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Abstract

The spectral radius of the adjacency matrix of a molecular graph is a topological
index that is related to the branching of the molecule. We show that the spectral
radius can be very accurately estimated by another topological index, the second
Zagreb index.
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1 Introduction

Quantitative measures of branching of a molecule can be a valuable help in determining

relations between the molecule’s structure and its physico-chemical properties, which is

the main task of QSAR (quantitative structure-activity relations) and QSPR (quantitative

structure-property relations) studies. Mathematical quantities that describe the structure

or shape of molecules are known as molecular descriptors [1]. Among them, so-called

topological indices [2] play a significant role. Here, we consider two topological indices

that are related to the molecular branching and are frequently used in QSAR and QSPR

researches: the spectral radius and the second Zagreb index of a (molecular) graph.

The eigenvalues of a simple graph G are the eigenvalues of its adjacency matrix A,

a (0, 1)-matrix indexed by graph vertices that describes whether any two given vertices

u, v are adjacent (Auv = 1) or not (Auv = 0). The largest eigenvalue, denoted by λ1, is

called the spectral radius of G. Using the spectral radius of G as a measure of branching

was proposed by Cvetković and Gutman in 1977 [3] and studied later in several works

including [4–6].

For a simple graph G = (V,E) with n = |V | vertices and m = |E| edges, the first

Zagreb index M1(G) and the second Zagreb M2(G) index are defined as

M1(G) =
∑
v∈V

d(v)2 and M2(G) =
∑
uv∈E

d(u)d(v),

where d(v) is the degree of a vertex v ∈ V . The first and second Zagreb indices were

introduced in 1972 by Gutman and Trinajstić [7] within the study of the dependence of

total π-electron energy of molecular structure. In [8], it was shown that these terms are

measures of branching of the molecular carbon–atom skeleton. For more details on the

first and second Zagreb indices see the recent review [9].

Here, we propose an estimate of the spectral radius of a simple graph that depends on

the second Zagreb index and the number of edges of the graph. The proposed estimate

is

λ1 ≈
√

M2(G)

m
,

or shortly λ1 ≈
√
M2/m.

In Fig. 1 three molecular graphs: (a) coronene (C24H12), (b) benzene (C6H6), and

(c) 2,3-dimethylpentane (C7H16), are depicted. It is fairly easy to obtain that M2, m

and
√

M2/m in those cases are: (a) 204, 30, 2.6077, (b) 24, 6, 2, and (c) 26, 6, 2.0817,
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respectively. On the other hand, the spectral radii in these cases are: (a) 2.6751, (b) 2,

and (c) 2.0529. As it is evident from these examples,
√
M2/m is neither a lower, nor an

upper bound on λ1.

2 Statistical tests

In order to test the quality of
√
M2/m as an estimate of λ1, we calculated the root-

mean-square deviation between the values of λ1 and
√
M2/m within the sets of small

graphs:

(a) connected graphs from 5 to 10 vertices (a total of 11,989,754 graphs),

(b) connected graphs from 5 to 12 vertices and maximum vertex degree 4 (a total of

7,643,962 graphs),

(c) trees from 10 to 20 vertices (a total of 1,345,929 trees),

(d) trees from 10 to 20 vertices and maximum vertex degree 4 (a total of 617,975 trees),

and also within the sets of larger graphs, namely the Barabási-Albert preferential attach-

ment graphs [10] on 50, 100, 150, 200, 250 and 300 vertices, respectively, in which:

(e) each new node was preferentially connected to two existing nodes (1,000 graphs for

each order), and

(f) each new node was preferentially connected to four existing nodes (1,000 graphs for

each order).

The root-mean-square deviation between
√

M2/m and λ1 ranged from 0.01414 to

0.02952 for connected graphs, from 0.01414 to 0.05721 for bounded degree graphs, from

0.04201 to 0.10912 for trees and from 0.03472 to 0.09089 for bounded degree trees. For

Barabási-Albert graphs, the root-mean-square deviation ranged from 0.08917 for graphs

on 50 vertices to 0.47284 for graphs on 300 vertices.

