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ABSTRACT 

Conventional analysis of enzyme-catalyzed reactions uses a set of initial rates of product formation or substrate decay at 
a variety of substrate concentrations. Alternatively to the conventional methods, attempts have been made to use an in- 
tegrated Michaelis-Menten equation to assess the values of the Michaelis-Menten KM and turnover kcat constants di- 
rectly from a single time course of an enzymatic reaction. However, because of weak convergence, previous fits of the 
integrated Michaelis-Menten equation to a single trace of the reaction have no proven records of success. Here we pro- 
pose a reliable method with fast convergence based on an explicit solution of the Michaelis-Menten equation in terms of 
the Lambert-W function with transformed variables. Tests of the method with stopped-flow measurements of the cata- 
lytic reaction of cytochrome c oxidase, as well as with simulated data, demonstrate applicability of the approach to de- 
termine KM and kcat constants free of any systematic errors. This study indicates that the approach could be an alterna- 
tive solution for the characterization of enzymatic reactions, saving time, sample and efforts. The single trace method 
can greatly assist the real time monitoring of enzymatic activity, in particular when a fast control is mandatory. It may 
be the only alternative when conventional analysis does not apply, e.g. because of limited amount of sample. 
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1. Introduction 

The conventional Michaelis-Menten model is commonly 
used in biochemistry to assess the values of the catalytic 
constant kcat and the Michaelis-Menten constant KM = 
(kcat+k−1)/k1 of irreversible enzyme-substrate reactions 
[1-5]: 
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where k1 and k−1 are the forwards and backwards rate 
coefficients and E is the enzyme, S the free substrate, ES 
the enzyme-substrate complex, and P the released prod- 
uct. In the case when k1, k−1 >> kcat, which is known as 
the approximation of quasi-equilibrium between E and 
ES [1], and under the assumption of a quasi-steady state, 
dES/dt = 0, which holds for S0 >> E, the Michaelis- 
Menten equation is given by [1,6]: 
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The initial rate v0 = dP(t)/dt at t→0 is a nonlinear 
function of starting substrate concentrations S0, where E0 
is the total concentration of enzyme, and P(t = 0) = 0 is 
the initial condition for the product concentration. If v0 is 
plotted as a function of S0, the parameters kcat and KM  

have to be assessed with Equation (2) at t→0 by non- 
linear regression. Another way is to linearize Equation (2) 
using inverted variables like the 1/v0 and 1/S0 and then 
apply linear regression [7]. The disadvantage of the in- 
verted plots is that they are sensitive to errors for small or 
large values of v0 or S0 [5]. Eadie [8] and Hofstee [5] 
have proposed a linearization of Equation (2) using non 
inverted variables v0 and v0/S0 to overcome this limitation. 
Independent of the particular linearization procedure em- 
ployed to analyze enzyme kinetics all the methods rely 
on the determination of the initial rates v0 in a wide range 
of starting concentrations S0. We will refer to these me- 
thods as v0-plots. In cases, when measurements in a wide 
range of S0 are not possible or not feasible because of 
restricted availability of the samples, it would be advan- 
tageous to establish a new method for assessment of the 
enzymatic kinetic parameters for a single value of S0. 

Several attempts have been made to assess the values 
of KM and kcat directly from a time course S(t) of an en- 
zymatic reaction at a single S0. Different forms of para- 
metrically integrated Michaelis-Menten equation, e.g. (S0 − 
S) = E0 kcat t − KM ln(S0/S), have been fitted to progress 
reaction curves for enzyme catalyzed reactions to deter- 
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mine kcat and KM [9-12]. However, the fit of the implicit 
parametric solution to the explicit S(t)-curves by linear or 
nonlinear regression was a demanding numerical prob- 
lem and often resulted in uncertain values of kcat and KM. 
Only beginning with the work of Schnell and Medoza 
[13], the explicit solution of the Michaelis-Menten equa- 
tion for P(t) in terms of Lambert-W function became 
available, and could provide more accurate results, since 
no more approximations, than already made in the Mich- 
aelis-Menten model, were required. For instance, Goudar 
and colleagues [14-16] have used the explicit solution of 
the Michaelis-Menten equation, Equation (3), to analyze 
single progress curves of enzymatic reactions. The new 
method promised to be fast and sample saving. Yet sur- 
prisingly, the explicit solution of the Michaelis-Menten 
equation has up to now only occasionally been adopted 
to estimate kcat and KM, even though its theory is well 
documented [13]. 

Walsh et al. [17] have pointed out that attempts to use 
the explicit solution of the Michaelis-Menten Equation (2) 
to describe reaction time courses have so far met with 
little success. It is well known, that nonlinear regression, 
in our case with the Lambert-W function, cannot be start- 
ed without specifying the initial input parameters KM,input 
and kcat,input, even if the whole progress curve is accu- 
rately measured. If KM,input and kcat,input are significantly 
different to the real KM and kcat, the nonlinear fit con- 
verges very slowly, if at all, and the estimated values of 
KM and kcat are imprecise. To our knowledge, the prob- 
lem of the strong dependency of the fitted constants KM 
and kcat on the input parameters KM,input and kcat,input has 
not be properly addressed so far. In the present paper we 
examine the problem and demonstrate, that because of a 
weak convergence, previous fits of the explicit solution 
of the Michaelis-Menten equation to a single trace P(t) 
could not provide a reliable estimation of KM and kcat. We 
propose an alternative fitting method using an explicit 
solution of the Michaelis-Menten equation in terms of 
the transformed Lambert-W function, Equation (8), which 
is much less prone to uncertainties in input parameters 
than previous single-trace methods. We compare the 
method in simulated and experimental conditions with 
conventional v0-plots to demonstrate that the new ap- 
proach could be developed to a standard method for a 
time and sample saving characterization of enzymatic 
reactions. For that we use simulated data following the 
ideal irreversible Michaelis-Menten kinetics as well as 
experimental data on the reaction of cytochrome c oxi- 
dase (CcO). At high salt conditions and in the presence 
of an excess of oxygen, the CcO-reaction meets the sin- 
gle substrate Michaelis-Menten model and no product 
inhibition takes place. Additionally, the CcO-reaction 
guarantees full irreversibility of the enzymatic reaction 
due to formation of water from oxygen during the cataly- 
sis [18]. 

