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We introduce an exactly solvable fermion chain that describes a � ¼ 1=3 fractional quantum Hall (FQH)

state beyond the thin-torus limit. The ground state of our model is shown to be unique for each center-of-

mass sector, and it has a matrix product representation that enables us to exactly calculate order parameters,

correlation functions, and entanglement spectra. The ground state of our model shows striking similarities

with the BCS wave functions and quantum spin-1 chains. Using the variational method with matrix product

ansatz, we analytically calculate excitation gaps and vanishing of the compressibility expected in the FQH

state. We also show that the above results can be related to a � ¼ 1=2 bosonic FQH state.

DOI: 10.1103/PhysRevLett.109.016401 PACS numbers: 71.10.Pm, 73.43.Cd, 75.10.Kt

Introduction.—The fractional quantum Hall (FQH) effect
is one of the fascinating phenomena in condensed matter
physics: In a 2D electron system in a magnetic field, the Hall
conductivity is quantized as �H ¼ ðe2=hÞ� with the filling
factor given by a rational number � ¼ p=q, due to strong
electron-electron interactions [1,2]. Although three decades
have past since its discovery, the importance of this research
field is still increasing, partly due to new possible realiza-
tions of FQH phenomena, including flat band Chern insu-
lators [3] and bosonic systems of trapped atoms [4].

In recent years, there have been theoretical efforts to
study FQH states in torus boundary conditions which can
reduce the 2D continuum system in a magnetic field to a
1D lattice model [5,6]. This approach sheds new light on
the FQH physics and is also used to analyze new type of
FQH states in flat band Chern insulators [7].

In this Letter, based on the 1D approach, we introduce a
minimal model with an exact ground state which describes
a � ¼ 1=3 FQH state [Eq. (3) below]. We construct the
Hamiltonian in terms of local positive operators much like
the Affleck, Kennedy, Lieb, and Tasaki model for a quan-
tum spin-1 chain [8]. We discuss the properties of this
model by obtaining exact expressions for various correla-
tion functions, order parameters, and entanglement spectra.
Moreover, excitation gaps are accurately obtained via var-
iational calculations.

1D description of FQH states.—We consider 2D inter-
acting electrons in a magnetic field B on toroidal boundary
conditions, whereLi (i ¼ 1; 2) are the circumferences of the

torus of the corresponding coordinates xi, and lB � ffiffiffiffiffiffiffiffiffiffiffi
@=eB

p
is the magnetic length which will be set to unity. As dis-
cussed in preceeding works [5,6], the system with two-body
interaction assumes the following 1D discretized model,

H ¼ XNs

i¼1

X
k>jmj

Vkmc
y
iþmc

y
iþkciþmþkci; (1)

where cyi (ci) creates (destroys) a fermion at site i, and the
number of lattice sites is given by Ns ¼ L1L2=2�. The
matrix-element Vkm specifies the amplitude for a process
where two particles with separation kþm hop m steps to
opposite directions. This process conserves the center-of-

mass coordinate K1 � PNs

i¼1 in̂i (mod Ns) with n̂i � cyi ci,
which corresponds to the momentum along x1 direction.
Therefore, the system with � ¼ p=q can be divided into q
independent subsystems.
For the pseudopotential [9] which has the � ¼ 1=3

Laughlin wave function [2] as an exact ground state, the
matrix elements for large L2 are

Vkm / ðk2 �m2Þe�2�2ðk2þm2Þ=L2
1 : (2)

Thus the hopping terms (m � 0) are suppressed exponen-
tially compared to the electrostatic terms (m ¼ 0) in the
thin-torus (TT) limit L1 ! 0, and the system becomes a
charge-density-wave state�0 ¼ j100100100 � � �i. In order
to describe systems with finite L1, we include also the

leading hopping terms. This expansion in e�2�2=L2
1 is well

controlled, and we expect it to capture the physics also for
more general interactions [5,6,10–12].
Model with exact ground state.—Based on the above

framework, we truncate the long-range interactions of
the 1D model (1) at � ¼ 1=3 up to the third neighbor
(kþm � 3) assuming only

