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Abstract

Introduction: In ankylosing spondylitis (AS), joint remodeling leading to joint ankylosis involves cartilage fusion. Here,
we analyzed whether chondrocyte hypertrophy is involved in cartilage fusion and subsequent joint remodeling in AS.

Methods: We assessed the expression of chondrocyte hypertrophy markers runt-related transcription factor 2 (Runx2),
type X collagen (COL10), matrix metalloproteinase 13 (MMP13), osteocalcin and beta-catenin and the expression of
positive bone morphogenic proteins (BMPs) and negative regulators (dickkopf-1 (DKK-1)), sclerostin, (wingless inhibitory
factor 1 (wif-1)) of chondrocyte hypertrophy in the cartilage of facet joints from patients with AS or osteoarthritis (OA)
and from autopsy controls (CO) by immunohistochemistry. Sex determining region Y (SRY)-box 9 (Sox9) and type |l
collagen (COL2) expression was assessed as indicators of chondrocyte integrity and function.

Results: The percentage of hypertrophic chondrocytes expressing Runx2, COL10, MMP13, osteocalcin or beta-catenin
was significantly increased in OA but not in AS joints compared to CO joints. Frequencies of sclerostin-positive and
DKK-1-positive chondrocytes were similar in AS and CO. In contrast, wif-1- but also BMP-2- and BMP-7-expressing and
Sox9-expressing chondrocytes were drastically reduced in AS joints compared to CO as well as OA joints whereas the
percentage of COL2-expressing chondrocytes was significantly higher in AS joints compared to CO joints.

Conclusions: We found no evidence for chondrocyte hypertrophy within hyaline cartilage of AS joints even in the
presence of reduced expression of the wnt inhibitor wif-1 suggesting that chondrocyte hypertrophy is not a
predominant pathway involved in joint fusion and remodeling in AS. In contrast, the reduced expression of
Sox9, BMP-2 and BMP-7 concomitantly with induced COL2 expression rather point to disturbed cartilage
homeostasis promoting cartilage degeneration in AS.
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Introduction

Ankylosing spondylitis (AS) is a chronic inflammatory
disease primarily affecting the sacroiliac joints and the
spine [1]. Typically, inflammation is followed by new bone
formation, which can lead to joint ankylosis, for instance
of the sacroiliac joints and the spine.

Although being a prominent sign of the disease, the
mechanisms promoting joint ankylosis in AS are poorly
defined. Capsular ankylosis and development of extraar-
ticular osteophytes has been reported in AS joints in
several studies [2, 3]. However, our histomorphometric
study as well as a study in which we performed computed
tomography (CT) scans of the facet, i.e., zygapophyseal
joints provided no evidence for a major contribution of
capsular ankylosis or extraarticular osteophytes in AS
facet joints [4]. In fact we [4] and others [5] observed that
joint ankylosis is initiated by fusion of both cartilaginous
surfaces, which is followed by bony intraarticular anky-
losis. In our study, AS facet joints were grouped into joints
according to progressive loss of joint space and the type
of joint fusion into joints with open joint space (stage I),
joints with cartilaginous fusion (stage II) and joints with
bony fusion (stage III) [4]. Further histomorphometric ana-
lysis indicated that progressive remodeling is accompanied
by thinning of the cartilage and by cartilage degeneration
involving chondrocyte apoptosis and proteoglycan loss [4].
Moreover, the coincidental occurrence of a subchondral fi-
brous tissue, which carried bone-destructive features, with
cartilaginous joint fusion suggested a major contribution of
this tissue to the remodeling process.

In the transgenic tumor necrosis factor (TNF) mouse
model, which is characterized by inflammation in multiple
joints including the sacroiliac joints, intraarticular joint fu-
sion and ankylosis in the sacroiliac joints can be induced
by blockade of dickkopf-1 (DKK-1) — an antagonist of the
wingless (wnt) pathway [6]. Joint fusion and ankylosis in
this setting is mediated via the induction of chondrocyte
hypertrophy that leads to reinitiation of the endochondral
bone formation pathway, which eventually leads to bone
synthesis and simultaneous loss of cartilage.

