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Incoherent pair tunneling in the pseudogap phase of cuprates
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Motivated by a recent experiment by Bergeal et al., we reconsider incoherent pair tunneling in a cuprate
junction formed from an optimally doped superconducting lead and an underdoped normal-metallic lead. We
study the impact of the pseudogap on the pair tunneling by describing fermions in the underdoped lead with a
model self-energy that has been developed to reproduce photoemission data. We find that the pseudogap causes
an additional temperature-dependent suppression of the pair contribution to the tunneling current. We discuss
consistency with available experimental data and propose future experimental directions.
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I. INTRODUCTION

Upon lowering the temperature, the superconducting gap
in underdoped cuprates evolves smoothly from an energy gap
already present in the normal state.1 Even after decades of
debate, the nature of this “pseudogap” in the normal-metallic
regime of the underdoped cuprates still remains a puzzle,2 and
new experiments are needed to shed light on its nature.

One such experiment was proposed by Janko et al.3

The experimental setup consists of a junction formed by a
superconducting and a normal-metallic lead in the pseudogap
phase, separated by a tunneling barrier. If the pseudogap
is due to the presence of preformed Cooper pairs, then the
current-voltage (I -V ) characteristics of such a junction should
show characteristic signatures due to pair tunneling that differ
from the standard result based on Gaussian fluctuations.3

The proposed experiment was recently done by Bergeal
et al.,4 and their data appear to be consistent with Gaussian
fluctuations. However, even if preformed pairs is not a correct
description, the pseudogap, regardless of its origin, still affects
the fermions in the normal-metallic lead, and thereby the
Gaussian result should not hold. A similar observation has
recently been made in the context of the Nernst effect in the
pseudogap phase of underdoped cuprates.5 Current vertices
calculated within a model that reproduces photoemission data
in the pseudogap phase6,7 show an additional temperature
dependence, which suppresses the Nernst signal relative to
the Gaussian result, consistent with experimental data.

In the present paper, we study whether a similar effect
of the pseudogap changes the I -V characteristics in the
above-mentioned tunnel junction. We compare with experi-
mental findings by Bergeal et al. and discuss possible further
directions to improve the understanding of the incoherent pair
tunneling in the pseudogap phase of cuprates. Throughout the
paper, we set h̄ = 1 and kB = 1.

II. FLUCTUATING PAIR TUNNELING

A direct experimental test of pairing fluctuations above
Tc is the second-order Josephson effect,3,8–11 which has
been observed in conventional superconductors12 and, more
recently, in cuprates.4 The effect is exhibited in a junction
involving two leads, in the cuprate case, with one underdoped

(UD) and the other optimally doped (OD), with critical
temperatures such that T UD

c < T < T OD
c . The rigid pair field

of the optimally doped superconductor then plays the role of
the external field in a typical (linear response) susceptibility
measurement.

The net effect is that the fluctuating pairs produce an ad-
ditional contribution Ipair to the current-voltage characteristics
of the junction that is directly proportional to the imaginary
part of the pair susceptibility χ of the pseudogap lead,

Ipair(V,H ) ∝ e C2χ ′′[q(H ),ω(V )]. (1)

Here the frequency ω(V ) = 2 eV is linear in the bias voltage V ,
and momentum q(H ) is linear in the in-plane magnetic field
H . The magnitude of the pair contribution to the tunneling
current is controlled by the vertex C, which describes the pair
transfer between the leads and depends on the specifics of
the junction. A measurement of the excess current Ipair as a
function of V and H allows one to trace the frequency and
momentum dependencies of the fluctuating pair susceptibility.

A. Microscopic theory

In a microscopic calculation, the lowest-order pair contribu-
tion to the tunneling current arises in fourth-order perturbation
theory,9,14 diagrammatically depicted in Fig. 1. Assuming a
particle-particle t matrix for the pseudogap lead with pairing
instability in the d-wave channel, and keeping only the relevant
d-wave part of the tunneling matrix element, the incoherent
pair contribution to the tunneling current is of the form
(see Fig. 1 for details)

Ipair(V,H ) = 4eSa2 C2χ ′′[q(H ),ω(V )], (2)

where χ ′′(q,ω) = ImLR
q (ω), with LR the retarded component

of the fluctuating pair propagator, V and H the applied voltage
and in-plane magnetic field, and S and a2 the junction area and
the lattice spacing, respectively. The vertex

C = γ T

N2

∑
εn

∑
p,k

F sc
p (iεn,�A)Gk(iεn)G−k(−iεn)

