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Phonon-induced superconductivity at high temperatures in electrical graphene superlattices
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We discuss the BCS theory for electrons in graphene with a superimposed electrical unidirectional superlattice
(SL) potential. New Dirac points emerge together with van Hove singularities (VHSs) linking them. We obtain
a superconducting transition temperature Tc for chemical potentials close to the VHSs assuming that acoustic
phonon coupling should be the dominant mechanism. Pairing of two onsite electrons with one electron close to
the K and the other close to the −K point is the most stable pair formation. The resulting order parameter is
almost constant over the entire SL.

DOI: 10.1103/PhysRevB.89.195435 PACS number(s): 73.22.Pr, 74.70.Wz, 74.78.Fk

I. INTRODUCTION

The emergence of new interesting physics by the applica-
tion of electrical and magnetic fields on graphene is one of the
properties of this material. It was shown, for example, recently
that new Dirac points can be opened in the energy spectrum
by imposing an electrical superlattice (SL) on the graphene
layer [1–3]. Most important in neutral graphene is that these
new Dirac points are opened up in the lowest-energy band.
Other Dirac points emerge as linking points of two minibands
[4,5] at higher energies. New Dirac points were in fact found
experimentally for graphene with Moiré SLs on underlying
substrates [6,7] and in unidirectional corrugated graphene
monolayers [8]. Such points lead to unusual conductivity
properties in SL systems [2,3,9–13]. Together with the new
Dirac points also van Hove singularities (VHSs) emerge in
the density of states shown up as saddle points in the energy
spectrum. The new Dirac points are linked by the saddle points.

Since the discovery of graphene there were attempts to find
superconductivity in these materials. This is mainly motivated
by the fact that superconductivity shows up experimentally
in other carbon-based materials with rather high critical
temperatures Tc for conventional superconductors as, for ex-
ample, graphite intercalated (Tc � 12 K) [14,15] and fullerite
compounds (Tc � 33 K) [16]. Both forms of carbon-based
superconductors are mainly well described by the conventional
phonon-mediated BCS theory. The higher temperatures in the
fullerite superconductors can be attributed to the high fre-
quency of the intramolecular phonon modes being responsible
for pairing in fullerites [17]. These phonon modes have around
one order of magnitude higher frequencies than phonons
mediating BCS superconductivity in metals [18]. Similar
high-phonon frequencies are also found in the graphene
phonon spectrum. Furthermore, theoretically it was shown
that also graphane [19], multilayer [20] and strained graphene
[21,22] could lead to BCS instabilities with high temperatures.
In Refs. [23,24] it was shown theoretically that for pristine
graphene at half-filling a critical interaction value exists above
which BCS pairing is possible. This is mainly due to a vanish-
ing density of states at half-filling. In both papers, restrictions
on the electronic pairing are made where either a coupling with
total zero momentum [23] is considered or, more restrictively,
with an onsite s-wave pairing of one electron close to the K
with another electron close to the −K valley [21,24]. For small
but nonzero chemical potentials gained by electrostatic doping,

Tc is still small. Except of the small density of states at these
fillings one has to take also into account here the smallness
of the optical electron-phonon coupling constant which was
stated in Ref. [25] to be relevant in this regime. The corre-
sponding deformation potential for the coupling of electrons
with longitudinal acoustic � phonons is much higher than
of the other acoustic and optical phonon modes [26–29]. This
coupling mechanism should become at least relevant for larger
chemical potentials when the corresponding Bloch-Grüneisen
temperature �BG = 2�kF vL, in which kF is the Fermi mo-
mentum and vL the phonon velocity, is in the regime of the
Debye temperature [30]. Here, we use the fact that Tc scales
exponentially with the inverse square of the electron-phonon
coupling, but only factorially with the energy cutoff ∼�BG/2
for acoustic phonon coupling, or the main optical phonon
frequency for optical phonon pairing. Note that in graphene
the Debye frequency of the longitudinal acoustic � phonons is
of similar magnitude as of the main optical phonons. With the
application of a SL, the electron bands are effectively folded
bringing the effective Grüneisen temperature also for low elec-
trostatic doping potentials in the regime where the deformation
potential coupling becomes relevant. This is one motivation to
consider superconductivity in graphene superimposed by a SL.
An additional motivation is the existence of low-lying VHSs in
SL graphene which promises superconductivity with high-Tc

values for chemical potentials close to the VHSs.
There are other possible sources of superconductivity

than only phonon-mediated superconductivity. One finds in
the literature, for example, the Coulomb interaction as a
possible source of pairing via the Kohn-Luttinger mechanism
in graphene [31–33]. This effect becomes most pronounced
for energy bands when a VHS is existent. In pristine graphene,
one finds three inequivalent saddle points producing a VHS
at large energies linking the K and −K Dirac points. Such
high chemical potentials can yet only be reached by chemical
doping [34]. It was shown in Ref. [31] that a possible d-wave
instability with high Tc can only be guaranteed when the saddle
points producing the VHSs are linked approximatively by
nesting vectors. Later on, experimental measurements suggest
that the saddle points leading to the VHSs have even an
extended shape leading to f -wave pairing [34]. Such nesting
vectors or extended VHSs are not found for the VHSs in
SL systems. Note that phonon-coupled BCS theory is not yet
discussed for high chemical doped graphene in the literature.
One reason is that phonon modes are sensitive on the special
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chemical doping, which makes it rather complicated to carry
out such calculations [15].

In the following, we will discuss the simplest case of
BCS-type superconductivity in SL-superimposed graphene
mediated by acoustic phonons. We concentrate us hereby to the
most interesting region of chemical potentials close to VHSs
since this promises the highest-Tc values. Since we shall use
analytically the role of the different possible superconducting
order parameters in the SL system, our investigation can
in principle be used when other superconducting coupling
mechanisms become relevant.

The paper is structured as follows. In Sec. II, we give first
an introduction to the Bogoliubov–de Gennes (BdG) equation
for superconductivity in graphene superimposed with a SL and
discuss the transfer-matrix formalism for solving this equation.
Section III discusses the one-particle spectrum, and Sec. IV
the phase diagram as a function of temperature. In Sec. V, we
give a discussion of the results.

II. ELECTRICAL SUPERLATTICE

In the following, we neglect corrections to BCS supercon-
ductivity expressions due to the repelling Coulomb interaction.
Here, we take into account that the unscreened interaction
potential of electrons due to Coulomb interaction is of similar
value as the attractive interaction potential from the Fröhlich
Hamiltonian [cf. Eq. (3)] for momentum transfer kDB ≈ 2.2/a

calculated by using longitudinal acoustic electron-phonon
coupling, where kDB is the Debye momentum and a ≈ 1.4 Å
the interlattice distance. Due to the large-momentum transfer,
we can neglect in our calculation screening effects due to
a possible substrate and further the inner graphene screen-
ing. For electron bandwidths much larger than the energy
cutoff due to the electron-phonon interaction, retardation
effects become important and an electron scatters with the
phonon trace of another electron being not close in space
at the same time [16,35]. This leads to a suppression of
the effective Couloumb interaction potential known as the
so-called Coulomb pseudopotential. This potential is strongly
suppressed for superconductors where the density of states is
large at the Fermi surface [36,37]. This is the case in the regime
we are interested in when the chemical potential of the SL
system lies close to a VHS. For small-momentum transfer we
can neglect the Coulomb interaction due to the large screening
in the vicinity of the VHS.