Chondrocyte hypertrophy is induced by activation of
the wnt pathway leading to intracellular beta-catenin ac-
cumulation in chondrocytes [7, 8]. This promotes upreg-
ulation of the runt-related transcription factor 2 (Runx2)
[9-12] and induction of matrix metalloproteinase 13
(MMP13) [13, 14] and type X collagen (COL10) [15, 16].
In particular, MMP13 and COL10 are considered typical
markers of hypertrophic chondrocytes. Differentiation of
chondrocytes is controlled by endogenous regulators of
the wnt pathway and by growth factors. DKK-1 and scleros-
tin but also wingless inhibitory factor 1 (wif-1) are negative
regulators of the wnt pathway while bone morphogenic
proteins (BMPs) are growth factors, which are important
for cartilage homeostasis on one hand [17, 18] while their
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overexpression can promote chondrogenesis and chondro-
cyte hypertrophy [19]. Endochondral bone formation and
chondrocyte hypertrophy are involved in bone development
and longitudinal growth of long bones [20]. With the
disappearance of growth plates at the end of the second
decade of life, chondrocyte hypertrophy is usually not
seen in joints of adults [21, 22]. However, under patho-
logical conditions such as in osteoarthritis (OA), a disease
that is also associated with osteoproliferation, chondrocytes
can reacquire a hypertrophic phenotype, which may
promote osteophyte development and cartilage degen-
eration [21, 23-25].

To determine if chondrocyte hypertrophy is involved
in joint fusion and remodeling in AS joints, we analyzed
the expression of markers of chondrocyte hypertrophy
and of regulators of chondrocyte hypertrophy in facet joints
of AS patients. The results were compared to joints of con-
trols without joint disease and OA patients.

Methods

Patients and tissue acquisition

A total of 17 facet joints from 14 patients with AS (12
male, 2 female; mean age + standard deviation (SD) 51 +
8.12 years) undergoing surgical correction of rigid hyper-
kyphosis were included in the analysis. These joints
belonged to stages I-III of AS joint remodeling as previ-
ously described by us. Joints without cartilage, due to
complete replacement of the joint by trabecular bone, were
excluded from this study. Of 14 AS patients, 11 were
treated with nonsteroidal anti-inflammatory drugs
(NSAIDs), none of the AS patients received disease-
modifying antirheumatic drugs or TNF-alpha blocking
agents at the time of tissue acquisition. In addition, 22 facet
joints from 12 patients with OA (1 male, 11 female; mean
age + SD 69.83 + 6.01 years) who underwent surgery of the
lumbar spine because of neurological deficits in the lower
limbs caused by compression of nerve roots were acquired
and 11 facet joints of 10 non-AS control patients (4 male, 6
female; mean age + SD 68.90 + 14.91 years) who had no
history of rheumatic diseases and died of cardiovascular
diseases, were removed in toto at autopsy.

All patients gave informed consent to the study. Per-
mission for this study was given by the local ethics
committee of the Charité University Medicine Berlin,
Campus Benjamin Franklin, Berlin, Germany.

Tissue preparation

After acquisition, all joints were fixed, decalcified with
ethylenediaminetetraacetic acid and embedded in paraffin
as described [4]. Sections 4—6 um thick were used for
stainings. For overview the sections were stained using
safranin O/light green.
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Immunohistochemistry

For immunohistochemistry, fixed, decalcified tissue sec-
tions were deparaffinized in xylene and rehydrated before
either heat-induced epitope retrieval with citrate buffer at
pH 6.0 for beta-catenin, BMP-2, BMP-7 and wif-1 detec-
tion or enzymatic retrieval for sclerostin, DKK-1, Runx2,
osteocalcin, sex determining region Y (SRY)-box 9 (Sox9),
type II collagen (COL2) and COL10 detection. After block-
ing of nonspecific binding by serum-free protein block
(Dako, Glostrup, Denmark) sections were incubated
with the respective primary antibodies overnight at 4 °C.
After blocking with an endogenous avidin/biotin-
blocking kit (Invitrogen, Paisley, UK), the slides were
incubated with species-specific biotinylated immuno-
globulin (Dianova, Hamburg, Germany) and alkaline
phosphatase streptavidin (Vector Laboratories, Burlingame,
CA, USA). Alkaline phosphatase was visualized using
Chromogen Red (Dako REAL Detection System Kit,
Dako, Glostrup, Denmark) before counterstaining with
Meyer’s hematoxylin.