× cos(2ϕp) cos2(2ϕk) (3)

describes the tunneling of an incoherent pair3 and sets the
magnitude of the pair current. We assume that the c axis is
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FIG. 1. Incoherent pair tunneling contribution, Ipair =
2e tr(F AV ABGBGBtBGBGBV BAF A), to the tunneling current.
Here the trace includes summations over momenta and frequencies;
double and single lines correspond, respectively, to Gor’kov
functions F A

p (iεn) of the optimally doped (OD) lead A and
single-particle Greens functions GB

k (iεn) of the underdoped (UD)
pseudogap lead B; circles represent one-electron tunneling matrix
elements V AB

pk ,13 and the wavy line denotes the particle-particle t

matrix for the pseudogap lead B (here for q = 0). To arrive at Eq. (2)
in the text, we assumed a pairing instability in the d-wave channel,
tR
k,k′,q(ω) = LR

q (ω) cos(2ϕk) cos(2ϕk′ ), and kept only the relevant
d-wave part ∝ V1 in the harmonic expansion of the tunneling matrix
elements, 〈|V AB

pk |2〉 = |V0|2 + |V1|2 cos(2ϕp) cos(2ϕk); see Refs. 3
and 13.

perpendicular to the junction, and all momenta and coordinates
contain only two-dimensional in-plane components. Here

F sc
p (iεn,�) = �p

ε2
n + ξ 2

p + �2
p

(4)

denotes the anomalous Gor’kov function of the supercon-
ducting lead A, with εn (fermionic) Matsubara frequencies,
�p = � cos(2ϕp) with ϕp = arctan(py/px), and Gk(iεn) is the
single-particle propagator of the pseudogap lead B (specified
below). Finally, γ = ni |V1|2/N2, with N the number of sites
in a layer and ni the number of impurity scattering sites per
unit area of the insulating junction. |V1| is defined in Fig. 1.3

The precise form of the pair susceptibility χ varies
depending on the particular scenario adopted to describe the
pseudogap phase. In this paper, we will adopt the standard
Gaussian form for the pair propagator,

LR
q (ω) = − 1

N0

1

ε − iαω + ηq2
. (5)

Here, ε = (T − Tc)/Tc, N0 is the density of states, α = π/8T ,
and η = πD/8T , where D is the diffusion constant. Alternate
forms, where α is complex (in a preformed-pairs scenario due
to a BCS-BEC crossover between diffusive and propagating
pairs)3,15,16 seems to be ruled out by Bergeal et al.4

However, even if the pseudogap is not due to preformed
pairs and a Gaussian approach [Eq. (5)] is relevant, the
pseudogap will still affect the tunneling current through the
vertex C. A similar observation has recently been made in
the context of the Nernst effect in the pseudogap phase
of underdoped cuprates.5 Calculation of the current vertices
within a model6,7 which reproduces photoemission data in
the pseudogap phase leads to an additional T -dependent
suppression of the Nernst effect relative to that predicted

by the Gaussian model, consistent with experimental data.
We will now determine if a similar modification occurs for
the tunneling current, independent of whether or not the
pseudogap is due to pairing. Before doing so, we recall that
within the GG0 approximation employed by Janko et al.,3 the
vertex is

C � π2

4
ni |V1|2NA(0)NB(0), (6)

with NA(0) and NB(0) the single-particle density of states per
spin per site for superconducting lead A and pseudogap lead
B, respectively.

B. Pseudogap vertex

We next investigate implications of the the pseudogap for
the pair tunneling. Following Refs. 5 and 17, we calculate the
vertex (3) using the Greens function,

Gk(iεn,�B) = iε̄0,n + ξk

(iε̄1,n − ξk)(iε̄0,n + ξk) − �2
B,k

, (7)

which is based on a phenomenological self-energy describing
photoemission data in the pseudogap phase.6,7 Here, �k =
� cos(2ϕk) is the momentum-dependent pseudogap, ξk are
the single-particle energies measured from the Fermi level μ,
and (i = 0,1) ε̄i,n = εn + �i sign(εn), with �0 the inverse pair
lifetime proportional to T − Tc (i.e., ε/α), and �1 the single-
particle scattering rate. For � = �1 = �0, Eq. (7) reduces to
the single-lifetime model,

Gk(iεn,�B) = − iε̄n + ξk

ε̄2
n + ξ 2

k + �2
B,k

. (8)

Equation (8) gives a good description of the T dependence of
the Fermi arc if � ∝ T .7

To compute the vertex (3), we first derive that the momen-
tum sum for the two-lifetime model is

N−1
∑

k

Gk(iεn)G−k(−iεn) cos2(2ϕk)

= NB(0)

�B

Xn

2

{
1

X2
n

[E(Xn) − K(Xn)]

+ [
1 + Z2

0,n

]
K(Xn) − Y 2

n Z1,nZ
3
0,n(Yn,Xn)

}

≡ NB(0)