We discuss here the most simple representation of a
SL being a symmetric two-step Kronig-Penney potential
with a superlattice potential V (x) = V χ (x) where χ (x) =
sg[sin(2πx/d)]. The function sg[x] is the sign of x, and d

is the wavelength of the SL. In the continuum approximation,
the graphene Hamiltonian under consideration near the ±K
Dirac point is given for d � a by [38]

H± = �vF (±σ1∂x/i + σ2∂y/i) + V (x). (1)

Here, σ1,2 are the Pauli matrices, while vF is the
velocity of the electrons in graphene. In the follow-
ing, we assume as in conventional superconductors spin-
singlet pairing, being most reasonable for phonon pairing.
The formalism is then simplified considerably by
taking into account the eigenvalue problem in the Nambu

space with the eight-component field �(x) = [φK
A,↑,φK

B,↑,

−iφ−K
B,↑,iφ−K

A,↑,(φ−K
A,↓)∗,(φ−K

B,↓)∗,i(φK
B,↓)∗,−i(φK

A,↓)∗]. The BdG
Hamiltonian is given by

HBdG =
(

σ0 ⊗ (H+ − μ) �

�+ −σ0 ⊗ (H+ − μ)

)
, (2)

where σ0 is the two-dimensional unit matrix. The conden-
sate matrix �ij is given by �ij (r) = (g/S2)

∑
k,q〈	i(k +

q)	+
4+j (k)〉θ (k + q)θ (k)eiqr where S is the area of the system

and g denotes the phonon-induced coupling constant of the
Fröhlich Hamiltonian for graphene. The function θ (k) is an
energy cutoff given by θ (k) ≡ �[ω∗

DB − |ε0(k|)] for some
canonical momentum k where � is the Heaviside function.
Here, ε0(k) is the energy of the lowest band of (2) for � = 0 [cf.
Eq. (12)]. We point out that k and k + q are canonical momenta
and not the Bloch momenta of the eigenfunctions. A sufficient
condition that the BdG equation (2) is then a mean-field BCS
decoupling equation for the exact superconducting problem by
using the Fröhlich interaction approximation requires that the
eigenfunctions of (2) for �ij = 0 are localized on a circle in
canonical momentum space for electrons with energies close
to the chemical potential. That (2) together with �ij in the
canonical momentum basis is well defined requires further
that the energy band ε0(k) is a unique function of the canonical
momenta. Both assumptions will be shown in the following
where we also determine the energy cutoff ω∗

DB.
Due to the inhomogeneity of the SL in space, it is not

appropriate to consider a constant pairing function. Instead, we
shall assume an order parameter which is steplike of the form
�ij (r) = �c

ij + �s
ijχ (x), where �c

ij and �s
ij are constant.

In the following, we outline further the derivation of the
BdG Hamiltonian (2). The acoustic electron-phonon energy
due to deformation potential coupling is given by Hep =
gep

∫
dr(uxx + uyy)|�(r)|2 where gep is the deformation po-

tential and uij is the strain tensor of the graphene lattice.
The effective Fröhlich interaction coupling constant g is
then given by g = g2

ep2/v2
LρC where vL ≈ 21.1 × 103 m/s is

the longitudinal acoustic phonon velocity, and ρC ≈ 761 ×
10−9 kg/m2 the density of carbon atoms. This leads to g ≈
6 × 10−19 m2eV. Here, we work with a deformation potential
of gep ≈ 25 eV. The corresponding Fröhlich coupling constant
for out-of-plane acoustic phonons is by a factor ω2

DB/κ2
0 � 1

smaller, where κ0 is the bending constant [39] and ωDB is
the Debye frequency for longitudinal acoustic phonons. The
Fröhlich interaction Hamiltonian is then

HFr = − g

S3

∑
i,j�4

∑
k,k′,q

	4+j (k)	+
i (k + q)	i(k′ + q)	+

4+j (k′)

× θ (k)θ (k + q)θ (k′ + q)θ (k′) . (3)

We obtain from (1) and (3) by using a mean-field decoupling
the BdG Hamiltonian (2) where the BdG matrix has then
in general 10 unknown complex parameters �ij . Here, we
assume that �ij = (−1)i+j+1�4−i,4−j for i,j ∈ {1,2}, and
�31 = −�42, �13 = −�24 when we take into account spin-
singlet pairing in the original graphene fields. One can simplify
this matrix further under the assumption that the condensate
does not break the time-inversion symmetry as well as the
mirror symmetry with respect to the x and y axes, where we
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choose that the mirror operation with respect to the x axis
should lead to an interchanging of A, B atoms if A and B

denote the inequivalent carbon atoms in the fundamental cell.
These assumptions will be justified further below. The x-axis
mirror transformation is defined by Sxφ

K
A,↑(y) = σ1φ

K
B,↑(−y)

and the y-axis mirror transformation by Syφ
K
A,↑(x) =

φ−K
A,↑(d/2 − x) modulo the interchange A ↔ B, K ↔ −K ,

and ↑↔↓. The time-inversion transformation on a graphene
spinor is given by T φK

A,↑ = i(φ−K
A,↓)∗ and T φK

A,↓ = −i(φ−K
A,↑)∗

defined modulo the interchange A ↔ B, and K ↔ −K . By
taking into account the invariance of the condensate under
these operations, we obtain � = �1 + �2 + �3 + �4 with

�1 = d1σ3 ⊗ σ0 , �2 = d2σ0 ⊗ σ1 ,
(4)

�3 = d3σ2 ⊗ σ2 , �4 = d4σ1 ⊗ σ3 ,

where di ∈ R. We now separate di according to
di = dc

i + ds
i χ (x) where dc

i , ds
i are constants. In the following,

we solve the eigenvalue equation HBdGu(r′) = ε u(r′) by
using the transfer-matrix method [9,40]. With the help of
u(x,y) = eikyyu(x), the eigenfunctions of the lowest band are
given by u(x) = �(x)u(0). With this definition, we obtain
from the Schrödinger equation with the Hamiltonian (2) the
following equation for the transfer matrix �:

1

i
∂x�(x) = −σ3 ⊗ σ0 ⊗ σ3[kyσ3 ⊗ σ0 ⊗ σ2

+V (x)σ3 ⊗ σ0 ⊗ σ0 − εσ0 ⊗ σ0 ⊗ σ0

+ σ1 ⊗ �]�(x). (5)

This equation is solved perturbatively with respect to the
small condensate matrix �, where the corresponding terms are
denoted by � = �0 + �1 + �2 + . . . We obtain from (5) that
for � = 0, � = �0 is diagonal within the valley and electron-
hole sectors. We denote the valley electron-hole submatrices
by �0