Primary antibodies

Monoclonal mouse antibodies against osteocalcin (clone
190125, dilution 1:100; R&D Systems, Minneapolis, MN,
USA), wif-1 (clone 133015, dilution 1:30; R&D Systems,
Minneapolis, MN, USA), COL2 (clone II-4C11, dilution
1:75; Acris Antibodies GmbH, Herford, Germany), COL10
(clone X53, dilution 1:25; Quartett, Berlin, Germany), poly-
clonal rabbit antibodies against beta-catenin (dilution 1:50;
Thermo Fisher Scientific, Waltham, MA, USA), DKK-1
(dilution 1:50; Abcam, Cambridge, UK), sclerostin (dilution
1:100; Abcam, Cambridge, UK), Runx2 (dilution 1:40;
Quartett, Berlin, Germany), BMP-2 and BMP-7 (dilution
1:20; PeproTech, Rocky Hill, NJ, USA) and polyclonal
goat antibodies against MMP13 (dilution 1:20) and
Sox9 (dilution 1:20) both obtained from R&D Systems
(Minneapolis, MN, USA) were used.

As negative controls, experiments were performed (i)
with isotype controls for immunoglobulin G (IgG) (mouse
IgG1l DAK-GO1, mouse IgG2a DAK-GOS5, mouse 1gG2b
DAK-GO9 and rabbit IgG all Dako, Glostrup, Denmark)
and (ii) by omitting the primary antibodies.

The expression of the respective markers was evaluated
by calculating the percentage of positively stained chon-
drocytes, i.e., the number of positively stained chon-
drocytes per total number of chondrocytes. The joint
sections of AS patients contained 2635 + 397 chondro-
cytes (mean = SD) and as a minimum 337 chondrocytes,
joint sections of OA patients 1461 + 296 chondrocytes
(minimum 332 chondrocytes) and sections of autopsy
controls (CO) 2294 + 517 (minimum 589) chondrocytes.
The cartilage area was defined beforehand by safranin O
staining.
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Microscope, camera and software

Immunohistological analysis was performed using an
Olympus BX60 microscope (Hamburg, Germany). Pic-
tures were taken with a digital camera (Color View II;
Soft Imaging System, Hamburg, Germany) and analyzed
using image analysis software (Soft Imaging Software
Cell D, Olympus Soft Imaging Solutions GmbH, Hamburg,
Germany).

Statistical analysis

Statistical analyses were performed using GraphPad Prism
software (GraphPad Prism 5 for Windows, Version 5.01,
GraphPad Software Inc., San Diego, CA, USA). Individual
measurements and the median are shown in the graphs.
For multiple group comparisons the Kruskal-Wallis test
and the Dunn’s multiple comparison test as post test were
used; a p value less than 0.05 was considered significant.
For correlation analysis the Spearman correlation coeffi-
cient was calculated.

Results

No increased percentage of hypertrophic chondrocytes
expressing Runx2, COL10 or MMP13 within the hyaline
articular cartilage in AS facet joints

While the number of chondrocytes expressing Runx2,
COL10 and MMP13 was significantly increased in OA
facet joints (mean + SD: Runx2 = 58.8 + 8.3 %, COL10 =
8.8 £ 9.2 %, MMP13 = 14.3 + 7.9 %) compared to autopsy
controls (CO) (Runx2 = 33.1 + 18.1 %, COL10 = 4.9 *
4.9 %, MMP13 = 1.4 + 0.9 %), no increased frequencies
of Runx2-, COL10- and MMP13-expressing chondro-
cytes were found in joints of AS patients (Runx2 = 40.0 +
235 %, COL10 = 2.7 + 32 %, MMP13 = 19 + 2.6 %;
Fig. 1la—c). In addition, the percentage of chondrocytes
expressing osteocalcin was also significantly increased
in OA joints (mean + SD: 9.1 £ 7.0 %) but not in AS
joints (mean = SD: 1.3 + 1.4 %) compared to CO
(mean + SD: 1.9 + 1.3 %; Fig. 1d).