2. Material and Methods 

2.1. Preparation of Enzyme Cytochrome c 
Oxidase 

Cytochrome c oxidase (CcO) is the terminal complex of 
the membrane-bound respiratory chain and spends elec- 
trons from ferrous cytochrome c for the reduction of oxy- 
gen to water. CcO from Rhodobacter sphaeroides was 
expressed and purified, using 2 l cell culture flasks in a 
gyratory shaker followed by 12 h solubilisation in deter- 
gent [19]. Purified protein was stored in phosphate buffer 
(50 mM, pH 8 and 0.01% dodecylmaltoside) at −80˚C 
until use. The enzyme concentration was determined 
from UV/VIS spectra of air-oxidised and sodium dithio- 
nite reduced samples, using the difference of the differ- 
ential extinction coefficients Δε605 − Δε630 =24 mM−1·cm−1 
at the wavelengths λ = 605 nm and 630 nm [19]. Ferrous 
cytochrome c from horse heart (purity >95% from Fluka) 
was used without further purification. A solution of cy- 
tochrome c was reduced in a fivefold molar excess of 
sodium dithionite. Reductant was separated via a 5 ml 
HiTrap desalting column (GE Healthcare) on an ÄktaPu- 
rifier FPLC (GE Healthcare) and the protein was stored 
at −80˚C. The concentration of cytochrome c was de- 
termined spectrophotometrically by recording the reduced- 
minus-oxidized difference spectrum of the sodium di-
thionite reduced and ferricyanide oxidized sample and 
using the differential extinction coefficient Δε550 = 19 
mM−1·cm−1 at λ = 550 nm [20]. 

2.2. Measurements of Enzyme Kinetics 

Kinetic experiments of electron transfer from cytochrome c 
to CcO were performed by the stopped-flow technique 
[19]. The oxidation of ferrous cytochrome c was moni- 
tored at λ = 550 nm by a miniature fibre-optic spectr- 
ometer (USB 2000 from Ocean Optics). A 50 nM solu- 
tion of oxidase was mixed with a 5 to 120 μM solution of 
cytochrome c, both buffered in a 50 mM phosphate 
buffer, pH = 6.5, containing 0.05% dodecylmaltoside and 
100 mM KCl. 

2.3. Simulation of Enzyme Kinetics 

The normalized time trace p(t) = P(t) /S0 of an enzymatic 
reaction was simulated with the integrated Michaelis- 
Menten equation, Equation (3), for 425 equidistant time 
points in the range 0 ≤ t ≤ 65 s for the parameters KM = 
220 µM, kcat = 650 s−1 and E0 = 50 nM, i.e. for the pa- 
rameters close to those of the CcO reaction. Pseudo- 
random noise was generated by the “rnd”-function of the 
software Mathcad 2001 Professional, MathSoft, Inc., and 
added to the analytical trace p(t). The amplitude of the 
noise was ranging from 0 up to 4% of the maximum 
value p = 1. 
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2.4. Description of the Linear and Nonlinear 
Regressions 

For the linear regression we used the “neigung”-function 
of the Mathcad 2001 Professional, MathSoft, Inc. The 
initial rates v0,exp were determined by linear regression 
using the first ten data points of the experimental and the 
computer simulated trace p(t). The same linear regression 
was applied to Lineweaver-Burk and EadieHofstee plots 
for estimation of the values of KM and kcat. The conven- 
tional nonlinear regression with Equation (2), as well as 
the nonlinear regression with the integrated Michaelis- 
Menten equation was based on the iterative Levenberg- 
Marquardt method implemented in the “minfehl”-func- 
tion of the Mathcad 2001 Professional. 

3. Results and Discussion 

3.1. Simulation of Enzymatic Reactions  

Our simulations of enzymatic reactions employ an inte- 
gration of the Michaelis-Menten Equation (2) yielding a 
closed analytical formula for P(t) in terms of the Lam- 
bert-W function W(x) [13], in contrast to frequently ap- 
plied implicit parametric solutions: 
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Note that Equation (3) refers to the fully irreversible 
enzymatic reaction as constituted by Equation (1). The 
progress curve P(t) is simulated by Equation (3) at S0 = 
30 µM, KM = 220 µM, kcat = 650 s–1 and E0 = 50 nM. The 
result is an ideal product P(t)-curve following the one- 
substrate Michaelis-Menten model. Then Equation (3) is 
fitted with KM and kcat to P(t)-curve by nonlinear regres- 
sion as described in section 2.4. To study the robustness 
of the method against deviations of initial input parame- 
ters from the true values, we started the nonlinear regres- 
sion with KM,input ≠ KM = 220 µM and kcat,input ≠ kcat = 650 
s–1. The extents of the relative variations of the input pa- 
rameters ΔKM,input /KM and Δkcat,input/kcat are quantified by 

 ,input ,inputM M M M MK K K K K       (4) 

 cat,input cat cat,input cat catk k k k k        (5) 

The relative deviations of the estimated parameters 
δKM,est/KM and δkcat,est /kcat are characterized by 

 ,est ,estM M M M MK K K K K        (6) 

 cat,est cat,est cat catMk k k k k         (7) 

The calculation showed, that the relative deviations of 
the input parameters in the range of –0.5 ≤ ΔKM,input/KM ≤ 
0.5 and −0.5 ≤ Δkcat,input/kcat ≤ 0.5 cause practically equal 
relative deviations of both estimated parameters: 

,est cat,est catM MK K k k  . Therefore, we combined the 
results for relative deviations of the estimated parameters 
KM,est and kcat,est in a single plot, Figure 1. 