± = ∑
i σiTr[(σ0 ± σ3) ⊗ σ0 ⊗ (σi)∗ · �0]/4. This leads

to

�0
±(x) = λ0(x)�

(
d

2
− x

)
+ λd/2(x)λ0

(
d

2

)
�

(
x − d

2

)
,

(6)

where

λx0 (x) = cos

[
αE± (x)2(x − x0)

d

]
σ0 + sin

[ αE± (x)2(x−x0)
d

]
αE± (x)

M±

(7)

with

M± = kyσ3 + [E± − V (x)]σ2/�vF . (8)

Here, E± = ±ε + μ and

αE± (x) = ({[E± − V (x)]/�vF }2 − k2
y

)1/2
d/2 . (9)

We can now calculate the energy spectrum for � = 0 by
using the Bloch condition

�0
±(d)u0

±(0) = eikxdu0
±(0), (10)

which is effectively an eigenvalue equation for �0
±(d) where

the Bloch condition demands that the eigenvalue is a phase.
By using the mirror symmetry of the SL with respect to

the axis x = d/4, we obtain that eigenvalues of the transfer
matrix �0

±(d) to the Hamiltonian must come in pairs eikxd and
e−ikxd , where kx and −kx are complex numbers in general. In
the case of the Bloch eigenvalue equation (10), this leads to
Tr[�0

±(d)] = 2 cos(kxd), where

Tr[�0
±(d)] = 2 cos[αE±(d/4)] cos[αE±(3d/4)]

− 2
sin[αE±(d/4)] cos[αE±(3d/4)]

αE±(d/4)αE± (3d/4)

× [
k̃2
y − (Ẽ2

± − Ṽ 2)
]
. (11)

For the energy dispersion in the lowest band, we obtain
for large SL potentials α0 � 1 and |ẼṼ | � α0 from (11) the
eigenvalues [10,41]

ε̃0
± = ±(

sα̂2
0

√
k̃2
x + |�̂|2k̃2

y − μ̃
)
. (12)

Here, �̂ = sin[α0]eiα0/α0, α̂0 = α0/Ṽ . We define dimension-
less quantities x̃ ≡ xd/2�vF for quantities x having the
dimension of energy and k̃ ≡ kd/2 when k has as an inverse
length dimension. The Bloch momentum in the x direction is
restricted to −π/2 � k̃x � π/2. The parameter s = 1 denotes
the conduction band and s = −1 the valence band. We show
in the left panel in Fig. 1 the approximation to the lowest-
lying energy band ε̃0

+ [Eq. (12)] (solid curves) and its exact
counterpart (dotted curves) at kx = 0 and μ = 0, s = 1 for
various SL potentials Ṽ . We obtain a good agreement between
both curves except at the outer boundary of the folded region
where k̃y/Ṽ ≈ 1. Here, we find |ẼṼ |/α0 ∼ 1 close to the
VHS, implying a breakdown of the expansion. The solution
u0

±(0) is given in the regime |ẼṼ | � α0,α0 � 1 by

u0
±(0) ≈

( cos(α0) sin(α0)
α0

k̃y + ik̃x

i 1
α̂2

0
Ẽ± + i sin2(α0)

α2
0

Ṽ k̃y

)
. (13)

We shall denote the vector components by u0
±(0) = (A +

ik̃x,iB)T . From (12) we obtain an oscillatory behavior of the
lowest-energy band as a function of ky . New Dirac points
emerge at k = 0 for Ṽ ∈ Nπ . We compare in Fig. 1 Eq. (12)
with a numerical solution of (10). The new Dirac points are
shifted along the y axis in k space for increasing Ṽ . Now, we
focus on the higher-energy saddle points building singularities
in the density of states. The figure shows that even in this en-
ergy regime the approximation (12) is justified. Saddle points
are quite interesting in forming a high-temperature BCS state
when the chemical potential is close to the VHS. By using (12),
we obtain for the density of states ν(ε) per spin and valley close
to a VHS at energies En

+ = ε0
+(0,kn

y ) + μ, originating from a
saddle point with momentum ky = kn

y and kx = 0 for α0 � 1,

ν(ε) ≈ ν̃0

�vF d
ln

(
16W̃ 2

VHS

|(ε̃)2 − (Ẽn+)2|
)

,

(14)

ν̃0 =
√

2

π2

|Ẽn
+|Ṽ 4(

k̃n
y

)2
α2

0

1√
1
2 + cos2(α0)

,

where W̃VHS = min[α̂2
0π/2,2|μ̃|] is the width of the VHS.

We obtain from (12) the relation tan(α0) ≈ (k̃n
y )2/α0 for the

momentum k̃n
y of the nth saddle point in the energy spectrum
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FIG. 1. (Color online) Left panel: Energy spectrum ε0
+ [Eq. (12)] at k̃x = 0 and μ̃ = 0, s = 1 for various SL potentials Ṽ . Dotted curves

show the corresponding exact spectrum obtained by evaluating the transfer-matrix eigenvalue equation (10) numerically. Inset shows Dc(1,0)
[Eq. (21)] as a function of k̃y/Ṽ for ε0 = 0 and SL potentials Ṽ = 4,6.66,4π . The curves are calculated by using the outer valley VHS chemical
potentials μ̃ = 0.185,0.5 in the case Ṽ = 4,6.66, and by using the average chemical potential of the three existent VHSs μ̃ = 0.415 being
of similar absolute energy value for Ṽ = 4π . Right panel: Dc(1,0) and Dc(0,1) for ε0 = 0, ky = kn

y and chemical potentials μ̃ at the VHS
n = 1, . . . ,3 where n = 1 corresponds to the outermost VHS. The dotted curves show Dc(1,0) by going one order higher taking into account
(13) up to order (ẼṼ /α0)2. Dc(0,1) is not changed within this approximation. Inset shows the energy spectrum ε̃+ (20) for dc

1 = 0 as a function
of d̃s

1 for ε0 = 0 and also one further value ε0 �= 0. The specific value can be read off from the intersection of the spectral curve with the y axis.
The corresponding dashed curves are calculated by a numerical diagonalization of (2) using a transfer-matrix method similar to (5)–(10).

where n = 1 corresponds to the outermost saddle point.
The solution of tan(α0) ≈ (k̃n

y )2/α0 can be approximated

for the outer saddle points by k̃n
y ≈ ±

√
Ṽ 2 − (π/2 + nπ )2

for n ∈ {1, . . . ,[Ṽ /π ] − 1}. Here, [x] is the largest integer
value smaller than x. The saddle point closest to the central
Dirac point has then still to be determined numerically by
tan(α0) ≈ (k̃n

y )2/α0.
Due to the oscillatory behavior of the energy band we

obtain that even for small chemical potentials, electrons with
energies close to the chemical potential can scatter with a
large-momentum transfer. This is relevant when determining
the energy cutoff within BCS theory, which we denoted ω∗

DB.
By using (6)–(10) with (13) we obtain that the lowest-band
wave functions are localized around the canonical momenta
kx ≈ ±α02/d and ky . This then leads to the energy cutoff for
acoustic �-phonon scattering ω∗

DB ≈ min[V/�vF kDB,1]ωDB.
As it was mentioned in the Introduction, the energy

cutoff for graphene without an SL due to acoustic electron-
phonon scattering is in general much smaller, being ω∗

DB ≈
(μ/�vF kDB)ωDB.