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V10V30

p ¼ V21 which is sat-
isfied in Eq. (2), 8L1. Then we have

H ¼ XNs

i¼1

½�2
i n̂iþ1n̂iþ2 þ �2

i n̂in̂iþ2 þ �2
i n̂in̂iþ3

þ �i�iðcyi cyiþ3ciþ2ciþ1 þ H:c:Þ�; (3)

where we have generalized the parameters �i, �i, �i 2 R
to have site dependence. This truncation is valid as an
expansion beyond the TT limit [13]. Now, we rewrite this
model in the following form:
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H ¼ X
i

½Qy
i Qi þ Py

i Pi�; (4)

where

Qi ¼ �iciþ1ciþ2 þ �iciciþ3; Pi ¼ �iciciþ2: (5)

Equation (4) is clearly a sum of positive operators, thus, the
spectrum is positive semidefinite hH i � 0. As we will
show, the (unnormalized) ansatz,

j�1=3i ¼
Y
i

ð1� tiÛiÞ�0 ¼
Y
i

e�tiÛi j�0i; (6)

where ti � �i=�i and Ûi � cyiþ1c
y
iþ2ciþ3ci, provides the

unique zero energy solutions. Note that ½Ûi; Ûj� ¼ 0 for

ji� jj � 2 and ÛiÛiþ2j�0i ¼ 0. In Eq. (6), the original
state j � � � 1001 � � �i in j�0i and its ‘‘squeezed’’ counter-
part j � � � 0110 � � �i cancel each other by acting Qi, and
there are no next-nearest pairs j � � � 101 � � �i. Hence, this
state satisfies Qij�1=3i ¼ Pij�1=3i ¼ 0, 8i, and it is a

zero-energy ground state [14]. Due to the conservation of
the center of mass, this state has threefold degeneracy for
periodic systems, even when the parameters have site
dependence. Our wave function (6) gives exact ground
states for open boundary systems. We can obtain many
new zero-energy eigenstates at a lower filling than � ¼ 1=3
by inserting an extra 0 anywhere in the root state, j�0i in
(6), because the insertion of 0 is equivalent to make open
boundaries. Moreover, if . . .000101 type configurations are
located at these ‘‘edges’’, they also give eigenstates with
finite energies due to the �2

i term.
The uniqueness of the ground state for each center-of-

mass sector in the � ¼ 1=3 periodic case can be shown
using the Perron-Frobenius theorem. First, one can show
that all the states generated by acting with the Hamiltonian

on j�0i can be reached by successive applications of Ûi

(for different i) [15]; thus, the Hamiltonian takes the form
of a connected matrix in this subspace. Next, with a unitary
transformation that changes the signs of �i, all the off-
diagonal matrix elements can be made negative. Now, the
Perron-Frobenius theorem implies that there are no other
zero-energy states than (6) in this subspace, since all its
expansion coefficients have the same sign. Finally, it fol-
lows that all states that are not connected to j�0i (or
translations thereof) by the Hamiltonian always include
finite amplitudes of next-nearest neighbor particle which
costs energy when�2

i > 0; thus, all such states have a finite
energy. This concludes the proof that (6) is the unique
ground state up to translations.

Correlation functions and order parameters.—From the
exact solution (6) it is possible to calculate rather generic
quantities such as correlation functions and entanglement
properties of the ground state. For this purpose, it is con-
venient to introduce a matrix product (MP) representation
[16,17] of the ground state wave function (6). In a periodic
system with Ns ¼ 3N sites, the normalized ground state
wave function (6) can be written as

j�1=3i ¼ N �1=2 tr½g1g2 � � � gN�; (7)

where gj is identified as the following 2� 2 matrix:

gj ¼
joij jþij

�t3jj�ij 0

" #
: (8)

Here, we have introduced the spin-1 representation for
three-sites unit cell [18]: j010i ! joi, j001i ! jþi, and
j100i ! j�i. For the open boundary system, we should
extract only (1, 1) component of (7) instead of taking the
trace.
Using the MP formalism for uniform ti ¼ t and infinite

systems N ! 1, we obtain the density function which has
three-site periodicity as [see Fig. 1(a)]

hn̂3i�1i ¼ 1

2

�
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4t2 þ 1
p

�
; hn̂3ii ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4t2 þ 1
p : (9)