For comparison purposes, we selected ten further estimates for λ1, mostly lower or

upper bounds from literature, based on the simplicity of their expressions. Let d2,u =∑
v∈Nu

du be the sum of degrees of the neighbors of u ∈ V , and let M1 =
∑

u∈V d2u be the

so-called first Zagreb index [9]. The following estimates of λ1 were selected:
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(a) (c)(b)

λ1 = 2.6751√
M2/m = 2.6077

λ1 = 2.0529√
M2/m = 2.0817

λ1 = 2√
M2/m = 2

Figure 1: Examples of molecular graphs for which λ1 is (a) larger than, (b) equal to or (c) smaller than√
M2/m.
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Figure 2: Diagrams of root-mean-square deviation for
√
M2/m and ten other estimates in sets of: (a)

connected graphs, (b) connected graphs with maximum vertex degree four, (c) trees, (d) trees with
maximum vertex degree four, (e) Barabási-Albert preferential attachment graphs in which each new
node is connected to two existing nodes, and (f) Barabási-Albert preferential attachment graphs in
which each new node is connected to four existing nodes. On the x-axes are the numbers of vertices of
considered graphs; for details see text. Note that in all cases examined, the blue line lies significantly
below the other lines.
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(a) 1
n

∑
u∈V du = 2m

n
[11], (f) maxu∈V du [11],

(b) 1
n

∑
u∈V d2,u/du, (g) maxu∈V d2,u/du [13],

(c) 1
n

∑
u∈V

√
d2,u, (h) maxu∈V

√
d2,u [13],

(d) 1
m

∑
uv∈E

√
dudv [12], (i) maxuv∈E

√
dudv [14],

(e)
√

M1/n [13], (j) 2M2/M1 [15].

The root-mean-square deviation between all these estimates and the values of λ1 for

the above mentioned graph sets is depicted in Fig. 2. The diagrams in Fig. 2 are rather

self-explanatory:
√
M2/m is the best among all 11 estimates in all graph sets. The next

two estimates, that tend to take up the 2nd and the 3rd place throughout these graph

sets, are 2M2/M1 and 1
m

∑
uv∈E

√
dudv.

3 Common lower and upper bounds

A possible explanation for high similarity of λ1 and
√

M2/m may stem from the fact that

λ1 and
√

M2/m have common and similar lower and upper bounds. As for the common

lower bound, λ1 is the supremum of the Rayleigh quotients

λ1 = sup
x �=0

xTAx

xTx
= sup

x �=0

2
∑

uv∈E xuxv∑
u∈V x2

u

.

For a particular choice x =
(√

du
)
u∈V we have that

λ1 ≥
2
∑

uv∈E
√
dudv∑

u∈V du
=

∑
uv∈E

√
dudv

m

due to
∑

u∈V du = 2m (probably the earliest appearance of this bound in the literature

was in [12, Corollary 4.5]). On the other hand, Cauchy-Schwarz inequality applied to

sequences
(√

d(u)d(v)
)
uv∈E

and (1)uv∈E yields

√
M2m =

√√√√(∑
uv∈E

√
dudv

2

)(∑
uv∈E

12

)
≥

∑
uv∈E

√
dudv.

Hence, both λ1 and
√
M2/m are bounded from below by the average value of the sequence(√

d(u)d(v)
)
uv∈E

.

The common upper bound is provided by the maximum of the same sequence. As

in [14, Lemma 2.1], let x be a positive eigenvector of A corresponding to λ1, and let

s, t ∈ V be such that xs = maxu∈V xu and xt = max{v : sv∈E} xv. Then from λ1x = Ax
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follows

λ1xs =
∑

{v : sv∈E}
xv ≤ dsxt,

λ1xt =
∑

{u : tu∈E}
xu ≤ dtxs,

wherefrom λ2
1 ≤ dsdt and λ1 ≤

√
dsdt ≤ maxuv∈E

√
dudv. Further, trivially√

M2

m
=

√∑
uv∈E dudv

m
≤ max

uv∈E

√
dudv.