III. ONE-PARTICLE SPECTRUM

By using (5) we are now able to calculate the �-dependent
correction terms to �. With the abbreviation �̂(x) = (−σ3 ⊗
σ0 ⊗ σ3) · (σ1 ⊗ �) we obtain

�1(x) = i�0(x)
∫ x

0
dx ′(�0)−1(x ′)�̂(x ′)�0(x ′), (15)

�2(x) = −�0(x)
∫ x

0
dx ′(�0)−1(x ′)�̂(x ′)�0(x ′)

×
∫ x ′

0
dx ′′(�0)−1(x ′′)�̂(x ′′)�0(x ′′). (16)

Here, we use �0 = ∑
p∈{+,−}(σ0 + pσ3) ⊗ σ0 ⊗ �0

p/2. In the
following, we calculate perturbatively the eigenvalues of the
transfer matrix �(d) where �1 and �2 are seen as perturbations
to �0.

We point out that standard Rayleigh-Schrödinger perturba-
tion theory is not applicable here since the transfer matrices �0

or �, respectively, are neither unitary nor Hermitian. This is
due to the fact that the matrix on the right-hand side in Eq. (5)
is not Hermitian. But, this matrix is Hermitian with respect to
the quadratic form 〈u|v〉Q ≡ 〈σ3 ⊗ σ0 ⊗ σ3u|v〉. Thus, it does
lead to the unitarity of � and �0 with respect to this form. Note
that this quadratic form is not positive definite. In the Bloch
regime where the eigenvalues are a pure phase factor, different
eigenvalues are orthogonal with respect to the Q form. One can
now show that standard Rayleigh-Schrödinger perturbation
can be used after all by substituting the quadratic form 〈u|v〉Q
for all expressions where normally the Cartesian scalar product
〈u|v〉 is used. This includes also the normalization of the basis
functions (13).

In order to calculate eigenvalues of �(d) perturbatively,
we have to calculate the matrix elements of the operators �1

[Eq. (15)], �2 [Eq. (16)] with respect to the eigenfunctions of
�0 where possible degeneracies has to be taken into account.
The discussion of these matrix elements is rather technical
being deferred to Appendix A. In the following, we give
only the results for the eigenvalues of �(d). To simplify our
condensate search further, we will first consider only the d1

dependence of the energy spectrum setting di = 0 for i �= 1.
By taking into account the consideration following (10) and
Appendix A, we obtain for the Bloch condition with the
abbreviation k̃±

x =
√

Ẽ2
±/α̂4

0 − |�̂|2k̃2
y

Tr[�0
±(d)] + D± = 2 cos(kxd) (17)
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with

D± ≈ ±min

[ |T1|
4B

,
|T1|2

64B2|μ̃ε̃0±|α̂4
0

]
sgn[μ̃ε̃0

±]�(π/2 − k̃∓
x ),

(18)

T1 = −4Ṽ

α2
0

[
d̃c

1 Ṽ
(
A2 + B2 + k̃2

x

) + 2d̃s
1 k̃yAB

]
. (19)

With the help of (12), we obtain for the branch of the energy
spectrum being mainly influenced by BCS pairing for |ε̃0| �
|μ̃|

ε̃± ≈ ±(
s

√
(ε̃0± ± μ̃)2 + D±/α̂4

0 − μ̃
)

≈ ±sgn[ε̃0
+]

√
(ε̃0+)2 + D2, (20)

with D = Dc(dc
1 ,d

s
1) where

Dc

(
dc

1 ,d
s
1

) = 1

α̂4
0

|T1|
8Bμ̃

�(π/2 − k̃−
x ). (21)

Note that in (20) with (12), the band parameter s has to be
chosen such that |ε̃0

+| � |μ̃|, i.e., s = sgn[μ̃]. The energy
bands in (20) are doubly degenerated. This degeneracy is lifted
when going beyond the lowest approximation used here.

The energy spectrum (20) with (21) has now a similar form
as the energy spectrum of metals within the standard BCS
theory. This point can be elaborated further by taking into
account that (2) with (4) where only dc

1 �= 0 but ds
1 = 0 and

dc
i ,d

s
i = 0 for i �= 1, can be diagonalized by using standard

Bogoliubov theory. This is based on the fact that � is
commuting with H+. This leads to the energy spectrum (20)
with (21) where now Dc = d̃c

1 . This means that we should
find Dc(1,0) ≈ 1 in expression (21) in order to have a good
approximation in hand.

We show in Fig. 1 Dc(1,0) for various SL potentials Ṽ and
chemical potentials μ̃ as a function of the rescaled momentum
k̃y/Ṽ (left inset) and ε+

0 = 0. The curve segments which are
absent in the figure are where 0 � k̃+

x � π/2 is not fulfilled.
The right panel in Fig. 1 shows Dc(1,0) and Dc(0,1) calculated
at k̃y momenta and chemical potentials μ̃ of the saddle point
for the VHSs n = 1, . . . ,[Ṽ /π ]. We obtain from the figure or
(13), respectively, that for large Ṽ and small n (outer VHS),
Dc(1,0) is growing to infinity which can be avoided by taking
into account higher-order corrections in ẼṼ /α̃0 in (13) (cf.
caption of Fig. 1). From the right panel in Fig. 1, we obtain
that the largest Dc(0,1) value is reached for the outermost VHS
with n = 1 where Ṽ ≈ 4 with value Dc(0,1) ≈ 0.3. A further
exceptional SL potential for n = 1 is given by Ṽ = 6.66 where
Dc(0,1) is vanishing. We show in the right inset in Fig. 1 the
energy spectrum ε̃+ as a function of ds

1 for dc
1 = 0 using these

both exceptional SL potentials and further the SL potential
Ṽ = 4π (n = 1) to gain a better insight as to what is happening
with the spectrum in the outer VHS for large Ṽ . We compare
our results in the figure with a numerically determined energy
spectrum for the same values using a numerically evaluated
transfer-matrix method similar to (5)–(10).

Summarizing, we obtain from Fig. 1 that the agreement of
our approximations with exact and numerical results are good
for small Ṽ � 1 but also for Ṽ � 1 for the inner valleys. The
approximation becomes less good for the outermost valleys.

The reason lies in the expansion parameters 1/α0 and ẼV/α0

which we used in our approximation in order to derive (20)
and (21).

Until now, we have only discussed the d1 dependence of
the energy spectrum. From Eq. (A5), we obtain that close to
a VHS for pure condensates, i.e., where di �= 0 for only one i

and the rest of the condensates is zero, only the d3 beside the
d1 condensate has a nonzero contribution in the gap function
D. The d2 dependence in the gap function comes in via �2

ij

[Eq. (A4)], leading to mixing terms of the pure condensate
contributions to the gap function. That the d4 condensate does
not contribute to the gap function is caused by the fact that
�̂±V [Eq. (A3)] does not depend on d4.