This result shows that the density function becomes uni-

form at t ¼ � ffiffiffi
2

p
[19]. The single particle correlation

function is given by hcyi cji ¼ �ijhn̂ii due to the center-

of-mass conservation.
We can also obtain density-density correlation functions

in a similar way. In the infinite-size limit, we find expo-
nentially decaying correlations

hninji � hniihnji 	
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 þ 1

p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 þ 1

p
�ji�jj=3 � e�ji�jj=�:

(10)

As jtj ! 1, the correlation length � diverges which re-
flects the state j þ �þ�� � �i þ j � þ�þ� � �i.
Using the suggestive analogy of quantum spin-1 chains,

we consider nonlocal order in terms of the string order

FIG. 1 (color online). (a) Density functions hn̂ii in three-sites
unit cell, and (b) String order parameter Oz

string and dual string

order parameter �Oz
string as functions of t. O

z
string (

�Oz
string) dominant

in the large (small) t regime plays a role to characterize the
‘‘superconducting’’ (‘‘normal’’) component in an analogy of the
BCS theory.
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parameters O�
string ¼ �hS�i ei�

P
j�1
k¼iþ1

S�
k S�j i [20]. This is

known to characterize the Haldane-gap (including Néel)
state. On the other hand, a ‘‘dual’’ string order parameter

�O�
string ¼ hei�

P
j�1
k¼iþ1

S�
k i [21] can be introduced to character-

ize the large-D phases. Using the MP formalism we find

Oz
string ¼

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2 þ 1

p
� 1Þ2

4t2 þ 1
; �Oz

string ¼
1

4t2 þ 1
; (11)

where N, j� i ! 1 is assumed, and the x, y components
are vanishing. In conventional quantum spin chains, these
two order parameters are usually not finite simultaneously.
However, the present spin-mapped system breaks the
space-inversion and spin-reversal symmetries (e.g., a con-
figuration j � � � þ �o � � �i occur in (7) but j � � � o�þ� � �i
does not), and also SU(2) symmetry, which enables the two
different orders to coexist. This results consistent with the
numerical analysis which concludes that the spin-mapped
� ¼ 1=3 FQH state is adiabatically connected both from
‘‘Haldane’’ (Néel) and large-D phases without closing the
energy gap [18,21,22]. The two string order parameters
behave asOz

string ! 1 for jtj ! 1 and �Oz
string ! 1 for t ! 0

as shown in Fig. 1(b). This can be interpreted as the two
limits characterize ‘‘superconducting’’ and ‘‘normal’’
states in analogy with the BCS wave function which is
very similar to Eq. (6)—it has the form of bosonic opera-
tors acting on a vacuum state.

Entanglement spectrum and entropy.—We can also de-
rive the entanglement spectrum (ES) f�ig [23] of the sys-
tem in the spin-1 MP basis via the Schmidt decomposition
dividing the system into two parts, fk1; . . . ; kLg 2 A and
fkLþ1; . . . ; kNg 2 B, as

j�1=3i ¼ N �1=2
X

j1;j2¼1;2

f½g1 � � �gL�j1j2½gLþ1 � � � gN�j2j1g

¼ X
j1;j2¼1;2

ðN A
j1;j2

N B
j1;j2

=N Þ1=2jc A
j1;j2

i 
 jc B
j1;j2

i

� X
i

e��i=2jc A
i i 
 jc B

i i; (12)

where jc AðBÞ
i i with i � ðj1; j2Þ are orthogonal states de-

scribing subsystem AðBÞ, andN AðBÞ
j1;j2

are their norms. In the

infinite-size limit, L ¼ N=2 ! 1, one finds �1, �4 ¼
logð4þ t�2Þ � logð

ffiffiffiffiffiffiffiffiffiffi
4t2þ1

p
�1ffiffiffiffiffiffiffiffiffiffi

4t2þ1
p

þ1
Þ and �2 ¼ �3 ¼ logð4þ t�2Þ

[see Fig. 2(a)]. The structure of the ES is different from that
of usual Haldane-gap systems characterized by twofold
degeneracy in all ES (�1 ¼ �4 and �2 ¼ �3) [22]. This is
because our ‘‘Haldane’’ state is rather close to a Néel state
which does not have edge spins, due to the lacking of the
symmetries. We also get the von Neumann entanglement
entropy SA ¼ P

i�ie
��i which approaches log 4 for large t.

The finite entanglement entropy is a generic property of 1D
gapped states [24].