The previous two paragraphs can be summarized as∑
uv∈E

√
dudv

m
≤
{
λ1,

√
M2

m

}
≤ max

uv∈E

√
dudv.

4 Case of equality

Equality λ1 =
√

M2/m is satisfied for several classes of graphs defined in terms of A and

the all-one vector j:

• regular graphs, which satisfy Aj = λ1j,

• harmonic graphs [16], which satisfy A2j = λ1Aj, and

• semiharmonic graphs [16], which satisfy A3j = λ2
1Aj.

Note that a regular graph is also harmonic, and that a harmonic graph is also semihar-

monic, so that it is enough to consider semiharmonic graphs only. The vector d = (du)u∈V

of vertex degrees satisfies d = Aj, so that

M2 =
∑
uv∈E

dudv =
1

2
dTAd =

1

2
jTA3j.

Since further m = 1
2
jTAj, we have that in a semiharmonic graph holds√

M2

m
=

√
jTA3j

jTAj
=

√
jT (λ2

1Aj)

jTAj
= λ1.

Let us recall that a graph is bipartite if its vertex set can be partitioned as V = V1∪V2,

such that each of its edges joins vertices from different parts. Equality λ1 =
√
M2/m is

satisfied for two further classes of bipartite graphs as well:
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• semiregular graphs, which satisfy

(Aj)u =

{
p1, u ∈ V1

p2, u ∈ V2
for some p1, p2, and

• pseudosemiregular graphs [17], which satisfy

(A2j)u =

{
p1(Aj)u, u ∈ V1

p2(Aj)u, u ∈ V2
for some p1, p2.

Note that a semiregular graph is also pseudosemiregular, so that it is enough to consider

pseudosemiregular graphs only. For a pseudosemiregular graph, if u ∈ V1 we have

(A3j)u =
∑
v∈Nu

(A2j)v = p2
∑
v∈Nu

(Aj)v

= p2
∑
v∈V

Auv(Aj)v = p2(A
2j)u = p2p1(Aj)u,

while if u ∈ V2 we have

(A3j)u =
∑
v∈Nu

(A2j)v = p1
∑
v∈Nu

(Aj)v

= p1
∑
v∈V

Auv(Aj)v = p1(A
2j)u = p1p2(Aj)u.

Hence, A3j = p1p2Aj, so that pseudosemiregular graph is also semiharmonic. Here, Aj is

a positive eigenvector corresponding to the eigenvalue p1p2 of the nonnegative matrix A2,

so that p1p2 = λ2
1 and, thus,

√
M2/m =

√
p1p2 = λ1.

In addition, equality λ1 =
√

M2/m may be satisfied for graphs that need not be

semiharmonic. An example of such a graph is shown in Fig. 3, which has λ1 = 3, M2 = 81,

and m = 9.

Figure 3: An example of a non-semiharmonic graph with λ1 =
√
M2/m.

A careful reader may have noticed in the above cases thatM2 is divisible bym. Indeed,

this is true for any graph satisfying λ1 =
√

M2/m. Namely, the characteristic polynomial

of G is a monic polynomial with integer coefficients, so that λ1 is an algebraic integer.

Consequently, λ2
1 is an algebraic integer as well. On the other hand, λ2

1 = M2/m is also a

rational number, and it is well-known that the only algebraic integers in the set of rational

numbers are integers. Thus, λ2
1 is an integer, so that M2 is divisible by m.
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5 Outliers

Although statistical tests in Section 2 show that the root-mean-square deviation between

λ1 and
√
M2/m is consistently small across various graph sets, it is important to notice

that the root-mean-square deviation, as the quadratic mean of the differences λ1−
√

M2/m

for all graphs in a particular set, represents a sort of average value. As a consequence,

this does not mean that the difference |λ1 −
√

M2/m| will be small for each graph—as

a matter of fact, it can be arbitrarily large for graphs with special structure. We have

identified the double stars and the kites as examples of graphs with large discrepancy

between λ1 and
√

M2/m.