No evidence for stage-dependent induction of chondrocyte
hypertrophy

To determine if occurrence of chondrocyte hypertrophy
is restricted to distinct stages of facet joint remodeling,
which we have recently described [4], we also performed
a subanalysis of AS joints grouped according to the pro-
posed stages. Even though the low number of stage I
joints precluded a statistical testing, Runx2 expression
appeared higher in early stages of joint remodeling com-
pared to controls. However, this was not accompanied
by increased COL10 or MMP13 expression suggesting
that chondrocyte hypertrophy also does not occur select-
ively in early stages of joint remodeling in AS (Fig. 2).
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)

transcription factor 2

Fig. 1 No increased percentage of hypertrophic chondrocytes expressing Runx2, COL10 or MMP13 within the hyaline articular cartilage in ankylosing
spondylitis facet joints. The percentage of positively stained chondrocytes among all chondrocytes [%] and representative immunohistochemical
staining of Runx2 (a), COL10 (b), MMP13 (c) and osteocalcin (d) within the hyaline articular cartilage of facet joints from controls (CO; A-D upper
pictures), patients with ankylosing spondylitis (AS; A-D middle pictures) and osteoarthritis (OA; A-D lower pictures); original magnification 40x and 400x;
ns = not significant p >0.05; ***= p <0.001; **= p <0.01, *= p <0.05. COL10 type X collagen, MMP matrix metalloproteinase, Runx2, runt-related

No activation of the wnt pathway in chondrocytes in AS
facet joints
We also analyzed the expression of beta-catenin, which
is an indicator for the activation of the wnt pathway fa-
cilitating chondrocyte hypertrophy and the expression of
inhibitors of the wnt pathway. In CO joints less than 2 %
of chondrocytes expressed beta-catenin (mean + SD: 1.8 +
3.0 %). A low percentage of beta-catenin-positive chon-
drocytes was also found in AS facet joints (0.6 + 0.9 %)
while in OA joints the number of beta-catenin-positive
chondrocytes was significantly increased (18.7 + 18.5 %;
Fig. 3a).

The percentage of chondrocytes expressing the wnt path-
way inhibitor wif-1 was drastically reduced in AS joints

(Fig. 3b; mean + SD: wif-1 = 2.4 + 4.5 %) compared to
CO (wif-1 = 16.9 + 99 %) and OA joints (wif-1 = 20.9 +
20.8 %).

The percentage of DKK-1-positive chondrocytes was
high, ie., above 50 % and without difference between
AS, OA and CO joints (mean + SD: AS = 51.0 + 17.5 %,
OA =572 + 10.3 %, CO = 57.6 £ 21.1 %; Fig. 3c). The
percentage of sclerostin-positive chondrocytes did not sig-
nificantly differ between AS and CO joints (AS: mean +
SD: 1.5 + 1.5 %; CO: mean + SD: 2.7 + 2.0 %; Fig. 3d)
while the percentage of sclerostin-positive chondrocytes
was increased in OA joints (mean + SD: 5.7 + 7.0 %).
Correlation analysis showed that the number of sclerostin-
positive chondrocytes correlated with the number of
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Fig. 2 No evidence for stage-dependent induction of chondrocyte hypertrophy. Representative immunohistochemical staining of safranin-O/light
green (a) from facet joints of patients with ankylosing spondylitis with open joints (AS stage 1), with cartilaginous fused joints (AS stage Il) and with
bony fused joints (AS stage ll). Representative immunohistochemical staining and percentage of chondrocytes that were positive for Runx2 (b),
MMP13 (c) and COL10 (d) within the hyaline articular cartilage of facet joints from patients with AS stage | (B-D first column), AS stage Il (B-D second
column) and AS stage IIl (B-D third column); original magnification 40x and 400x; dashed line indicates the median of the control group. COLT0 type X
collagen, MMP matrix metalloproteinase, Runx2, runt-related transcription factor 2
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(See figure on previous page.)

