values, which are listed in the Materials and Methods section. The result-
ing truth tables for all Boolean functions are given in Tables 1 to 10.

Step 2: Validation of the Boolean Model. An important feature of the underlying biologi-
cal system is the oscillation of all components signifying the successive estrous cycles.
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Simulations of the ODE model reproduce this behavior. Now, to check whether the Boolean
model captures the behavior of the numerical model, we decided to validate it using the simula-
tions from the latter. This allows us to illustrate approaches to data discretization and to check-
ing conservation of trajectories similarly applicable to validation with experimental data. In a
first step, we derive a discrete time series from the ODE simulation. Secondly, we search the
asynchronous state transition graph of the Boolean model for a path matching this time series.

We start by running a forward simulation of the ODE model given in the Materials and
Methods section, thus providing an approximation of the continuous solution as a time series
of real-valued variables. As mentioned, several discretization schemes are available for convert-
ing continuous into Boolean data. Here, a threshold is chosen for each continuous variable yi.
Depending on whether the continuous variable is below or above this threshold at a certain
point in time, the value 0 or 1 is assigned to the corresponding binary variable xi for this time
point. In the following, the thresholds are called translation thresholds.

Table 1. Updates for xGnRH 2 {0, 1}.

xk
P4 xk

E2 xk
GnRH

hGnRH sgn(hGnRH) xkþ1
GnRH

0 0 0 0 0 0

0 0 1 −cGnRH -1 0

0 1 0 mGnRH
E2;P4

1 1

0 1 1 mGnRH
E2;P4 � cGnRH 1 1

1 0 0 0 0 0

1 0 1 −cGnRH -1 0

1 1 0 0 0 0

1 1 1 −cGnRH -1 0

doi:10.1371/journal.pone.0140954.t001

Table 2. Updates for xFSH 2 {0, 1}.

xk
Inh xk

FSH
hFSH sgn(hFSH) xkþ1

FSH

0 0 mFSH
Inh

1 1

0 1 mFSH
Inh � cFSH 1 1

1 0 0 0 0

1 1 −cFSH -1 0

doi:10.1371/journal.pone.0140954.t002

Table 3. Updates for xLH 2 {0, 1}.

xk
P4 xk

GnRH xk
LH

hLH sgn(hLH) xkþ1
LH

0 0 0 0 0 0

0 0 1 −cLH -1 0

0 1 0 mLH
GnRH;P4 1 1

0 1 1 mLH
GnRH;P4 � cLH 1 1

1 0 0 0 0 0

1 0 1 −cLH -1 0

1 1 0 0 0 0

1 1 1 −cLH -1 0

doi:10.1371/journal.pone.0140954.t003
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Hill functions explicitly contain threshold values for some of the continuous variables. In
most cases, however, the same continuous variable occurs in several Hill functions, but with
different threshold values. Thus, some averaging must be applied. In addition, some variables
do not exert their influence via Hill functions but directly, e.g., in terms of mass action kinetics.
For these variables, their mean value over time can be used as threshold. Finally, the following
rules are applied to derive the translation thresholds.

Table 4. Updates for xFoll 2 {0, 1}.

xk
FSH xk

P4 xk
LH xk

Foll
hFoll sgn(hFoll) xkþ1

Foll

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 0 0

0 0 1 1 �mFoll
LH -1 0

0 1 0 0 0 0 0

0 1 0 1 �mFoll
P4 -1 0

0 1 1 0 0 0 0

0 1 1 1 �mFoll
P4 �mFoll

LH -1 0

1 0 0 0 mFoll
FSH 1 1

1 0 0 1 mFoll
FSHð1þmFoll

FollÞ 1 1

1 0 1 0 mFoll
FSH 1 1

1 0 1 1 mFoll
FSHð1þmFoll

FollÞ �mFoll
LH -1 0

1 1 0 0 mFoll
FSH 1 1

1 1 0 1 mFoll
FSHð1þmFoll

FollÞ �mFoll
P4 1 1

1 1 1 0 mFoll
FSH 1 1

1 1 1 1 mFoll
FSHð1þmFoll

FollÞ �mFoll
P4 �mFoll

LH -1 0

doi:10.1371/journal.pone.0140954.t004

Table 5. Updates for xCL 2 {0, 1}.