The results of a direct fit of Equation (3) to the time 
course P(t) are summarized in Figure 1(a). If the value 
of kcat,input is somewhat different to the exact value, both 
KM,est and kcat,est cannot be determined correctly. On the 
other hand, KM,est and kcat,est are very little sensitive to 
variations of KM,input. It means that the fit of Equation (3) 
to P(t) cannot provide convergence to correct values of 
KM and kcat, if the initial input parameter kcat,input some- 
nwhat deviates from the true value of 650 s–1. As far as 
we know, all previous attempts to determine KM,est and 
kcat,est explicitly using Equation (3) were based on the 
similar approach as tested above [14-16]. 

We solve this problem by employing the fact that the 
apparent rate constant in Equation (3) is given by m = 
kcat·E0/KM [2]. In terms of m, Equation (3) takes the form: 

     
0

1
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p t W s s mt

S s
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where s = S0 /KM is the dimensionless parameter. Apply- 
ing Equation (8) to fit kinetics of an enzymatic reaction 
by nonlinear regression, we render the procedure robust 
against errors in initial input values of KM and kcat. Using 
the transformed Equation (8), we obtain very small rela- 
tive errors for the estimated parameters δKM,est/KM ≈ 
δkcat,est/kcat in the range between −7.5 × 10−3 and 1.5 × 
10−2, Figure 1(b). For the most values of KM,input and kcat,input 
studied here we calculate even zero deviations. For char- 
acterization of the quality of the fit, we use the standard 
deviation: 
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where N = 425 is the number of the equidistant time 
points ti at which the function p(ti) is sampled. Note that 
when the non-transformed Equation (3) is used, the loca- 
tion of local minima of SD is on a line diagonal to 
ΔKM,input/KM and Δkcat,input /kcat axis, see Figure 2(a). This 
is very unfavorable for nonlinear regression and leads to 
the weak convergence and mainly to a wrong local mini- 
mum. The large deviation from the global minimum 
causes large uncertainty in KM,est and kcat,est. The trans- 
formed Equation (8) applied in the new (m, s)-coordinate 
system exhibits much faster convergence, as Equation (3) 
in the (KM, kcat)-coordinates, Figure 2(b). Contrary to 
Equation (3), the fit of the apparent rate constant m at a 
constant parameter s yields the correct m-coordinate of 
the global minimum of SD. Fitting s at a correct 
m-coordinate of the minimum greatly facilitates conver- 
gence to the well-defined global minimum of SD shown 
by the arrow in Figure 2(b). The estimated coordinates 
mest, sest of the global minimum can be easily recalculated 
into the parameters KM,est and kcat,est. 
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(a)                                                    (b) 

Figure 1. Hyperplane of the relative deviations of the estimated parameters KM,est and kcat,est from the actual values as a 
function of the relative deviations of the input parameters ΔKM,input /KM and Δkcat,input /kcat. Black spheres represent 
calculated points connected by eye-help lines and surfaces. (a) KM,est and kcat,est are estimated using Equation (3). (b) KM,est and 
kcat,est are estimated using the transformed Equation (8) in the form P(t) = p(t)·S0. Note the large difference in the scales of the 
vertical axes of (a) and (b). For both plots KM,est and kcat,est are determined by nonlinear regression applied to the error-free 
function P(t) computed by Equation (3). 
 

 

 
(a)                                                    (b) 

Figure 2. Standard deviation SD, computed with Equation (9), as a function of the relative deviation of input parameters: 
KM,input/KM and kcat,input/kcat, (a), and Δsinput/s = (sinput – s)/s, Δminput/m = (minput – m)/m, (b). Black spheres represent 
calculated values of SD connected by eye-help lines and surfaces. The arrows show the position of the global minima of SD: (a) 
regression with Equation (3), (b) regression with Equation (8). The error-free functions P(t) and p(t) = P(t)/S0 are computed as 
specified in Figure 1. 
 
3.2. Advanced Algorithm for Single Trace Regression mate the input value of the apparent rate constant input  

via fitting Equation (10) by regression to experimental or 
simulated p(t) curves. Calculations with simulated p(t) 
have shown (data are not presented) that for a reliable 
estimation of input  it is recommendable to sample p(t) 
up to the maximum time

m

m

max input7t m . The second input 
parameter for the dimensionless parameter inputs  is ob- 
tained using the first derivative of Equation (8) for t → 0: 

The impact of the precision of the input parameters KM,input 
and kcat,input on the errors on the estimated values of KM,est 
and kcat,est becomes stronger with increasing noise level of 
data. Previously, KM,input and kcat,input were determined 
through a linearization of Equation (3) resulting in un- 
certain estimates [15,16]. Here we avoid the linearization 
by using the fact that the simple exponential function 

  appr input1 expp t m t            (10)  
input0

d

d 1
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           (11) 
is an approximation to Equation (8), [2]. First, we esti- 
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The value (dp(t)/dt)|t→0 ≈ v0,exp is estimated by usual 
linear regression applied to ten or twenty initial points of 
the p(t) curve. Rearrangement of Equation (11) gives the 
second input parameter sinput in the form: 

input 0,exp 1inputs m v            (12) 

It is recalled that linear regression for v0,exp and nonlin- 
ear regression of the exponential Equation (10) for minput 
yield intrinsically wrong estimates of minput and sinput. 
However, the estimates are good enough to serve as input 
parameters for the nonlinear regression with the trans- 
formed Equation (8); cf. next section 3.3. On this way, 
the determination of minput and sinput can be easily auto- 
mated; see the reference in the Appendix 1.6. Finally, the 
searched kinetic constants are given by KM,est = S0/sest and 
kcat,est = mest·KM,est/E0. 