Fig. 3 No activation of the wnt pathway in chondrocytes according to beta-catenin staining in ankylosing spondylitis facet joints. Percentage of
positively stained chondrocytes [%] and representative immunohistochemical staining of beta-catenin (a), wif-1 (b), DKK-1 (c) and sclerostin (d) in
the hyaline articular cartilage of facet joints from controls (CO; A-D upper pictures), patients with ankylosing spondylitis (AS; A-D middle pictures)
and osteoarthritis (OA; A-D lower pictures); original magnification 40x and 400x; ns = not significant p >0.05; ***= p <0.001; **= p <0.01. COL10

type X collagen, DKK-1 dickkopf-1, wif-1 wingless inhibitor factor-1, wnt wingless

beta-catenin-positive chondrocytes in AS joints (ry =
0.50; p <0.05) while in OA joints a correlation between
the number of DKK-1-positive chondrocytes and the
number of beta-catenin-positive chondrocytes was found
(rs = 0.45; p <0.05).

Reduced expression of chondrocyte growth factors within
the cartilage of AS joints

We also evaluated the expression of BMP-2 and BMP-7,
which on the one hand are growth factors promoting
late hypertrophic differentiation of chondrocytes in vitro
and on the other hand are important for the maintenance
of articular cartilage [26]. The percentage of chondrocytes
expressing BMP-2 and BMP-7 was significantly lower in
AS joints (mean + SD: BMP-2 = 1.0 + 1.3 %, BMP-7 =
22 + 2.5 %) compared to CO and OA joints (OA:

BMP-2 = 139 + 129 %, BMP-7 = 13.2 + 8.8 %; CO:
BMP-2 = 14.6 + 8.6 %, BMP-7 = 7.6 + 5.5 %; Fig. 4a
and b) while the percentage of positive chondrocytes was
not significantly different between OA and CO joints.

Reduced Sox9 expression in AS joints

To further characterize the cartilage phenotype in AS
joints we also analyzed the expression of Sox9 as well as
COL2 synthesis as additional indicators of chondrocyte
integrity. As a result, we observed a drastic reduction in
the number of Sox9-positive chondrocytes in AS joints
compared to CO joints while Sox9 expression was not
altered in OA joints (mean + SD: AS = 0.02 + 0.06 %,
CO =139 + 12,5 %; OA 3.3 + 3.5 %; Fig. 5). In contrast,
the number of COL2-expressing chondrocytes was sig-
nificantly increased in AS joints compared to CO and

N

Fig. 4 Reduced expression of chondrocyte growth factors within the cartilage of ankylosing spondylitis facet joints. Percentage of positively stained
chondrocytes among all chondrocytes [%] and representative immunohistochemical staining of BMP-2 (a) and BMP-7 (b) within the hyaline articular
cartilage of facet joints from controls (CO; A-B upper pictures), patients with ankylosing spondylitis (AS; A-B middle pictures) and osteoarthritis (OA; A-B
lower pictures); original magnification 40x and 400x; ns = not significant p >0.05; ***= p <0.001; *= p <0.05. BMP bone morphogenic protein
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original magnification 40x and 400x; ns = not significant p >0.05; ***= p <0.001; *= p <0.05. COL2 type Il collagen, Sox9 sex determining region Y

— ——ns
1004
ﬁ 60- .
O 40 * .
o 20 . Soe i;:OL
o #“ 0%, .°:o°
co AS OA

OA joints (mean + SD: AS = 32.7 + 26.1 %, CO = 5.7 +
5.4 %; OA 18.4 + 10.3 %; Fig. 5).