For the d3 dependence of the energy gap function D, i.e., by
setting di = 0 for i �= 3, we obtain the expression (21) with the
substitutions dc

1 → ds
3, ds

1 → dc
3 , and after a multiplication of

a reduction factor k̃y/Ṽ . The reduction factor has its origin in
the prefactor differences between �1

31 and �1
32 [Eq. (A5)]. In

general, we obtain for the energy spectrum (20) in the relevant
large-energy regime |ε̃0| � max[|d̃i |] for superconductivity
D2 = D2

c,i where

D2
c,i = D2

c

(
dc

1 ,d
s
1

) + k̃2
y

Ṽ 2
D2

c

(
ds

3,d
c
3

)
− 2

k̃y

Ṽ
Dc

(
dc

1 ,d
s
1

)
Dc

(
ds

3,d
c
3

) 2 Im[EVi]

1 + |EVi |2 , (22)

and i = 1,2. Here, we denoted by (1,EVi)T for i = 1,2 as
the eigenvectors of the matrix �2

ij for i,j ∈ {1,2} and EVi

is a function of the condensates d1,d2, and d3. In the less
relevant regime |ε̃0| � max[|d̃i |], the gap function D looks
similar where 2 Im[EVi]/(1 + |EVi |2) = ±1. We now obtain
from (22) that the degeneracy of the energy spectrum seen for
the pure d1 condensates in (20) with (21) is lifted.

IV. BCS INSTABILITY

We are now able to calculate from the one-particle spectrum
(20) the �-dependent part of the grand canonical potential
�̃. The condensates di are then determined by minimizing
�̃ with respect to the pair functions ds

i ,d
c
i . We restrict our

search of the minimum thereby by comparing the minimum
of the free energies in the various basic directions where
di �= 0 for one i but zero for the others. This restriction
is justified by taking into account the smallness of the
condensate mixing term in Eq. (22) and further that the energy
regime |ε̃0| � max[|di |] in the spectrum gives the dominant
contribution to the free-energy integral in the weak-coupling
regime (see the discussions following). For the mixing last
term in (22) we mention that 2 Im[EVi]/(1 + |EVi |2) � 1 is
strongly dependent on the momenta and condensate values
d1,d2,d3. For a justification of its smallness, one can show that
2 Im[EVi]/(1 + |EVi |2) is zero for d2 = 0 and becomes much
smaller than one at least for one EVi in the regime where
dc

1 ∼ ds
3 � ds

1,d
c
3 .

When considering only the large-energy regime together
with the neglection of the mixing term, our restricted minimum
search in the free energy is then even exact. Due to the
additional small prefactor k̃y/Ṽ of the condensate contribu-
tions of d3 in comparison to d1 in the energy gap D the
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FIG. 2. (Color online) We show the condensate quantities d̃c
1 (upper solid curves) and d̃s

1 (lower dotted curves) for various SL potentials
Ṽ as a function of temperature by minimizing the free energy (23). The chemical potentials are chosen to lie at the outer valley VHSs for
Ṽ = 4,6.66 and at the average of the VHS energies for Ṽ = 4π (see caption to Fig. 1).

condensate d1 �= 0 leads to a smaller free energy than the
other condensates. This results in the free energy

�̃
d2

S
= − 32T̃

(2π )2

1

α̂4
0

∫ √
Ṽ 2−(π/2)2

0
dk̃y

×
∫ ω̃∗

DB

−ω̃∗
DB

dε̃0
+

{
�(π/2 − k̃+

x )
|Ẽ+|
k̃+
x

× ln

[
2 + 2 cosh

(
ε̃+
T̃

)]}

+ 16

g̃

[(
d̃c

1

)2 + (
d̃s

1

)2]
, (23)

where g̃ = 2g/d�vF . The condensate values dc
1 , ds

1 are
then determined by minimizing �̃. We show in Fig. 2
the resulting dc

1 , ds
1 values as a function of the dimen-

sionless temperature T̃ for various SL potentials Ṽ . The
dimensionless effective Debye frequency is given by ω̃∗

DB ≈
0.017Ṽ min[d/aṼ ,1]. In Kelvin we obtain, assuming a max-
imal longitudinal acoustic phonon frequency in graphene of
ωDB ≈ 1960 K, ω∗

DB ≈ 1960 K × min[Ṽ a/d,1]. From Fig. 1
we obtain that the highest critical temperatures Tc are
gained for large Ṽ . For Ṽ = 4π (Ṽ = 6.66) [(Ṽ = 4)]
we obtain Tc = {1136 K,315 K,58 K} ({587 K,104 K,9 K})
[({76 K,2.5 K,0.154 K})] at d/a = {8,16,32}. We find
further T̃c/ω̃

∗
DB = {0.58,0.205,0.075}, ({0.36,0.13,0.02}),

[({0.078,0.005,0.0006})] and d̃c
1/ω̃

∗
DB ≈ {1.06,0.35,0.1},

({0.62,0.21,0.017}), [({0.13,0.0196,0.0011})] at T = 0. It is
well known that due to decoherence effects of the elec-
tronic wave function for Tc/ω

∗
DB � 1 and the neglection of

retardation in the Fröhlich Hamiltonian for d1/ω
∗
DB � 1, the

BCS results can not be trusted any longer in this regime.
The regime is commonly called the intermediate-to-strong-
coupling regime. Tc as well as d1 are then truncated at ω∗

DB
[35]. A better description in this regime takes into account
higher-order fluctuation effects as well as the frequency
dependence of the effective electron-electron interaction being
described by Eliashberg theory in the intermediate-coupling
regime and polaron superconductivity for strong couplings
[35]. The results in both regimes for metals as well as for
pristine graphene within Eliashberg theory [25] suggest that
a realistic cutoff for Tc should be in the vicinity of ωDB/3,
leading to Tc values up to 650 K.

The analysis in this paper is based on the effective mass
approximation (1) for the graphene Hamiltonian. This approx-
imation is justified in the case of the linearity of the graphene
spectrum. The linearity is fulfilled in first approximation for
momenta |k| � kBZ/2 around the K, −K points. The relevant
ky momentum of a saddle point of a VHS calculated by (1)
should then lie in this momentum regime. This regime is
roughly fulfilled for the parameters of the SL potentials shown
in Fig. 2. We point out that the whole analysis in the last
two sections is mainly based on the folding behavior of the
energy band. This behavior is a much more stable property
with respect to perturbations of the graphene lattice than, for
example, the creation of new Dirac points. This justifies further
the use of the effective mass approximation for VHSs with
saddle points at large effective momenta.

In the low-coupling regime (Tc � W ), we obtain from (23)
by using (14)

log2

(
W̃ 2

VHS

T̃c|μ̃|/2

)
− log2

(
W̃ 2

VHS

W̃ |μ̃|/2

)
≈ 8

ν̃0g̃

1

‖Dc‖2
, (24)

where W̃ is the effective bandwidth W̃ = min[ω̃∗
DB,W̃VHS] and

‖Dc‖ ≡
√

Dc(1,0)2 + Dc(0,1)2 calculated with the saddle-
point momentum ky = kn

y . The condensates d̃c
1 , d̃s

1 at T = 0 in
the low-coupling regime are given by

d̃c
1 = Dc(1,0)‖d̃1‖/‖Dc‖, d̃s

1 = Dc(0,1)‖d̃1‖/‖Dc‖. (25)

Here, ‖d̃1‖ is given by (24) with the substitution 2T̃c →
‖Dc‖‖d̃1‖. In the strong-coupling regime W̃ replaces ω̃∗

DB as
a cutoff for T̃c and ‖d̃1‖ for T = 0.