3.3. Robustness of Single Trace Regression to 
Noise 

For testing of robustness of single trace regression to 
error-prone data, noise was added to the error-free func- 
tion p(t), Equation (8), in form of the pseudo random 
error: 

   errp t p t e x             (13) 

where e is the noise amplitude ranging from zero to 0.04, 
and x is the pseudo-random variable varying in the range 
of −1 to 1. The function perr (t) is calculated in N = 425 
equidistant points in the time range of 0 to 65 s. The es- 
timates mest and sest are determined as averages of five 
samples of noise of perr (t). As a measure for the quality 
of the estimations we use the standard deviation, Equa- 
tion (9). The resulting SD values are small for all noise 
levels: SD = 0 at e = 0, SD = 5.8 × 10−3 at e = 0.01 and 
SD = 0.024 at e = 0.04. Symmetric distribution of the 
relative deviations of the estimated parameters δKM,est /KM 
and δkcat,est/kcat around zero suggests no systematic error 
in the resulting KM,est and kcat,est values; see Figure 3, 
right panels. 

As mentioned above, the values of δKM,est/KM and 
δkcat,est/kcat are practically equal to each other in the who- 
le range of ΔKM,input/KM and Δkcat,input/kcat studied here; 
therefore, they are presented together in the same graph, 
Figure 3 (right panels). The estimates of KM,est and kcat,est, 
averaged over the results for 25 input pairs of KM,input and 
kcat,input, are summarized in Table 1. Note that the esti- 
mates are very close to the actual values KM = 220 μM 
and kcat = 650 s−1, even at e = 0.04. 

3.4. Conditions for the Best Convergence 

Besides of the noise level of P(t), the quality of analysis 
depends on the absolute value of the initial substrate 
concentration S0. To demonstrate the correlation between 

noise-level and initial substrate concentration, the rela- 
tive deviation of estimated KM and kcat values as a func- 
tion of S0 is depicted in Figure 4(a) for three different 
levels of noise. 

The absolute values of the relative deviations of the 
estimated parameters KM and kcat became larger with de- 
creasing S0 and increasing noise amplitude e. The de- 
pendence of |δKM,est|/KM and |δkcat,est|/kcat on S0 can be 
referred to large rounding errors of the nonlinear regres- 
sion at small values of initial substrate concentrations, 
especially when S0 << KM (here at about S0 = 10 µM), 
and at larger level of noise. Since the parameter s in 
Equation (8) interrelates S0 to KM, we estimated for a 
given parameter s the ranges of the apparent rate constant 
m, which condition a correct determination of KM and kcat. 
Reliable results of the fit we obtain for s = 0.01 and m 
between 0.02 and 1.2 s−1, for s = 0.1 and m between 
0.024 and 1.9 s−1 as well as for s = 1.0 and m between 
0.07 and 1.2 s−1. In that range of the parameters the 
 

 

Figure 3. Left panels: Progress curves simulated with Equa- 
tion (8) with parameters as indicated in Figure 1, now with 
random noise of the amplitudes (a) e = 0, (b) e = 0.01 and (c) 
e = 0.04. The red lines represent fits with Equation (8) for 
the calculation of the parameters KM,est and kcat,est. Right 
panels: Black spheres connected by eye-help lines and sur- 
faces represent the relative deviation δKM,est/KM and δkcat,est/ 
kcat of the estimated parameters from the actual values as 
function of the relative deviations of the input parameters 
ΔKM,input/KM and Δkcat,input/kcat. 
 
Table 1. Estimates of KM and kcat averaged over 25 input 
pairs KM,input and kcat,input at three different noise levels e. KM 
and kcat are computed by single trace regression with Equa- 
tion (8). 

e KM/μM kcat/s
−1 

0 220 650 

0.01 220 ± 3 649 ± 9 

0.04 220 ± 11 651 ± 31 
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(a)                            (b) 

Figure 4. (a) Absolute values of relative deviations of the 
estimated parameters KM,est and kcat,est from the actual 
values as functions of the initial substrate concentration S0 
at the three different levels of noise: ×, e = 0.0, □, e = 0.01, 
and ◊, e = 0.04. The nonlinear regression method was 
applied to perr(t), see Equation (13), at the input parameters 
KM,input = 275 μM, kcat,input = 487.5 s−1, corresponding to 
ΔKM,input/KM = 0.25 and Δkcat,input/kcat = −0.25. (b) The impact 
of the relative error ∆S0/S0 in initial substrate concentration 
S0 on the relative deviations |δKM,est|/KM and δ|kcat,est|/kcat of 
the estimated parameters from the actual values. The solid 
line represents results of nonlinear regression for the error- 
free function p(t); other parameters as in (a). Broken 
horizontal lines indicate a 20% relative error in KM and 
kcat. 
 
computation algorithm for Lambert-W function and non- 
linear regression implemented in Mathcad 2001 Profes- 
sional yield exact values of KM,est and kcat,est (data are not 
shown). The precision of the value of S0 appears to be 
very important for a correct analysis of progress curves, 
because of the direct dependence of s on S0. Already the 
relative deviation ΔS0/S0 = (S0,meas − S0)/S0 of the meas- 
ured value S0,meas from the exact value S0 in the range ± 
0.5% causes a hundredfold larger relative error in the 
estimated values of KM,est and kcat,est, Figure 4(b). In or- 
der to keep the relative error in KM,est and kcat,est within ± 
20% error margin, the relative deviation ΔS0/S0 should be 
in the range between −0.18 and +0.21%. Therefore, the 
single trace regression requires very precise values of the 
starting substrate concentrations. Generally, the demanded 
precision of S0 should be better than about ±0.1%, which 
is nowadays available in most laboratories. 