xk
LH xk

Foll xk
IOF xk

CL hCL sgn(hCL) xkþ1
CL

0 0 0 0 0 0 0

0 0 0 1 mCL
CL 1 1

0 0 1 0 0 0 0

0 0 1 1 �mCL
IOF -1 0

0 1 0 0 0 0 0

0 1 0 1 mCL
CL 1 1

0 1 1 0 0 0 0

0 1 1 1 mCL
CL �mCL

IOF -1 0

1 0 0 0 0 0 0

1 0 0 1 mCL
CL 1 1

1 0 1 0 0 0 0

1 0 1 1 mCL
CL �mCL

IOF -1 0

1 1 0 0 SFCL �mFoll
LH 1 1

1 1 0 1 SFCL �mFoll
LH þmCL

CL 1 1

1 1 1 0 SFCL �mFoll
LH 1 1

1 1 1 1 SFCL �mFoll
LH þmCL

CL �mCL
IOF -1 0

doi:10.1371/journal.pone.0140954.t005
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(i). For each variable, its average value over time is calculated.

(ii). For each variable that exerts an influence via at least one Hill function, the mean of the
thresholds in these Hill functions is calculated.

(iii). The mean between the values from (i) and (ii) or, if (ii) does not apply, only the value
from (i) is used as translation threshold.

Averaging in (iii) is reasonable because a Hill-threshold does not need to be fully reached by
a continuous variable in order to have a regulatory impact on the other variables. Based on

Table 6. Updates for xP4 2 {0, 1}.

xk
CL xk

P4 hP4 sgn(hP4) xkþ1
P4

0 0 0 0 0

0 1 −cP4 -1 0

1 0 kP4
CL 1 1

1 1 kP4
CL � cP4 1 1

doi:10.1371/journal.pone.0140954.t006

Table 7. Updates for xE2 2 {0, 1}.

xk
Foll xk

E2 hE2 sgn(hE2) xkþ1
E2

0 0 0 0 0

0 1 −cE2 -1 0

1 0 kE2
Foll 1 1

1 1 kE2
Foll � cE2 1 1

doi:10.1371/journal.pone.0140954.t007

Table 9. Updates for xPGF 2 {0, 1}.

xk
E2 xk

P4 xk
PGF hPGF sgn(hPGF) xkþ1

PGF

0 0 0 0 0 0

0 0 1 −cPGF -1 0

0 1 0 0 0 0

0 1 1 −cPGF -1 0

1 0 0 0 0 0

1 0 1 −cPGF -1 0

1 1 0 mPGF
E2 1 1

1 1 1 mPGF
E2 � cPGF -1 1

doi:10.1371/journal.pone.0140954.t009

Table 8. Updates for xInh 2 {0, 1}.

xk
Foll xk

Inh hInh sgn(hE2) xkþ1
Inh

0 0 0 0 0

0 1 −cInh -1 0

1 0 kInh
Foll 1 1

1 1 kInh
Foll � cInh 1 1

doi:10.1371/journal.pone.0140954.t008
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these translation thresholds, the binary time series is generated, and repeating entries are
removed. The derived sequence of states is depicted in Fig 1, and explicitly given in Table 11.
Double-checking the discretization result, we also find that it matches the observed qualitative
behavior of the underlying biological system.

To check whether this state sequence is generated by the Boolean model, we search for a
path in the state transition graph that visits the given states in the correct order. Hereby, we
allow for intermediate states since not every system state might be captured by the time series.
This can be done, e.g., by using a path search in GINsim [23] or via model checking as in [22].
We find indeed that such a path exists, i.e., the Boolean model is capable of generating the
desired behavior.

Step 3: Analysis of the Boolean Model. We start with a structural analysis of the Boolean
model, having a closer look at the dependency graph (Fig 2) which is directly derived from the
listed truth tables of the Boolean functions. Looking at the equations for the functions hi
derived in Step 1, we see the potential for self-regulation for each component in the decay
terms incorporated in the differential equations.

However, a closer look at the truth tables shows that these decay terms in almost all cases
need not be explicitly modeled in the Boolean setting. As an example consider the regulation of
FSH, where in the left two columns of Table 2 the two variables Inh and FSH as given in the
ODE are listed. However, looking at the rightmost column and comparing the first two with
the last two rows, we can easily see that the value of the FSH update function only depends on
the value of Inh. The decay term included in the FSH ODE thus has no functional impact on
this level of abstraction.