From (24) and (25), we obtain then that in leading order
ds

1/d
c
1 ≈ Dc(0,1)/Dc(1,0) calculated for ky = kn

y at T = 0.
This is qualitatively in accordance to Fig. 2 by using the
results for Dc(0,1), Dc(1,0) in Fig. 1. By this we mean that
ds

1/d
c
1 is much larger for Ṽ = 4 in comparison to Ṽ = 4π ,

6.66. Nevertheless, we obtain quantitatively discrepancies
which are attributed to contributions in the gap equation (23)
which are not taken into account by the VHS contribution
(24). For a justification we mention that Dc(0,1)/Dc(1,0) is
oscillatory as a function of ky . For example, for Ṽ = 4 we
obtain that Dc(0,1)/Dc(1,0) ≈ 0.3 at ky = k1

y . This is almost
the maximum value of Dc(0,1)/Dc(1,0) as a function of
ky , showing even negative values Dc(0,1)/Dc(1,0) ≈ −1 for
larger ky .
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V. DISCUSSION

Finally, we compare our results with the phonon-mediated
superconductivity in pristine graphene without an SL. We shall
calculate in the following Tc for acoustic phonon pairing and in
a rough approximation also for optical phonon pairing in order
to demonstrate the proportion of the critical temperatures for
both pairing mechanisms. We restrict ourselves hereby to the
dc

1 pairing mechanism which leads to

ln

(
�ω

p

DB

Tc

)
≈ 2

1

gpνp(μ)
. (26)

The cutoff frequency ω
p

DB is given by ω
p

DB ≈ ωDB for optical
phonon pairing and ω

p

DB ≈ (|μ|/�vF kDB)ωDB for acoustic
phonon pairing. For the former, we use that the acoustic
Debye frequency and the optical phonon frequencies are of
similar value in graphene [26]. The density of states νp(μ)
per spin and valley for pristine graphene is given by νp(μ) =
|μ|/2π (�vF )2. The constant gp in (26) is the effective Fröhlich
interaction constant being gp = g ≈ 6 × 10−19 m2eV for
acoustic phonon pairing and gp ≈ 7.02 × 10−20 m2eV for
pairing with optical phonons [42]. The factor 2 on the
right-hand side of Eq. (26) is attributed to the chiral nature
of the graphene lattice with two atoms in the fundamental cell
where for large chemical potentials only electrons in one of the
bands π∗ or π with energies close to the chemical potential
can pair. The maximal absolute electron density which can
be reached by electrostatic doping until now leading to the
highest-Tc values is given by ne ≈ 4 × 1014 cm−2 [30]. By
using (26) for this density, we obtain Tc ≈ 4.1 × 10−3ωDB ≈
8 K for acoustic phonon coupling (here |μ|/�vF kDB ≈ 1

5 ) and
Tc ≈ 2.7 × 10−15ωDB ≈ 5.4 × 10−12 K for optical phonons.
These transition temperatures are much smaller than most of
the transition temperatures in graphene superimposed by a SL
with parameters used in Fig. 2.

The maximal achievable electronic densities for electrical
doped graphene are limited by the electrical breakdown effect.
The breakdown voltage lies for pristine graphene experiments
on thermally grown SiO2 layers as the gate dielectric by around
50 V for a dielectric width of 300 nm. This leads to electron
densities up to 5 × 1012 cm−2 [43]. For electrolyte gating,
one reaches breakdown voltages up to 15 V where the Debye
length substituting the dielectric width is 1 nm. This leads to
electron densities up to 4 × 1014 cm−2 [30]. In the case of SL
graphene, we obtain from the considerations in Sec. IV that
the highest-Tc values are reached for SL wavelengths d which
are as small as possible. This behavior is reasoned in the fact
that the density of states gets smaller for larger d [Eq. (14)].
For comparison with pristine graphene, we mention that for a
SL wavelength of d ≈ 1 nm the SL potential where the first
new Dirac point emerges, i.e., Ṽ ≈ π , is given by V ≈ 4 V.
SL potentials built of such high electrical potentials are not
fabricated yet. Whether such high electric SL potentials can
be applied on graphene without an electric breakdown should
depend similarly to the electrostatic gating of pristine graphene
on the concrete experimental realization.

We emphasize that (26) is valid for optical as well as
acoustic phonon scattering in pristine graphene even at low
densities. For this we take into account that gpωDB/�v2

F � 1
for optical phonon scattering. We then obtain from (26) that

acoustic phonon scattering is the dominant phonon-pairing
mechanism over optical phonon scattering also for low
densities.

We should point out here that the whole procedure of the
application of BCS mean field theory or Eliashberg theory,
respectively, is based on the assumption that vertex corrections
to the phonon vertices are negligible [35]. This was shown
for metals where the Fermi momentum lies in the regime
of the Debye momentum by Migdal [44]. For graphene at
low fillings, the neglection of vertex corrections must no
longer be fulfilled. By repeating the discussion of Migdal
[44] for acoustic phonon scattering pristine graphene we
obtain that the vertex corrections are negligible in the case
that gωDB ln(�vF kDB/μ)/π2

�v2
F � 1 where gωDB/π2

�v2
F ≈

0.022. The Tc values at electron densities where the Migdal
assumption is not fulfilled are then so low that they are
practically not detectable.

The main difference between the transition temperature
expressions (26) for pristine graphene and (24) for graphene
superimposed by a SL with chemical potential close to a VHS
is the left-hand side where (24) shows a logarithmic square
behavior and (26) only a logarithmic behavior as a function of
Tc. This enhances considerably the transition temperatures in
the case of SL graphene. This difference in the Tc behavior is
due to the logarithmic behavior of the density of states for SL
graphene close to a VHS in comparison to an almost constant
density of states for pristine graphene at large fillings. When
taking into account impurity scattering in the weak impurity
limit, the logarithmic singularity of the density of states (14) in
SL graphene is cut close to ||ε| − |En

+|| ∼ �/τ where τ is the
scattering time of the quasiparticles. Note that there are also
other contributions of impurity scattering [45] to the density of
states which are attributed to the finite length scale inserted by
the wave vector of a quasiparticle. This leads to a fluctuating
chemical potential due to the Poisson-type impurity density
distribution within this length scale. We point out that this
mechanism is subdominant for chemical potentials close to a
VHS over the scattering time mechanism showing up as an
imaginary part in the electronic density of states. By taking
into account the energy cutoff at �/τ in the density of states,
we obtain then for Tc of SL graphene expression (24) in the
case that Tc � �/τ and (26) for Tc � �/τ where νp(μ) has to
be substituted by (14) with ||ε| − |En

+|| ∼ �/τ . Note that we
have taken into account here only the most dominant part of
the impurity scattering contribution on the critical temperature
in SL graphene.