3.5. Testing v0-Plots and Single Trace  
Regression with Simulated Data  

We tested the limits and quality of the new single trace 
regression as well as commonly used v0-plots using 
computer generated data with pseudo-random noise. One 
source of errors in v0-plots is an inaccurate experimental 
determination of v0. In our simulations, we determine the 
realistic error in v0 using a computer simulated trace p(t) 
with a known level of pseudo-random noise, as opposed 
to previous computer tests, in which a fixed error was 
added to v0 [5]. Three classical v0-plots (Lineweaver- 

Burk, Eadie-Hofstee and nonlinear) as well as the single 
trace regression method were applied to the same data set. 
The results are presented in Table 2 (see also Tables 4-5 
in Appendix). 

Table 2 clearly shows that the single trace regression 
with Equation (8) yields the most precise results for KM 
and kcat when error prone simulated data are analyzed. 
The nonlinear v0-plot yields good estimates coinciding 
with actual values within their standard deviations. The 
Eadie-Hofstee plot yields less accurate results, the esti-
mate does not compare to the true value kcat, even if 
within the error margin. The Lineweaver-Burk plot yields 
unrealistic negative values of KM and kcat. Presumably, an 
uneven distribution of error over S0-values leads to the 
unrealistic results. This could be to a certain degree cor-
rected by disregarding data points for smaller S0-values, a 
strategy which is frequently employed by experimental-
ists exploiting the Lineweaver-Burk plot. Our analysis 
adheres strictly to all values of the plots to ensure the full 
comparability of all the methods. We also did not per- 
form a weighting of the data points corresponding to 
their precision, which additionally may have led to im- 
proved results. Another reason for the failure of the 
Lineweaver-Burk plot is the narrow width of the ana- 
lyzed S0 range between 3 and 100 μM, compared to the 
KM-value of 220 μM. Generally, a wider range of S0- 
values used for analysis increases precision of results of 
all v0-plots considerably [5]. Regarding this fact, our new 
single trace regression method could be of great benefit, 
especially in cases, where a wide range of S0 values can-
not be addressed experimentally. As expected, results for 
a wider range of staring concentrations S0 are more pre-
cise, than those for the narrow range of S0-values (see 
Figure 7 and Table 4 of Appendix). The reason for the 
notably more precise results of the single trace regression 
compared to the three v0-plots in Table 2 could be the 
fact that the initial rates v0 are usually underestimated in 
their experimental determination (cf. Appendix Figure 6). 
The effect of the underestimation of v0 on the results of 
the v0-plots is actually hardly predictable. Dependent on 
the actual noise level, the estimated values of KM and kcat 
can be systematically shifted either to lower or to higher 
values. In that case, the small error margins of KM and 
kcat are misleading, as demonstrated for the kcat value de-
termined by the Eadie-Hofstee plot in Table 2. Differ-
ently to the v0-plots, the results of the new single trace 
method do not show any systematic deviation from the 
actual KM and kcat values at all three levels of noise stud-
ied here, see Figure 3. In principle, the assessment of KM 
and kcat can be improved by repeating the single trace 
experiments and averaging, as opposed to the v0-plots 
using systematically underestimated values of v0,exp. 
Therefore, we may conclude that the new method has a 
potential to yield more precise results than the conven-
tional v0-plots. 
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Table 2. Comparison of different methods to determine kinetic constants from simulateda enzymatic reactions with noise. 

single trace regression, 
Equation (8) 

nonlinear v0-plot, 
Equation (17) 

Eadie-Hofstee plot, 
Equation (15) 

Lineweaver-Burk plot, 
Equation (14) 

KM/μM kcat/s
−1 KM/μM kcat/s

−1 KM/μM kcat/s
−1 KM/μM kcat/s

−1 

217 ± 7b 643 ± 18 240 ± 22 650 ± 43 210 ± 30 565 ± 60 −160 ± 270 −310 ± 650 

aReactions are simulated at seven S0 varying between 3 and 100 μM at KM = 220 μM, kcat = 650 s−1, E0 = 50 nM, including pseudo-random noise of the am-
plitude 0.5 μM; v0-values are determined by linear regression. bStandard deviation derived from five independent simulations of p(t) for the single trace regres-
sion with Equation (8) at S0 = 50 mM and fivefold repetition for other methods. 

 
3.6. Testing Single Trace Regression with 

Experimental Data 
A quantitative comparison of the simulated product 

curves p(t) at different levels of noise with the experi- 
mental p(t) by Equation (9) shows that the experimental 
level of noise (compared to Table 1) allows for a definite 
determination of KM and kcat by all three v0-plots studied 
here. A representative result of a fit of Equation (8) to a 
single trace of an enzymatic reaction is shown in Figure 
5(d). The sevenfold repetition of the single trace regres- 
sion at seven different S0 values (see Appendix, Table 5) 
enables computation of standard deviations of KM and kcat 
in Table 3. It is apparent from the Table 3 that the 
Lineweaver-Burk plot yields the most imprecise results, 
what is in line with the conclusion of Hofstee [5]. The 
nonlinear v0-plot provides the smallest standard devia- 
tions of kcat compared with single trace regression or 
Lineweaver-Burk and Eadie-Hofstee plots. Within the rel- 
ative large error margin of KM and kcat, the results of the 
single trace regression are at least consistent with the 
results of the v0-plots. The variations of the kinetic pa- 
rameters KM and kcat determined by single trace regres- 
sion at different substrate concentrations S0 reflect the 
limits of the method caused by experimental errors; see 
Table 5 in Appendix. However, the experimental result 
itself does not suggest any systematic deviations of KM 
and kcat with S0. 