There are two exceptions to this observation, the components Foll and CL. Further analysis
shows that both exhibit an observable self-activating effect, which again can already be seen in
the respective differential equations. Interestingly, both also display a self-inhibition, e.g., in the
state where all their other regulators are active, as can be seen in Tables 4 and 5. This indicates
that certain mechanisms driving the system function potentially rely on these self-inhibitory
effects that might be implemented either as an active inhibition or via a simple decay.

Next, we have a closer look at the shortest path in the state transition graph traversing the
time series given in Table 11. Most of the given states can be reached by a direct transition
from the preceding state, meaning there is an edge between these two states in the state transi-
tion graph. Exceptions are the second and the third transition in Table 11. Although the states
also only differ in one component value, it takes several intermediate steps to get from one
state to the next, i.e., there are only paths of length greater than 1 linking the states in the state
transition graph. In the second transition, e.g., we want to see a down-regulation of xLH. Com-
paring the current state with the truth table of the xLH-update function, we see that to obtain

Table 10. Updates for xIOF 2 {0, 1}.

xk
PGF xk

CL xk
IOF hIOF sgn(hIOF) xkþ1

IOF

0 0 0 0 0 0

0 0 1 −cIOF -1 0

0 1 0 0 0 0

0 1 1 −cIOF -1 0

1 0 0 0 0 0

1 0 1 −cIOF -1 0

1 1 0 mIOF
PGF;CL 1 1

1 1 1 mIOF
PGF;CL � cIOF -1 1

doi:10.1371/journal.pone.0140954.t010
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Fig 1. ODE simulation from themodel BovCycle and the generated discrete time series. This time
series is used to create a sequence of binary states for the validation of the discrete model. (a) Simulation
output for GnRH, FSH, and LH. (b) Simulation output for Fol, CL, and P4. (c) Simulation output for E2, Inh,
PGF, and IOF.

doi:10.1371/journal.pone.0140954.g001

Complementing ODE-Based System Analysis Using Boolean Networks

PLOS ONE | DOI:10.1371/journal.pone.0140954 October 23, 2015 12 / 20



this effect first down-regulation of xGnRH or up-regulation of xP4 needs to occur, which in turn
is driven by other regulators. Activity level changes in components other than xLH need then to
be reversed after adapting the activity of xLH to match the given measurement. Thus, we uncov-
ered a hidden oscillation of a subnetwork driving the system along the observed trajectory.
Similar results can be obtained for the down-regulation of xFoll in the third transition.

Lastly, we want to address a phenomenon observed in the continuous setting. A remarkable
property of the ODE model for the bovine estrous cycle is the stability of the limit cycle solu-
tion with respect to perturbations of state variables and parameter values. For the continuous
case, local stability has been proven [19], but the proof cannot be extended to show global sta-
bility. For the discrete model, however, we can perform a more global analysis.

To this end, we conducted an attractor analysis considering the state transition graph of the
model in its entirety using the software GINsim [23]. As a first result, we found that the net-
work does not have any steady states. This already indicates strongly that the system is tailored
to generate stable oscillatory behavior.

Further analysis shows that the system has a single attractor of high complexity, which con-
tains the time series given in Table 11 encoding the normal estrous cycle. Since the entire state

Table 11. Discrete sequence of states generated from the time series of the continuousmodel.