Discussion

In this immunohistochemical analysis we performed a
detailed characterization of the phenotype of the cartil-
age in facet joints of AS patients to decipher the mech-
anism of joint fusion and joint remodeling observed in
these joints. To determine if reactivation of the endo-
chondral pathway of ossification, which leads to sacro-
iliac joint fusion and ankylosis in the transgenic TNF
mouse model after inhibition of the wnt pathway inhibi-
tor DKK-1 [6], is involved in the remodeling process, we
analyzed in situ the expression of established markers of
chondrocyte hypertrophy. However, we neither found an
activation of the wnt pathway according to beta-catenin
expression nor an upregulation of COL10 or MMP13
expression in chondrocytes of AS facet joints. Thus, no
conversion of chondrocytes into a hypertrophic phenotype
was detected in AS joints, which was, however, readily de-
tectable in the cartilage of OA joints in our analysis and in
reports by others [25, 27-31]. Only for Runx2 expression,

we observed a tendency toward higher expression spe-
cifically at early stages of joint remodeling, which was,
however, not accompanied by enhanced expression of
COL10 and MMP13. The limited availability of stage I
joints, i.e., joints in a prefusion state, is a limitation of
the study. However, also in stage II joints, which con-
tain areas with fused cartilage and areas with nonfused
cartilage, no evidence of chondrocyte hypertrophy was
observed, which strengthens the view that chondrocyte
hypertrophy is neither involved in the process of cartil-
aginous joint fusion nor at later stages of joint remodel-
ing in AS joints.

Surprisingly, the number of beta-catenin-expressing
chondrocytes did not inversely correlate with the expres-
sion of wnt antagonists, neither under physiological (CO)
nor under pathological conditions (AS, OA). In fact, the
percentage of beta-catenin-expressing chondrocytes was
low in AS joints even though wif-1 expression was also
strongly reduced in these joints. In OA joints, increased
expression of beta-catenin was observed in the absence of
dysregulated wnt inhibitor expression, suggesting that ra-
ther the expression of wnt activators than the expression
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of the wnt inhibitors may control chondrocyte hyper-
trophy under these conditions.

Apart from wif-1, the expression of BMP-2 and BMP-7
was also strongly reduced in AS facet joints. BMPs are not
only involved in chondrocyte differentiation but also crit-
ical mediators for cartilage homeostasis. Thus, impaired
expression of BMPs was shown to promote cartilage
degeneration in arthritis models [17] and accompanied
dedifferentiation of chondrocytes in vitro [32]. In addition,
a reduction in wif-1 expression was also shown to pro-
mote cartilage damage in experimental arthritis [33] sug-
gesting that the reduction of wif-1, BMP-2 and BMP-7
expression together with reduced expression of Sox9, a
master regulator of chondrocyte differentiation, in the car-
tilage in AS joints may be considered as signs of cartilage
degeneration.

In contrast to the reduction of Sox9, wif-1, BMP-2 and
BMP-7 expression, the expression of COL2 was strongly
increased in AS joints compared to controls. Induction
of COL2 expression is observed in in vitro cultures of
human chondrocytes in the presence of reduced oxygen
levels suggesting that COL2 induction reflects counter-
regulation in response to tissue stress [34]. Interestingly,
MMP13 expression was reduced in the presence of hyp-
oxia which also led to reversion of the hypertrophic
phenotype of OA chondrocytes [34]. Thus, the enhanced
COL2 expression in AS cartilage might indicate a re-
sponse of the cartilage to tissue stress.

In summary, our study found no evidence of chondro-
cyte hypertrophy in AS facet joints as a putative mechan-
ism which could support cartilage fusion and subsequent
joint remodeling. We rather found further signs of cartil-
age degeneration such as severe reduction in Sox9 expres-
sion and a decreased expression of BMP-2 and BMP-7, in
addition to the previously reported proteoglycan loss and
increase in chondrocyte apoptosis in the cartilage of AS
joints [4]. The low expression of beta-catenin in AS
facet joints underlines this assumption, because Zhu et al.
showed that activation as well as inhibition of beta-catenin
signaling in articular chondrocytes results in articular
cartilage destruction [8, 35]. Together with several other
reports describing extensive cartilage degeneration in AS
joints according to histomorphology [36-38], our immu-
nohistological characterization of chondrocytes suggests
that cartilage degeneration is a hallmark of the joint path-
ology in AS joints and may promote cartilage fusion. Fac-
tors that promote this degeneration are still enigmatic and
have to be studied in the future.

Conclusions
Our analysis shows that cartilaginous fusion and ankylosis
of facet joints in AS patients is not mediated by chon-
drocyte hypertrophy but rather promoted by cartilage
degeneration.
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