To gauge the conventional methods to the single trace 
regression analysis under experimental conditions of en- 
zymatic catalysis we have chosen the reaction of CcO 
with ferrous cytochrome c, because at high salt condi- 
tions and surplus of oxygen it meets the single substrate 
Michaelis-Menten model and guarantees full irreversibil- 
ity of the enzymatic reaction due to formation of water 
from oxygen during the catalysis as well as the exclusion 
of product inhibition [18]. The high ionic strengths con- 
ditions lead further to slower kinetics of this enzymatic 
reaction compared to the optimum rate at low ionic str- 
ength; see, e.g., review by Cooper [18]. 

Initial reaction rates v0,exp are measured spectropho- 
tometrically at different starting concentrations S0 of the 
substrate, ferrous cytochrome c. The corresponding Line- 
weaver-Burk, Eadie-Hofstee and nonlinear v0-plots are 
presented in Figures 5(a-c). 

The resulting kinetic parameters KM and kcat of the 
plots are summarized in Table 3. 

 

 

In our experiment it is not clearly evident whether the 
single trace regression or the v0-plots are generally more 
precise in determination of kcat and KM. At least we dem- 
onstrate here that single trace regression leads to realistic 
estimates, which are in good agreement with the values 
of the v0-plots. 

(a) (b) 

 

4. Conclusions 

The analytical integration of the Michaelis-Menten Equa- 
tion (2) in terms of the transformed Lambert-W function, 
Equation (8), provides a reliable tool to determine the 
Michaelis-Menten KM and turnover kcat constants from 
the analysis of a single reaction trace. Supported by our 
advanced nonlinear regression algorithm, this new meth- 
od allows determining KM and kcat much quicker than by 
conventional linearization or by nonlinear plots using a 
set of (v0,exp, S0) pairs. 

(c)                       (d) 

Figure 5. Four different plots of the kinetic analysis of the 
reaction of cytochrome c oxidase (E0) with ferrous cyto- 
chrome c (S0). Experiments are performed at constant E0 = 
50 nM in a 50 mM phosphate buffer, pH = 6.5 and 100 mM 
KCl. Lineweaver-Burk (a), Eadie-Hofstee (b) plots and 
nonlinear v0-regression (c) for various cytochrome c initial 
concentrations S0. Normalized kinetics of the product for- 
mation at S0 = 30.08 µM (d). Black circles represent 
experimental data, the red curve represents Equation (8) 
with KM = 218 µM and kcat = 645 s−1. 

The method can be easily implemented as a time and 
sample saving tool in the online characterization of en- 
zymatic activity. The kinetic parameters KM = 219 ± 4 
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Table 3. Kinetic parameters for the reaction of CcO with ferrous cytochrome c. 

single trace regression, 
Equation (8) 

nonlinear v0-regression, 
Equation (17) 

Eadie-Hofstee plot, 
Equation (15) 

Lineweaver-Burk plot, 
Equation (14) 

KM/μM kcat/s
−1 KM/μM kcat/s

−1 KM/μM kcat/s
−1 KM/μM kcat/s

−1 

219 ± 4a 790 ± 120 258 ± 22 770 ± 43 213 ± 30 640 ± 60 220 ± 270 670 ± 650 

aStandard deviations are determined as described in the text. 

 
μM and kcat = 790 ± 120 s–1 determined with Equation (8) 
for the CcO reaction are quite conform to results of con- 
ventional v0-plots. The fact that no systematic errors oc-
cur in KM and kcat in the large range of S0 tested here 
suggests that application of the single trace method at S0 < 
KM can complement, if not replace, the conventional 
methods requiring measurements in the larger range of S0 
(0 < S0 < 2 KM, Hofstee (1959), [5]). Note that for some 
enzymatic reactions, like oxidation of cytochrome c by 
CcO studied here, the region S0 > 0.5 KM is experiment- 
tally not accessible because the absorption of cytochrome 
c becomes too strong for correct spectrophotometric de- 
termination. 

We can therefore expect that the new single trace non- 
linear regression will apply to all single substrate irre- 
versible enzymatic reactions whenever a reliable, precise 
and fast assessment of the kinetic parameters KM and kcat 
is demanded. The single trace regression with the trans- 
formed Lambert-W function can be adopted to analyze 
reversible enzymatic reactions [21,22], as well as to en- 
zyme kinetics of multiple alternative substrates [23]. In 
any case, the method will provide a new tool for bio- 
technology that saves sample and time by reducing the 
number of experiments at various S0 mandatory for the 
determination of KM and kcat by v0-plots. 
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Appendix 

1. Comparison of the Approaches to Assess 
KM and kcat 

1.1. Linearizations of the Michaelis-Menten Rate 
Equation 

Enzyme kinetics is most commonly analyzed by meas- 
uring the initial reaction rate v0 at different substrate 
concentrations S0. A number of linearization procedures 
are available for the evaluation of such datasets [3]. Hof- 
stee [5] has pointed out that there is no real basis for the 
continued use of inverted linearization, like the 1/v0 ver- 
sus 1/S0, the so-called Lineweaver-Burk plot [7]: 

0 cat 0 0 cat 0

1 1MK K

v k E S k E
  M           (14) 

because the plot is sensitive to errors for low and high 
values of v0 or S0. Eadie [8] and Hofstee, [5] proposed to 
use the v0 versus v0/S0 plot, now commonly known as 
Eadie-Hofstee plot: 

0
0

0
M

v
v K k E

S
  cat 0

E

           (15) 

The maximum rate of the product formation is conven- 
tionally defined by 

max cat 0V k               (16) 

1.2. Non-Linearized Michaelis-Menten Equation 

Beginning with the wide availability of powerful comp- 
uters and nonlinear regression software, the Eadie-Hof- 
stee and other linear plots have been partly superseded 
by nonlinear regression method that should be signifi- 
cantly more accurate and no longer computationally ina- 
ccessible. The nonlinear regression method uses the Mic- 
haelis-Menten Equation (2) at t→ 0 in the nonlinear form 