xGnRH xFSH xLH xFoll xCL xP4 xE2 xInh xPGF xIOF Event

1 0 1 1 0 0 1 1 0 0 xCL "
1 0 1 1 1 0 1 1 0 0 xLH #
1 0 0 1 1 0 1 1 0 0 xFoll #
1 0 0 0 1 0 1 1 0 0 xP4 "
1 0 0 0 1 1 1 1 0 0 xGnRH #
0 0 0 0 1 1 1 1 0 0 xE2 #
0 0 0 0 1 1 0 1 0 0 xInh #
0 0 0 0 1 1 0 0 0 0 xFSH "
0 1 0 0 1 1 0 0 0 0 xFoll "
0 1 0 1 1 1 0 0 0 0 xInh "
0 1 0 1 1 1 0 1 0 0 xFSH #
0 0 0 1 1 1 0 1 0 0 xE2 "
0 0 0 1 1 1 1 1 0 0 xPGF "
0 0 0 1 1 1 1 1 1 0 xIOF "
0 0 0 1 1 1 1 1 1 1 xCL #
0 0 0 1 0 1 1 1 1 1 xFoll #
0 0 0 0 0 1 1 1 1 1 xE2 #
0 0 0 0 0 1 0 1 1 1 xPGF #
0 0 0 0 0 1 0 1 0 1 xP4 #
0 0 0 0 0 0 0 1 0 1 xIOF #
0 0 0 0 0 0 0 1 0 0 xInh #
0 0 0 0 0 0 0 0 0 0 xFSH "
0 1 0 0 0 0 0 0 0 0 xFoll "
0 1 0 1 0 0 0 0 0 0 xInh "
0 1 0 1 0 0 0 1 0 0 xFSH #
0 0 0 1 0 0 0 1 0 0 xE2 "
0 0 0 1 0 0 1 1 0 0 xGnRH "
1 0 0 1 0 0 1 1 0 0 xLH "
1 0 1 1 0 0 1 1 0 0

doi:10.1371/journal.pone.0140954.t011
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space constitutes the basin of attraction for this attractor, the cyclic path encoding the time
series is reachable from every state of the system. This again indicates a high degree of stability,
since the system can recover its standard behavior after an arbitrary state perturbation.

The analysis steps shown here already yield several interesting results that could be investi-
gated much further. A circuit functionality analysis [25] could shed light on the question of
why there is only a single attractor and provide a better understanding of what modules of the
network may be responsible for certain characteristics of the stable oscillation. In other applica-
tions, one could also investigate the influence of e.g. knock-outs/ins on the model behavior to
identify key components. A comparative analysis of such scenarios of the logical and ODE
model might also further clarify the relation between the two models.

Materials and Methods
In this section, we introduce the concepts and notations of ordinary differential equation mod-
els and logical models. In addition, we briefly introduce the software GINsim that is used for
validation of the logical model. Moreover, we present the equations and parameter values for
the model BovCycle, which is used as illustrative example in the paper.

Fig 2. Dependency graph of the Boolean model for the bovine estrous cycle. This graph directly follows from the discrete updates calculated in Step 1,
which are derived from the right hand sides of the ODEmodel. Implemented in GINsim [23].

doi:10.1371/journal.pone.0140954.g002

Complementing ODE-Based System Analysis Using Boolean Networks

PLOS ONE | DOI:10.1371/journal.pone.0140954 October 23, 2015 14 / 20



ODEModeling
An ordinary differential equation (ODE) model is based on a state-vector yðtÞ ¼
ðy1ðtÞ; . . . ; ynðtÞÞ 2 R

n of time-dependent, continuous variables representing the concentra-
tions or activation levels of certain system components, e.g., chemical compounds, populations
of cells or animals. Their change over time is described by the first derivatives, y0(t) = f(t, y, p),
modeled by a parameter-dependent function f(t, y, p) = (f1(t, y, p), . . ., fn(t, y, p)). Here p 2 R

q

denotes the vector of (unknown) model parameters values.
ODEs have become a standard tool in systems biology to model complex systems enriched

in non-linear motifs like feedback and feed-forward loops [26]. Construction and analysis of
ODE models for such systems, however, face a number of difficulties. Two fundamental ques-
tions have to be addressed: the derivation of model equations and the estimation of model
parameters. For the construction of model equations, canonical modeling frameworks like
mass-action kinetic, Hill kinetics or power-law modeling are often used.

Parameter estimation, however, is a computationally intensive task that requires large
amounts of quantitative experimental data (dose-response-experiments, time series data, etc.)
and sophisticated optimization algorithms. Alternative methods for exploring the dynamical
behavior of ODE models are therefore desirable.