The double star DSa,a is obtained from two copies of the star K1,a, by connecting their

centers with a new edge. It has 2a+1 edges and its second Zagreb index is M2(DSa,a) =

(a+ 1)2 + 2a(a+ 1) = (a+ 1)(3a+ 1), so that√
M2/m =

√
(a+ 1)(3a+ 1)

2a+ 1
.

The spectral radius λ1 of DSa,a may also be determined theoretically. As all the leaves

are similar to each other and two centers are similar to each other, we conclude that the

principal eigenvector of DSa,a contains only two different components—l for the leaves

and c for the centers. The eigenvalue equation at a leaf and at a center then yields

λ1l = c, and λ1c = c+ al.

This system yields

λ2
1 = λ1 + a,

whose solutions are

λ1 =
1±

√
1 + 4a

2
= ±

√
a+

1

4
+

1

2
.

The spectral radius of DSa,a is, of course, equal to the larger value (but note that the

smaller value is also an eigenvalue of DSa,a), so that if we know let a → ∞, we obtain

that

lim
a→∞

√
M2/m

λ1

=

√
3

2
.

Therefore, for large value of a, the value of
√

M2/m will be approximately 22.47% larger

than λ1 for the double star DSa,a. However, if in the above example the maximal degree

does not exceed four, which is a case with molecular graphs, then the value of
√

M2/m

will be at most 3.81% larger than λ1.
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Another example is the kite graph KPr,s, obtained from the complete graph Kr and

the path Ps by identifying an endvertex of Ps with a vertex of Kr. A very small interval

to which the spectral radius of KPr,s, r ≥ 3, belongs, has been found in [18]:

r − 1 +
1

r2
+

1

r3
< λ1(KPr,s) < r − 1 +

1

4r
+

1

r2 − 2r
.

Hence, limr→∞ λ1(KPr,s)/(r − 1) = 1, and, more importantly, it does not depend on s.

The second Zagreb index of KPr,s is equal to

M2 =
1

2
(r − 1)3(r − 2) + r(r − 1)2 + 2r + 4s− 6,

while it has

m =
1

2
r(r − 1) + s− 1

edges. If we now choose s to be much larger than r, then
√

M2/m will tend to a constant.

For example, if we set s = r4, then

lim
r→∞

√
M2

m
=

√
4
1

2
,

and

lim
r→∞

√
M2/m

λ1

= lim
r→∞

√
41
2

r − 1
= 0.

Therefore, for large value of r and even larger value of s(= r4), the value of
√

M2/m will

be negligible with respect to λ1 for the kite graph KPr,s. We would like to note that in

this case, if we consider that the maximal degree is at most four, then the lower bound

of
√
M2/m/λ1 is approximately 0.627451, obtained for r=4 and s → ∞.

6 Conclusions

We have shown that the largest eigenvalue λ1 of adjacency matrix of a simple graph can

be very well estimated with a simple expression
√

M2/m. Statistical tests have shown

that this estimate consistently has smaller root-mean-square deviation than ten other

estimates of λ1 for sets of graphs with up to 10 vertices, trees with up to 20 vertices

and sets of Barabási-Albert graphs with up to 300 vertices. Theoretical explanation for

the quality of this estimate has been sought in the fact that both λ1 and
√

M2/m are

situated between the average and the maximum value of the sequence (
√
dudv)uv∈E, and

this argument was further supported by the fact that the equality between λ1 and
√

M2/m
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holds for a number of graph classes. Certainly, as with any statistics, there exist outliers

for which
√

M2/m can be very different from λ1, but it appears that they are quite rare.

Moreover, it turns out that the deviations of the outliers are significantly smaller when

one considers graphs with maximal degree four, which is a case with molecular graphs.
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[7] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π−electron energy
of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
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