0
0 cat 0

0

 
  M

S
v k E

K S



          (17) 

1.3. Error in the Initial Reaction Rate v0 

Practical determination of v0 always leads to underesti- 
mated values of the initial reaction rate v0,exp because of 
the essential non-linearity of the product function P(t) 
(Figure 6). For instance, if the idealistic curve P(t) is 
simulated with Equation (3) in N = 425 equidistant poi- 
nts ti from the time region 0  t/s  65, the sampling time 
interval is Δt = ti+1 – ti = 0.153 s. If the two first points 
are used, the “experimental” value v0,exp = (P(t1) − P(t0)) / 
Δt = 3.866 µM/s is by −0.9% smaller than the correct 
value v0 = 3.90 µM/s calculated by Equation (17). It is 
clear, the shorter the interval Δt = t1 − t0, the smaller the 

first time point t1 cannot be set arbitrarily close to t0 = 0, 
the experimental value v0,exp is necessarily smaller than v0. 
In a more realistic case, when ten initial points are used 
to calculate v0,exp by linear regression, the underestima-
tion of v0,exp is by −8.2%. It is important to realize, that 
the initial part of P(t) is an essentially nonlinear function, 
see insert in Figure 6. Therefore, linear regression does 
not apply to determine v0. Alternatively, v0,exp can be 
obtained by fitting a second degree polynomial equation 
P(t) = at2 + bt + c to the data by nonlinear regression [4]. 
Extrapolation of the first derivative of the equation to t→ 
0 yields v0,exp = b. The nonlinear regression can improve 
precision of the assessment of v0,exp considerably. Still, 
the results on v0,exp are very prone to errors in initial es-
timates of the coefficients a, b and c, as well as to the 
number of data points and time range taken for the fit. 
For instance, when ten initial points are used to calculate 
v0,exp, Figure 6, at the initial parameters a = –0.2 s−2, b = 
3 s−1 and c = 0, the underestimation of v0,exp is only −0.14%, 
at a = −0.5 s−2, b = 1 s−1 and c = 0 the underestimation is 
−0.16%. When twenty initial points are used to calculate 
v0,exp, the underestimations are −0.56% and −0.58%, re-
spectively. 

difference between v0,exp and v0. Since in experiment the 

1.4. Testing v0-Plots and Single Trace Regression 

For f commonly used v0- plots 

with Simulated Data 

a computational testing o
and the single-trace regression we used narrow and wide 
ranges of starting substrate concentrations S0 (c.f. 2.3 and 
2.4). A broader S0-range, up to ~2 KM, is generally fa- 
vorable for an analysis based on v0-plots compared to the 
analysis in a narrow range of S0 used for the results pre- 
sented in Table 2, [5]. In Figure 7 the Eadie-Hofstee 
(a,d), Lineweaver-Burk (b,e) and nonlinear regression   

 

 

Figure 6. Product curve (circles) simulated by Equation (3) at 

inset. 

KM = 220 µM, kcat = 650 s−1, E0 = 50 nM and S0 = 30 µM for N = 
425 equidistant time points with the time interval Δt = 0.153 s. 
The solid straight line refers to the linear term v0·t, where the 
initial rate v0 was calculated by Equation (17). The dotted line 
represents v0,exp·t, where the initial “experimental” rate v0,exp 
was calculated with the first ten points by linear regression; see 
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Figure 7. The Eadie-Hofstee (a,d), Lineweaver-Burk (b,e) and nonlinear regression (c,f) plots of the itial rates v0,exp, deter- 
mined with the first ten points of the simulated relaxation P(t), Equation (3), in the range of S  from 3 o 100 μM (left column) 

 simulated dataa with pseudo-random noise for a wide 
nge of S b. 

 KM/μM kcat/s

 in
 t0

and of 3 to 500 μM (right column) respectively; see Figure 6 for details. The noise was added to the function P(t) in form of 
the pseudo-random error of magnitude 2 μM. The solid lines present fits with Equation (14), (a,d), Equation (15), (b,e), and 
Equation (17), (c,f). The resulting parameters KM and kcat are summarized in Table 3 and in Table 4 of Appendix. The dotted 
line in (f) indicates the value of the maximum rate Vmax = 32.5 µM/s. 
 
Table 4. Kinetic parameters determined by different methods from
ra 0

−1 

Noise/μM 0 ≤0 ≤2 0 ≤0 ≤2 .5 .5 

Lin k 260 430 ± 100 110 ± 320 695 1000 ± 200 290 ± 600 

No n 

S 2  

eweaver-Bur

Eadie-Hofstee 252 279 ± 11 239 ± 24 677 709 ± 12 612 ± 30 

nlinear regressio 251 261 ± 18 256 ± 25 675 684 ± 24 660 ± 30 

ingle trace regressionc 220 20.4 ± 0.3d 220 ± 1 650 650 ± 1 651 ± 1 
aGenera  = 220 µM  650 s−1, e pseudo-ra se of the tude 0.5 µ  was adde qua- 
tion (3). 00, 300, 50 gression 8) at S0 = 2 rrors are ted by the deviation de  from 

wn for the S0-range from 0 to 100 values in Table 4 are significantly smaller compared to 

ted with Equation (3) at KM
bS0/µM = 3, 20, 60, 100, 2

, kcat =
0. cRe

E0 = 50 nM. Th
with Equation (

ndom noi
50 M. dE

magni
indica

M or 2 µM
 standard 

d to P(t), E
termined

five different sets of noise. 
 

0-plots (c,f) are shov
µM (left side) and from 0 to 500 µM (right side), respec-
tively. Notably, the KM-value for the simulations was set 
to 220 µM. The diagrams are based on data generated by 
the simulation of the enzymatic product curve P(t) with 
Equation (3) and a noise magnitude of 2 µM. 