So far, we considered only s-wave scattering in our
approach. This emerges in the SL system by making an ansatz
for the constant order parameters �c

ij which is independent
of the quasiparticle momenta of Cooper pairs. This is correct
as long as we work with a momentum-independent Fröhlich
approximation approach in (3) for the electron-phonon interac-
tion. By taking into account screening effects, this momentum
independency is no longer correct. Due to the inhomogeneity
of the SL system, the incorporation of screening effects is
technically rather involved. Nevertheless, one can simply
obtain similar to the analysis of the pristine graphene system
with chemical potential close to the high-lying VHSs [32] that
screening effects are zero beyond the canonical momentum
transfer 2V/�vF and that the screened interaction potential
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vanishes for Bloch momentum transfer kx = 0, ky = −2kn
y

where this Bloch momentum vector connects the two SL-
induced saddle points with energies close the chemical
potential. The other Bloch momentum transfer where the
screened interaction potential vanishes is at kx = 0, ky = 0.
The vanishing is in both cases rather soft scaling with the
inverse logarithm of the momentum deviations. This softness
is the reason (as we already mentioned in the Introduction of
our paper) that in the case of pairing by the repulsive Coulomb
interaction via the Kohn-Luttinger mechanism in chemical
doped pristine graphene, a pairing instability can only be
guaranteed when either VHSs are existent which are linked by
nesting vectors [31] or VHSs of extended shapes [32]. Such
a behavior changes the logarithm softening to an algebraic
softening leading then to instabilities beyond s-wave pairing
even for the repulsive Coulomb potential. Since this additional
softening behavior is not existent in the energy surface of SL
graphene, we believe that s-wave pairing is the most relevant
pairing mechanism even when taking into account screening
effects in SL graphene.

Until now, we have restricted our minimum search of the
free energy to condensates of the form (4) showing the full
symmetry of the SL together with the time-inversion symmetry
and spin-singlet form. In general, the condensate matrix � has
no restrictions from the beginning. The BdG Hamiltonian (2)
shows an independent chiral symmetry in the electronic and
hole sectors. We are justifying in Appendix B the utilized
condensates (4) by showing that the condensate dc

1 modulo its
chiral symmetric counterparts, i.e., � → (U+

1 ⊗ σ0)�(U2 ⊗
σ0) where U1,U2 are arbitrary constant unitary 2 × 2 matrices
and � = �1, have the largest condensate values together
with the minimal free energy and dominate the BCS pairing
process. We use hereby, as was implicitly also used above,
that the Fröhlich coupling constant g for acoustic phonons is
not depending on the pairing deduced from Hep. This is not
fulfilled for other coupling mechanisms as, for example, the
coupling with optical phonons. A benefit of the analysis used
in Appendix B is that it can be simply adapted to other coupling
mechanisms.

It is well known that in two dimensions the phase fluctu-
ations of a continuous order parameter are so strong that a
finite-order-parameter value calculated in mean field vanishes
in higher-order approximations (Hohenberg-Mermin-Wagner
theorem). Nevertheless, a finite expectation value for the
amplitude of the order parameter is still possible. At lower
temperatures where the order-parameter amplitude is nonzero,
a Kosterlitz-Thouless transition emerges which is connected
to an unbinding of vortex-antivortex excitations when cross-
ing the temperature from below [46,47]. The free vortices
prohibit then in the so-called pseudogap phase that a true
superconductivity behavior is existent. At lower temperatures
where the vortices are bound, we can find in two-dimensional
systems superconductivity. In other words, the mean-field
BCS theory which we formulated in this paper can only
describe approximatively the transition temperature where
the pairing amplitude is unequal to zero being then an
upper bound for the true superconducting phase transition
temperature. This temperature difference where the order-
parameter amplitude becomes unequal to zero and where the
vortex unbinding happens is not large at least in the regime

where μ � ωDB as was shown quantitatively in the case of
two-dimensional metals in Refs. [48,49] by using Eliashberg
theory. Due to this, we also expect in the case of the graphene
system that the two temperatures are quite close to each
other.

VI. SUMMARY

We have examined possible BCS instabilities mediated
by longitudinal acoustic � phonons in electrical superlattice
systems. Here, we restrict ourselves to SL potentials Ṽ � 1
and d/a � 1. In the regime Ṽ � 1, the energy bands are
folded where new Dirac points linked by low-lying energy
VHSs emerge. We considered in this paper mainly pairing
for chemical potentials close to VHSs where the highest-Tc

temperatures are attained. For SL systems, such chemical
potentials should be reached by electrostatic doping. We
showed under the assumption of a pairing that fulfills time-
inversion symmetry together with the symmetry of the SL
and graphene lattice that electronic onsite s-wave pairing
of an electron around the K point with another electron
around the −K point is most relevant. The relevant order
parameter is almost constant in space. We obtain large
transition temperatures Tc especially where VHSs lie close to
each other. We have compared the calculated Tc values of the
SL system with phonon-mediated transition temperatures of
electrostatic doped pristine graphene. Finally, we argued that
the encountered order parameter (up to chiral symmetry) is also
the leading electronic-pairing mechanism when taking into
account no symmetry restrictions on the condensate matrix.

We have used in this paper the simplest theory for super-
conductivity appropriate for pairing in the low-coupling limit
for electrons around the K, −K points. Our examples in Fig. 2
produce superconductivity at rather high temperatures, and at
the highest-Tc values the system parameters lie at the validity
boundary of the model. In this case, the calculated Tc values
are only a rough approximation for the experimental transition
temperatures where more exact calculations would be useful
by using, for example, the full tight-binding Hamiltonian
together with Eliashberg theory for the SL superimposed
graphene system.

Finally, we mention that aside from the emergence
of superconducting behavior within an intrinsic instabil-
ity discussed in our paper, there is a second possibil-
ity to obtain superconductivity via the proximity effect
[50–52].
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APPENDIX A: PERTURBATIVE CALCULATION OF THE
EIGENVALUES OF �(d)

In this section, we will derive the eigenvalue Bloch equation
(17) by starting from the considerations in Sec. II and the notes
at the beginning of Sec. III by using perturbation theory for the
eigenvalues of � with respect to �1, �2. As was mentioned
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in Sec. II, in zero-order perturbation we obtain for � = �0

degenerate eigenstates. With the abbreviation ei (i = 1, . . . ,4)
for the Cartesian basis in four-dimensional space, we obtain
for the eigenvectors of �0, u0

+ ⊗ e1, u0
+ ⊗ e2 with eigenvalues

of either e+ik+
x d and e−ik+

x d in the particle sector and u0
− ⊗

e3, u0
− ⊗ e4 with eigenvalues e+ik−

x d and e−ik−
x d in the hole

sector. Note that �1 and �2 can in first approximation only
connect states which are in the lowest band, i.e., k̃±

x � π/2.
By denoting M±V = kyσ3 ∓ V σ2/�vF we obtain for α0 � 1
from (15) and (16)