Logical Modeling
A logical network model is based on a set of discrete variables {x1, . . ., xn},n 2 N, representing
the network components {1, . . ., n}. Each variable xi can take values in a set {0, 1, . . .,mi},
mi 2 N, of integers interpreted as the different activity levels of the component. In the simplest
case, all variables only take values 0 and 1, resulting in a Boolean network. The state space of
the network is given by the set S : = {0, . . .,m1} × . . . × {0, . . .,mn}. All interactions between the
different components generating the system behavior are then modeled by a logical function g
= (g1, . . ., gn) : S! S, where each coordinate function gi captures the way component xi is regu-
lated in a given system state. The dependencies of the coordinate functions on particular com-
ponents are captured in a dependency or interaction graph where the vertices represent the
network components, and there is an edge from i to j if fj depend on xi. Edges can also carry a
sign indicating whether the regulatory effect is positive or negative (see e.g. [3]). It indicates the
existence of at least one network state, where the change in the regulator’s activity level gener-
ates a similar, in the case of a positive interaction, or opposite, in the case of a negative interac-
tion, effect on the target component.

The dynamics of the network can be represented by a finite directed state transition graph
with vertex set S and edges representing state transitions derived from g according to a certain
update strategy. The simplest strategy, called synchronous update, is to define the successor of
a state s as g(s). A strategy taking into account the different time delays associated to different
regulatory events is the so-called asynchronous update where only one component value is
changed per update step: In the Boolean case, we get that ŝ is a successor of s if there exists i 2
{1, . . ., n} such that ŝ ¼ giðsÞ 6¼ si and ŝ j ¼ sj for all j 6¼ i [27]. This results in a non-determin-

istic state transition graph usually comprising more realistic trajectories then generated by the
synchronous update.

Discrete Analysis Tools
All validation and analysis steps presented for the Boolean model of the bovine estrous cycle
can be conducted using GINsim [23], a software for simulation and analysis of qualitative
models. It is based on the multilevel logical formalism introduced in [27], which includes the
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Boolean formalism used in this paper. In GINsim, among other functionalities, the state transi-
tion graph of a model can be calculated and then analyzed using a number of tools. Included
are efficient algorithms for the computation of steady states, shortest path search in the state
transition graph and computation of the strongly connected component graph allowing to
identify cyclic attractors and basins of attraction.

The ODEModel BovCycle
As in humans, the bovine endocrine system consists of several glands and regulates the peri-
odic changes of multiple substances necessary for reproduction. In every cycle, hormones are
secreted from the hypothalamic-pituitary-gonadal axis into the bloodstream, where they dis-
tribute and influence several functions in the body. Their most important task in reproduction
is to regulate processes in the ovaries, where follicles and corpus luteum develop. These pro-
duce steroids that are released into the blood and from therein regulate the processes in the
hypothalamic-pituitary-gonadal axis. The complex interplay of these multiple components
generates the cyclic hormonal changes without external stimuli. The large feedback loop of reg-
ulations results in the hormonal cycle.

In the ODE model BovCycle, interactions between biological substances are mostly of regu-
latory nature and are modeled by Hill functions. An increasing Hill function stands for activa-
tion or stimulation, a decreasing Hill function for inhibition. Since Hill functions have a
sigmoidal shape, their approximation by discrete variables in a logical model is a reasonable
approach. The current model [19], which serves as an example for the discretization method in
this paper, contains 10 ODEs and 38 parameters. Model equations and the here used parameter
values are listed in Tables 12 and 13. The model represents a reduced version of a more com-
plex model published in [18].

Discussion
In this paper, we presented a generic method for translating an ODE into a Boolean model
based on an Euler approximation of the continuous behavior. This straightforward approach is

Table 12. Themodel BovCycle consisting of 10 ODEs and 38 parameters.