�B

Mpg(T ,�0,�1,�B), (9)

where we introduced

1

X2
n

= 1 + (�0 − �1)2

4�2
B

+ ε̄1,nε̄0,n

�2
B

, (10)

1

Y 2
n

= 1 + ε̄1,nε̄0,n

�2
B

, (11)

Zi,n = ε̄i,n

�B

, (12)

and K(z), E(z), and (w,z) are the complete elliptic integrals
of the first, second, and third kind, respectively.
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The momentum sum over the Gor’kov Greens function, on
the other hand, is

N−1
∑

p

F sc
p (iεn,�A) cos(2ϕp)

= NA(0)kn

{
E(kn) + ε2

n

�2
A

[E(kn) − K(kn)]

}

≡ NA(0)Msc(T ,�A), (13)

where k2
n = 1/(1 + ε2

n/�
2
A).

The vertex is then obtained by completing the Matsubara
sum,

C = 3π2

32
ni |V1|2NA(0)NB(0)A(T ,�0,�1,�A,�B). (14)

Here we have included the numerical prefactor for later
convenience, and the temperature-dependent, dimensionless
function

A(T ,�0,�1,�A,�B)

= 32

3π2

T

�B

∑
n

Msc(T ,�A)Mpg(T ,�0,�1,�B). (15)

It may then be verified that approximating in A the elliptic
functions by their value at zero argument describes well
the temperature dependence of Eq. (15) (see below). Using
that the elliptic functions at zero argument take the value
π/2, we may thus approximate A(T ,�0,�1,�A,�B) �
A1(T/�B,�0/�B,�1/�B,�A/�B), where the temperature-
dependent function, normalized as A1(0,0,0,1) = 1,
(zn = εn/�B), is

A1(x0,x1,x2,x3) = 4x3x0

3

∑
n

(zn + x1)[2zn + x2 + x1] + 1{[
z2
n + x3

][
(zn + x2)(zn + x1) + (x1−x2)2

4 + 1)
]}1/2

[(zn + x2)(zn + x1) + 1]
. (16)

In the single-lifetime model, we may introduce the cor-
responding functions B(T ,�,�A,�B) ≡ A(T ,�,�,�A,�B)
and, analogously,B1(T/�B,�/�B,�A/�B) for Eq. (16) in the
same limit. As can be verified (see below), taking the “zero-T ”
limit in order to convert the sum over Matsubara frequencies
into an integral gives a good description of the vertex in
the single-lifetime model. We may thus further approximate
B(T ,�,�A,�B) � B0(�/�B,�A/�B), where

B0(x1,x3) = 4x3

3π

∫ ∞

0
dz

2(z + x1)2 + 1√
z2 + x3[(z + x1)2 + 1]3/2

. (17)

Comparing then to Eq. (6) in the previous section, we find that
taking into account the pseudogap within the two- and single-
lifetime models (7) and (8) results in a renormalization of the
pair contribution to the tunneling current by the T -dependent
functions, A2(T ,�0,�1,�A,�B) and B2(T ,�,�A,�B) (their
approximations A2

1 and B2
0, respectively).

So far we have neglected any external magnetic fields. The
variation of an in-plane field allows one to trace the momentum
dependence of the fluctuating pair propagator; see Eq. (2). If
the relevant field scale on which the pair contribution gets
suppressed is small enough so as to not affect the single-
particle contribution, then the magnetic field allows one to
separate these two contributions to the tunneling current. We
will address this matter further in the next section.

C. Comparison to experiment

The recent tunneling experiment by Bergeal et al.4 using
a YBa2Cu3O6+x /NdBa2Cu3O6+x (YBCO/NdBCO) junction
with optimally doped (OD) NdBCO and underdoped (UD)
YBCO was designed to test Eq. (5) and alternate forms
suggested by Janko et al.3 The corresponding critical tem-
peratures, T OD

c = 90 K and T UD
c � 61 K (the pseudogap

temperature for the UD sample is T ∗ � 250 K), allow for a
comparison to predictions in a range of temperatures extending

over a considerable fraction of Tc. Provided the vertex C
changes only weakly with temperature, the data reported by
Bergeal et al. are consistent with a standard model of Gaussian
fluctuations with a susceptibility given by Eq. (5),

χ ′′(q,ω) ∝ αω

(ε + ηq2)2 + (αω)2
. (18)

The extracted pair contribution to the tunneling current is
in good agreement with a Lorentzian with a width that was
1.6 times �GL = 8(T − Tc)/π at T − Tc = 6 K and 1.3 times
at T − Tc = 9 K. This is in good accord with angle-resolved
photoelectron spectroscopy (ARPES), where �0 was found to
be approximately twice �GL.6