�1(d) ≈ i
d

4

[
�0(d)�̂V

(
d

4

)
+ �̂−V

(
3d

4

)
�0(d)

]
,

(A1)

�2(d) ≈ −d2

16

(
1

2

{
�0(d)

[
�̂V

(
d

4

)]2

+
[
�̂−V

(
3d

4

)]2

×�0(d)

}
+ �̂−V

(
3d

4

)
�0(d)�̂V

(
d

4

))
, (A2)

where

�̂±V = �̂ − M±V �̂M±V . (A3)

Next, we calculate the matrix elements of �1(d), �2(d) with
respect to the basis u0

± ⊗ ei . Here, we can restrict ourselves
to leading order in ε0 and k±

x justified for chemical potentials
close to a VHS. We obtain u0 ≡ u0

− ≈ u0
+ with

�l
ij = 〈u0 ⊗ ei |�l(d)|u0 ⊗ ej 〉Q (A4)

for i,j = 1, . . . ,4 where

�1
31(d) = �1

13(d) = �1
24(d) = �1

42(d)

≈ −4Ṽ
[
dc

1 Ṽ (A2 + B2 + k̃+
x k̃−

x ) + 2ds
1 k̃yAB

]
Ṽ 2 − k̃2

y

,

�1
32(d) = −�1

23(d) = �1
14(d) = −�1

41(d)

≈ i
4k̃y

[
ds

3Ṽ (A2 + B2 + k̃+
x k̃−

x ) + 2dc
3 k̃yAB

]
Ṽ 2 − k̃2

y

.

(A5)

In contrast to (A5), the matrix elements �2
ij (d) �= 0 are much

more complicated, being also a function on the condensates
d2 with prefactors similar to (A5). We even include in (A5)
a subleading k̃2

x term, which becomes relevant for the d1,d3

dependence of the spectrum when the ky momentum lies not
close to the saddle point.

To zero order in �, we find two different ε̃0 regimes within
Rayleigh-Schrödinger perturbation theory. For small |ε̃0|
where k+

x ≈ k−
x , we find approximately a fourfold-degenerate

ground state with momentum k+
x in the K and −K valleys

in the electronic sector, and k−
x in the K and −K valleys

in the hole sector. The same holds for the −k±
x momenta.

This degeneracy is lifted by using �1(d) within first-order
perturbation theory. The energy spectrum is then dominated
by the first-order energy with respect to �1(d).

For larger |ε̃0| where k+
x �= k−

x , we find a twofold degener-
acy corresponding to the k+

x state in the K, −K electron valleys

and a further degenerate ground state with k−
x in the K, −K hole

valleys. The same holds for the −k±
x momenta. The electron

and hole valleys are not degenerate with each other in this
case. The degeneracy for small |ε̃0| where |μ̃ε̃0| � 1 is lifted
by first-order perturbation theory with respect to �2(d) in this
case. On the other hand, the first-order energies with respect
to �2(d) can be neglected in comparison to the second-order
energies with respect to �1(d). By using the considerations
above, we obtain for the Bloch condition Eq. (17).

APPENDIX B: DOMINANCE OF dc
1 CONDENSATES

AND THEIR CHIRAL EQUIVALENCES AMONG
GENERAL CONDENSATES

In the main text, we considered only highly symmetric
condensates as possible electron pairings which fulfill the
full mirror symmetry of the SL and additional time-inversion
symmetry and spin-singlet pairing. This led to the condensates
(4) as the only contributions to the matrix �. As was mentioned
in the main text, we have in general no restriction for acoustic
phonon coupling on the condensate matrix �. In the following,
we shall use again the approximation that the matrix is steplike
in space, meaning that it is constant for constant V (x). In
weak-coupling BCS physics, the regime |ε0

±| � max[|�ij |]
of the spectrum is most relevant for superconducting pairing.
Let us recall from the main text in Sec. III that in the case
of the highly symmetric condensates, the dominance of the
dc

1-condensate contributions over the ds
1 and d3 contributions

came mainly from the fact that in the gap function Dc

[Eq. (21)], the prefactor ∼A2 + B2 for dc
1 is much larger

than the prefactor ∼AB for ds
1. Furthermore, we found the

dominance of the d1 condensates over the d3 condensates due
to an additional prefactor k̃y/Ṽ in the d3 condensate term (22).

These prefactors were calculated by using (A1) with (13).
Within a similar argument we obtain that the dominant contri-
butions for general �ij are given by �d = ∑3

i=0 doiσi ⊗ σ0.
The condensates doi are in general complex and constant
over the whole SL. Other condensates of the matrix form∑3

i=0 doiσi ⊗ σ1 and
∑3

i=0 doiσi ⊗ σ3 lead to energy-gap
contributions being a factor AB/(A2 + B2) smaller where
condensates of the form

∑3
i=0 doiσi ⊗ σ2 are a factor k̃y/Ṽ

smaller.
By using the chiral invariance of (2) in the electron

and hole sectors independently we can restrict ourselves by
using the singular value decomposition of the matrix �d to
matrices �d = dor

1(σ3 + σ0)/2 ⊗ σ0 + dor
2(σ3 − σ0)/2 ⊗ σ0.

Here, dor
1 and dor

2 are real condensates being constant over
the SL. The dominant mass-gap contributions D = Dd

c,i are
then given by

Dd
c,i = Dc(1,0)

√(
dor

1

)2 + |EVi |2
(
dor

2

)2

1 + |EVi |2 . (B1)

Here, (1,EV1)T , (1,EV2)T are the two orthogonal eigenvectors
of the matrix �2

ij = 〈u0 ⊗ ei |�2(d)|u0 ⊗ ej 〉Q for i,j = 1,2
in the electronic sector where now also contributions from
smaller subleading condensate contributions can have a strong
influence via EVi on the free energy. For deriving (B1), we
took into account the discussion following (A5). Note that the
spectrum (B1) with (20) for D = Dd

c,1 and Dd
c,2, respectively,
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is now in general no longer degenerate as in (18)–(21) but has
two nondegenerate bands with two different gap values. We
now minimize the dominant part of the free energy first with
respect to EV1,EV2. The EVi dependence comes then in only
via the first term in (23) where now we have to substitute
ln[2 + 2 cosh(ε̃+/T̃ )] by

∑
i ln[2 + 2 cosh(ε̃i

+/T̃ )]/2. Here,
ε̃i
+ is defined via (20) using (B1) with the substitution Dd

c,i for

D. By using the concavity of ln[2 + 2 cosh(
√

(ε̃0
+)2 + x/T̃ )]

as a function of x, and further that (Dd
c,1)2 + (Dd

c,2)2 does
not depend on EV1 and EV2, we obtain that the minimal
free energy is attained for |EV1| = |EV2| = 1. The dominant
contribution to the free energy �̃d is then given by (23) with
the substitutions above where we further have to substitute
(d̃c

1)2 + (d̃s
1)2 by [(d̃o

r

1)2 + (d̃o
r

2)2]/2. This free energy shows
an O(2) invariance. By choosing dor

1 = −dor
1 we obtain

exactly the dc
1 contribution to the condensate matrix (4).
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