d
dt yGnRHðtÞ = mGnRH

E2;P4 � H�
P4;GnRH ðyP4ðtÞð ÞÞ � Hþ

E2;GnRH ðyE2ðtÞð ÞÞ � cGnRH � yGnRHðtÞ
d
dt yFSHðtÞ = mFSH

Inh � H�
Inh;FSHðyInhðtÞÞ � cFSH � yFSHðtÞ

d
dt yLHðtÞ = mLH

GnRH;P4 � H�
P4;LHðyP4ðtÞÞ � Hþ

GnRH;LH ðyGnRHðtÞð ÞÞ � cLH � yLHðtÞ
d
dt yFollðtÞ = mFoll

FSH � Hþ
FSH;FollðyFSHðtÞÞ � ð1þmFoll

Foll � Hþ
Foll;FollðyFollðtÞÞÞ

� ðmFoll
P4 � Hþ

P4;FollðyP4ðtÞÞ þmFoll
LH � Hþ

LH;OvulðyLHðtÞÞÞ � yFollðtÞ
d
dt yCLðtÞ = SFCL �mFoll

LH � Hþ
LH;OvulðyLHðtÞÞ � yFollðtÞ þmCL

CL � Hþ
CL;CLðyCLðtÞÞ

�mCL
IOF � Hþ

IOF;CLðyIOFðtÞÞ � yCLðtÞ
d
dt yP4ðtÞ = kP4

CL � yCLðtÞ � cP4 � yP4ðtÞ
d
dt yE2ðtÞ = kE2

Foll � yFollðtÞ � cE2 � yE2ðtÞ
d
dt yInhðtÞ = kInh

Foll � yFollðtÞ � cInh � yInhðtÞ
d
dt yPGFðtÞ = mPGF

E2 � Hþ
E2;PGFðyE2ðtÞÞ � Hþ

P4;PGFðyP4ðtÞÞ � cPGF � yPGFðtÞ
d
dt yIOFðtÞ = mIOF

PGF;CL � Hþ
PGF;IOFðyPGFðtÞÞ � Hþ

CL;IOFðyCLðtÞÞ � cIOF � yIOFðtÞ

The notation for the Hill functions Hþ=�
S1 ;S2

ðyS1 ðtÞÞ is an abbreviation for Hþ=�ðyS1 ðtÞ;T
S2
S1
; rS2S1

Þ, whereby
H�ðyS1

ðtÞ;TS2
S1
; rS2S1

Þ ¼ 1� HþðyS1
ðtÞ;TS2

S1
; rS2S1

Þ.

doi:10.1371/journal.pone.0140954.t012
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Table 13. BovCycle model parameters and their values which lead to the simulation of an estrous
cycle with two follicular waves per cycle.

No. Symbol Value Unit

1 mGnRH
E2;P4 5.707 [GnRH]/[t]

2 TGnRH
P4 0.271 [P4]

3 TGnRH
E2 1.127 [E2]

4 cGnRH 1.223 1/[t]

5 mFSH
Inh 1.044 [FSH]/[t]

6 TFSH
Inh 0.217 [Inh]

7 cFSH 0.559 1/[t]

8 mLH
GnRH;P4 46.647 [LH]/[t]

9 TLH
P4 0.0542 [P4]

10 TLH
GnRH 0.896 [GnRH]

11 cLH 9.006 1/[t]

12 mFoll
FSH 0.269 [Foll]/[t]

13 TFoll
FSH 0.787 [FSH]

14 mFoll
Foll 3.927 -

15 TFoll
Foll 0.289 [Foll]

16 mFoll
P4 0.79 1/[t]

17 TFoll
P4 0.125 [P4]

18 mFoll
LH 1.7 [1/[t]

19 TFoll
LH 0.881 [LH]

20 SFCL 1.2 [CL]

21 mCL
CL 0.0372 [CL]/[t]

22 TCL
CL 0.314 [CL]

23 mCL
IOF 7.534 1/[t]

24 TCL
IOF 1.035 [IOF]

25 kP4
CL 0.564 [P4]/[t]

26 cP4 0.533 1/[t]

27 kE2
Foll 1.009 [E2]/[t]

28 cE2 0.72 1/[t]

29 kInh
Foll 0.644 [Inh]/[t]

30 cInh 0.368 1/[t]

31 mPGF
E2 1.291 [PGF]/[t]

32 TPGF
E2 0.221 [E2]

33 TPGF
P4 0.969 [P4]

34 cPGF 0.356 1/[t]

35 mIOF
PGF;CL 12.269 [IOF]/[t]

36 T IOF
PGF 1.282 [PGF]

37 T IOF
CL 0.639 [CL]

38 cIOF 0.215 1/[t]

Hill exponents are fixed as rGnRH
E2 ¼ rFSHInh ¼ rFollP4 ¼ rCLIOF ¼ rPGF

P4 ¼ r IOF
PGF ¼ r IOF

CL ¼ 5, all other Hill exponents are set

to 2.

doi:10.1371/journal.pone.0140954.t013
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augmented by a subsequent mandatory validation step ensuring that the Boolean network is
suitable for describing the properties of interest, either with respect to the ODE model or the
underlying biological system. Analysis then allows to address questions not easily accessible in
the context of an elaborate ODE model and provides an alternative view on system characteris-
tics, as we illustrated in our case study.