It is evident in Figure 7 that the data points obtained 
in the broad range ,e,f) deviate less fr of S0 (d om the re-
gression curves compared to the respective plots ob-
tained for the narrower S0-range (a,b,c). This observation 
is consistent with results of the corresponding plots pre-
sented in Table 4. Standard deviations of the KM and kcat 

the corresponding deviations in Table 2. Additionally to 
Table 2, in Table 4 the results of simulations at the 
noise-magnitudes of 0 and 2 µM are presented too. How- 
ever, the general features of the impact of the S0-range on 
quality of the analysis are throughout the same as in Ta-
ble 2. The Lineweaver-Burk plot does not yield unphy- 
sical, negative results, yet provides the most imprecise 
results compared to other v0-plots. The Eadie-Hofstee 
and the nonlinear regression plot yield considerably more 
precise results than the Lineweaver-Burk plot. However, 
all v0-plots are not able to correctly determine the true 
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values of KM and kcat in the range of their standard devia-
tions. At low noise-magnitudes, the results of the v0-plots 
are generally overestimated. With increasing noise-level, 
this effect may be (over-) compensated by imprecision of 
results. 

As in the case of the narrow S0-range, the single trace 
regression method yields reasonable results for all inves-
tigated noise-magnitudes and shows only nonsystematic 
errors of the determined KM and kcat values (see Table 4). 

v0-pl eters are de- 

1.5. Testing v0-Plots and Single Trace Regression 
with Experimental Data on CcO 

The single trace regression method is able to determine 
KM and kcat for every single time course of an enzymatic 
reaction at a single S0-value, contrary to commonly used 

ots. In our case, the KM and kcat param
termined for time traces of the enzymatic reaction of 
CcO with ferrous cytochrome c at seven different S0- 
values ranging from 2.68 to 59.35 µM. The results of the 
new regression method are presented in Table 5; the cor- 
responding mean values and standard deviations of KM 
and kcat are shown in Table 3. For the experimental 
curves no systematic deviations of the resulting KM and 
kcat are observed, as for the simulated data. 
 
Table 5. Results of single trace regressiona of the enzy- 
matic reaction of CcO with cytochrome c at different initial 
substrate concentrations S0. 

S0/μM KM,est/μM kcat,est/s
−1 

2.68 213.7 959.4 

5.33 221.9 914.

10.

23.

30.08 217.9 645.4 

37.20 214.4 724.5 

59.35 218.8 696.7 

6 

44 225.0 847.1 

65 222.4 740.9 

aWith Equation (8). 

ode for Michaelis-Menten-Lambert 

The ode for analysis of single pro- 

 

1.6. Mathcad C
Analysis of a Single Progress Curve of 
Enzyme Kinetics 

complete Mathcad c
gress curves of enzymatic reactions with the Michaelis- 
Menten-Lambert equation can be found on the home- 
page of the corresponding author: 
http://www.uni-bielefeld.de/chemie/arbeitsbereiche/pc3-
hellweg/work/sergej/MathcadCode.pdf 

The Mathcad code begins with a generation of the
Lambert-W function W(x). For this purpose we use the 
standard Mathcad function “wurzel” to solve the equa- 
tion yey – x = 0 with an initial value of y = 0.1 and toler- 
ance = 10−15. 

a) The second part of the code starts with an input of 
the total s bsu trate concentration S0 as well as the total 
enzyme concentration E0, and the upload of an experi- 
mental product progress curve P(t). 

b) An initial value of the apparent rate constant m is 
estimated from the experimental normalized product 
curve p(t) = P(t)/S0. Here we use the exponential ap- 
proximation    exp 1 expp t mt    and the 2/3-ampli- 
tude criterion to estimate the characteristic relaxation 
time  = 1/m of p(t). To obtain a more precise estimate of 
m we use the initial estimate of m further as an input pa-
rameter for a nonlinear fit of pexp(t) to the experimental 
product curve p(t). Therefore, the standard function 
“Minfehl” implemented in Mathcad is applied. 

c) An initial reaction rate v0 of the product curve p(t) is 
determined by the standard function “neigung” using the 
first 11 points of p(t). 

d) An estimate of the dimensionless input parameter s 
is calculated by s = |m/v0 − 1|. 

e) Exact values of the Michaelis-Menten parameters 
KM and k  are determined by the “Mcat infehl” function us- 
ing the experimental p(t)-curve and the estimates of m 
and s as input parameters. 

In the third part, the calculated Michaelis-Menten pa- 
rameters K , k  and V  are sumM cat max marized together with 
results of the fit of the integrated Michaelis-Menten 
Equation (8) to the experimental p(t)-curve. 
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Abbreviations 

cO: cytochrome c oxidase; 
ncentration; 

oncentration; 
y parameter in enzymatic 

ey parameter in en-

: Input parameters for K  and k  for their 

KM,est, kcat,est: Estimated values of KM and kcat by nonlinear 
regression; 
m: The apparent rate constant, defined as m = k ·E /K ; 

ss curve of the product concentration of an 

= 

e of the progress curve; 

rent S .

C
E0: Total enzyme co
S : Starting substrate c0

kcat: Catalytic constant, a ke
analysis; 
KM: Michaelis-Menten constant, a k
zymatic analysis; 
KM,input, kcat,input M cat

estimation by nonlinear regression;  
 

cat 0 M

s: The dimensionless parameter, defined as s = S0/KM;  
P(t): Progre
enzymatic reaction; 
p(t): Normalized product concentration, defined as p(t) 
P(t)/S0, ranging from 0 to 1; 
v0: Initial reaction rat
v0-plots: Methods for analyzing enzyme kinetics based 
on a variety of initial rates v0 at diffe 0
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