In finite systems, the entanglement properties are some-
what altered as shown in Fig. 2(b). Once the correlation
length � is of the order of the distance between the cuts L,
the above structure of the ES breaks down [25] and
for large enough t the entanglement entropy is instead
approaching log 2 due to the states j þ �þ�� � �i and
j � þ�þ� � �i.
Compressibility and excitation gaps.—When we shrink

the system size as Ns ! Ns � 1 by removing 0 from the
root state, a 10-type domain wall appears that carries a
fractional charge [2] e� ¼ e=3 (The fractional charge fol-
lows from noting that creating three such domain walls
101010 amounts to adding one electron to the root state
100100). This excitation energy EðNs � 1Þ can be analyti-
cally calculated within a variational approach based on the
MP formalism. Considering a subspace given by (6) where
j�0i is replaced by j��

0 i ¼ j10010100100 � � �i, and ap-

propriate local deformation of the MP state, we get a finite
value of EðNs � 1Þ for Ns ! 1 as shown in Fig. 3. Since
EðNs þ 1Þ ¼ EðNsÞ ¼ 0 as already discussed, we obtain
divergence of the inverse compressibility as expected for
the FQH state,

	�1 ¼ lim
Ns!1Ns

EðNs � 1Þ þ EðNs þ 1Þ � 2EsðNsÞ
4�l2B

! 1:

(13)

The excitation energies in the charge neutral sector can
also be calculated similarly. We specify these states by �K
which means the center-of-mass coordinate relative to the
ground state. Considering �K ¼ 1 and �K ¼ 2 subspaces
given by (6), where j�0i is replaced by states j�1i ¼
j100100010100 � � �i and j�2i ¼ j100010010100 � � �i, we
get excellent agreement with the numerical results of the
exact diagonalization which are very insensitive to the
system size, as shown in Fig. 3. For t ¼ 1=3, the �K ¼ 1
state is the lowest excitation only in the very small �
region, while the �K ¼ 2 state becomes the lowest as �
is increased. The tiny deviation at � ¼ 0 is due to phase

FIG. 2 (color online). Entanglement spectra f�ig, and entan-
glement entropy SA, as functions of t for (a) infinite-size system
and (b) finite-size (N ¼ 2L ¼ 32) system.
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separated states, j1010 � � � 0000i, which have zero
energy in this limit. The lowest �K ¼ 0 excitation is
significantly higher in energy. Since the above features
are qualitatively unchanged from small to sufficiently large
t regions (jtj 	 1), we identify the �K ¼ 2 excitation gap
as the neutral energy gap of a � ¼ 1=3 FQH state with
toroidal boundary conditions. This result is consistent with
a recent analysis using the spherical geometry and the Jack
polynomials which identifies the neutral gap in the L ¼ 2
angular momentum sector [26].

Bosonic systems.—The present exact argument can
also be applied to bosonic systems. The Hamiltonian (4)
with the operators Qi ¼ �ibibi þ �ibi�1biþ1 and Pi ¼
�ibibiþ1 defines a � ¼ 1=2 bosonic FQH state that has
the following exact twofold degenerate ground state:

j�B
1=2i ¼

Y
i

�
1� tiffiffiffi

2
p byiþ1b

y
iþ1biþ2bi

�
j�B

0 i; (14)

where j�B
0 i � j0101010 � � �i and ti � �i=�i. In this

model the spin-1 mapping is also possible as j10i ! joi,
j02i ! jþi, and j00i ! j�i. Hence, we obtain the same
effective spin-1 representation (7) as in the � ¼ 1=3 fer-
mion system.

Conclusion.—We have introduced a 1D interacting fer-
mion model with an exact ground state that describes a � ¼
1=3 FQH state. We have demonstrated the uniqueness of
the ground state with periodic boundary conditions for
each center-of-mass sector. We have introduced a MP
representation of the ground states and obtained exact
expressions for various correlation functions, order pa-
rameters, and the entanglement spectra. Moreover, the
excitation gaps have been accurately obtained via varia-
tional calculations with MP ansatz. We have also shown
that the present argument can be applied to a � ¼ 1=2

bosonic FQH state. Although our thin-torus approach
does not describe a genuine liquid state [11], it captures
other important aspects of the FQH physics.
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