The Euler step is executed and evaluated to derive the qualitative update functions from the
ODEs. Mathematically, it captures the behavioral tendencies of the continuous systems in a
given state via the derivative signs. Normalization and monotonicity constraints of the contin-
uous regulatory functions ensure that, regardless of the step size, these tendencies capture a
long-term effect rather than some initial fluctuations in the transient phase. To account for the
fact that, in a continuous system of interacting components, the asymptotic component behav-
ior does not always play out along a trajectory due to regulatory influences, we chose the asyn-
chronous update for the resulting Boolean models. Here, a component update is not
necessarily carried out on a specific trajectory if other component updates compete. Based on
these observations, the derived Boolean model can be expected to capture the qualitative
aspects of its ODE counterpart. However, property conservation is not guaranteed. The valida-
tion step of our procedure is necessary to double-check the behavioral match for the dynamical
phenomenon of interest. Depending on the modeling objective, the validation strategies pre-
sented here could be complemented by other methods, e.g. an explicit analysis on conservation
of transition sequences in both the ODE and the Boolean model.

In the Supporting Information (S1 File), we present an alternative method to transform a
system of ODEs fulfilling the preliminaries of Step 0 into a Boolean network. This method is
inspired by a translation scheme presented in [15] where a specific coarse-grained limit of an
ODE system leads to the formulation of a Boolean network. In [15], the results of a bifurcation
analysis are used to derive a sequence of stationary states. In the stationary states, variables can
be directly described by the Goldbeter-Koshland function, a function with two limiting states.
Its approximation by Heaviside functions allows to derive an interaction matrix. Together with
a state vector of thresholds, this determines the transition rules between the states and leads to
a system whose trajectory is a sequence of Boolean states.

Our method described in the Supporting Information (S1 File) first approximates the
unregulated variables or functions in the right hand-sides as integers. Instead of considering
bifurcation points, our alternative method takes into account all possible combinations of inte-
gers. Due to the approximation, for all cases, the variables can be directly described by linear
ODEs which are solved analytically. Then, to overcome the time dependency, the time limit of
the system is considered in order to derive the update functions. We show that, for any system
of ODEs fulfilling the preliminaries, the therein proposed method leads to the same Boolean
network as the described Euler-like transformation.

From the significant abstraction step it is clear that the resulting Boolean network cannot
capture all intricacies of the ODE model, and even much less of the underlying biological sys-
tem. The lack of rigorous proofs for property conservation across formalisms might be consid-
ered as main limitation of our proposed method. However, such proofs would certainly require
much more severe restrictions on the class of ODE models to be transformed. Here, our aim
was to show the easy applicability of the proposed procedure to a broad class of models.

Due to the above considerations, the validation step is of major importance to verify that
key aspects of the system are reproduced and should be handled with care. In particular, pre-
processing of the data, e.g. discretization of quantitative measurements, can influence the
results [20, 21]. The choice of a suitable preprocessing technique and subsequent evaluation,
e.g. a sensitivity analysis, can contribute to ensure rigorous results. Generally, a closer look at
the reason for a possibly failed validation step can lead to uncover crucial mechanisms not yet
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captured in the model. Comparison of the validated ODE model with the derived logical model
may also help to uncover quantitative properties of functional importance for the biological
regulation mechanisms.

In future research, our proposed approach can be adapted and extended to achieve a better
fit. A first easy alteration could concern the evaluation of the regulatory effects within the Euler
step. Here, one can introduce a threshold for positive and negative tendencies to become effec-
tive in the qualitative setting rather than to factor in each non-zero effect.

Furthermore, a higher resolution of activity levels might be very useful, leading to multi-val-
ued instead of Boolean models. For this, the Euler step could be adapted in a way that the
update function, instead of directly calculating the next value for a component, only provides
the augmentation of the component, which is set to -1 in case of negative derivative of the right
hand side, and zero in case that the derivative is zero. Additionally, one could define the update
function such that it depends not only on the sign but also, with the help of thresholds, on the
value of the derivative. Provided that a reasonable validation is applied, the multi-valued for-
malism might then allow functionally necessary complexity while keeping the available advan-
tages for analysis.

Supporting Information
S1 File. An Alternative Discretization Method.
(PDF)
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