The vertex renormalization within the single-lifetime
model, B2(T ,�,�A,�B), is depicted in Fig. 2 for a T -
independent maximal value of the energy gap in the supercon-
ducting and pseudogap phase �A � �B = �, with � scaling
as T . The scaling factor used to describe the photoemission
data is �/� = √

3T/T ∗, implying that the T dependence of
B2(T ,�,�A,�B) is controlled by the pseudogap temperature
T ∗ (at which the spectral gap “fills up” in the antinodal region
of the Brillouin zone). For the UD sample, T ∗ � 250 K, and
the temperature range in which pair tunneling is detected
by Bergeal et al. (∼15 K) is too narrow to observe any
noticeable deviations from predictions of the simple Gaussian
formula (18). To test the predicted rapid suppression at higher
temperatures coming from B2(T ,�,�A,�B) will require using
a magnetic field to cleanly separate the pair tunneling current
from the much larger normal tunneling current.

Within the two-lifetime model, the vertex renormalization
depends on the ratios �0/�B and �1/�B . Since �0 has a
rapid T dependence near Tc, one might suspect a stronger
effect as compared to the single-lifetime model. From (15),
one finds, however, that for any reasonable value of �1/�

comparable to that found from photoemission, the depen-
dence of A2(T ,�0,�1,�A,�B) on temperature is qualitatively
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FIG. 2. (Color online) T dependence of the vertex C2 within
the single-lifetime model for the pseudogap lead, where C ∝
B(T ,�,�A,�B ). Here T ∗ is the pseudogap temperature, �A � �B =
�, and �/� = √

3T/T ∗, so that the Fermi arcs connect at T = T ∗.
The solid line shows the exact result with B given in (15) and
�0 = �1 = �, and the dash-dotted line shows the approximation B0

given in (17).

similar to that in the single-lifetime model; see Fig. 3. It
becomes more pronounced only for small values of �1/� � 1.
We note that a zero-T approximation similar to (17) is not
applicable for the two-lifetime model.

Finally, some remarks are made about the magnetic field
dependence. The length scale which sets the Fraunhofer
pattern (i.e., the field dependence) of the Josephson current
is Z = XA + XB + d, where X = λ tanh(W/2λ), with λA,B

and WA/B the a/b penetration depth and thickness of films
A and B, respectively, and d the thickness of the barrier.18

In the two limits of wide and thin films, X(λ,W ) � λ and
X(λ,W ) � W/2, respectively. Referring then to the experi-
mental configuration of Bergeal et al., WA = 200 nm, WB =
100 nm, d = 30 nm, and the junction length L = 5000 nm. For
the optimally doped superconducting film, (A) λA = 100 nm,
and for the underdoped film, (B) λB = 200 nm, if it were
superconducting. However, the latter is above T UD

c and has
no long-range order, i.e., lead B is in the thin-film limit
XB � WB/2. Therefore, XA = λA tanh(WA/2λA) � 76 nm
and Z = XA + WB/2 + d � 156 nm. The corresponding field
scale H is then estimated from HLZ = φ0, where φ0 is
the flux quantum, yielding H � 25 Gauss. Since the normal
contribution to the current should not change much at a field of
25 Gauss, while the pair contribution is strongly suppressed at
this field, this allows one to distinguish the two contributions.
This could be exploited in future experiments.

In this context, notice that in contrast to YBCO, in
the case of Bi2Sr2CaCu2O8+x (suggested by Janko et al.),3

one has a stack of Josephson junctions. The effect due to
the stack would be to create a new length scale Z′ equal
to the bilayer-bilayer separation,19 which is of the order
∼1.5 nm. The resulting small length scale corresponds to a
field scale H for the stack about two orders of magnitude
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FIG. 3. (Color online) T dependence of the vertex C2 within
the two-lifetime model for the pseudogap lead, where C ∝
A(T ,�0,�1,�A,�B ). Here, �A � �B = � and parameters similar
to Ref. 6, �1 = 200 meV, � = 50 meV, and �0 = (16/π )(T − Tc),
twice �GL, where Tc = 80 K. The solid line shows the exact result A
given in (15) and the dash-dotted line shows the approximation A1

given in (16).

larger than Z, meaning that the presence of a stack would
not affect the I -V characteristics of the A-B junction on the
field scale discussed above, and thus this complication can be
ignored.

III. SUMMARY

Implications of the pseudogap on transport17 and the Nernst
effect5 have been previously studied within a phenomeno-
logical model used to describe photoemission data. Here
we study the implications of the pseudogap on the pair
tunneling, as recently measured by Bergeal et al.4 We find
that accounting for the pseudogap within a single-lifetime
model leads to a suppression of the pair contribution to the
tunneling current relative to Gaussian theory as the temperature
is increased. Within the rather small temperature range tested
in the experiment, however, this effect would not be noticeable.
To determine this would require differentiating the pair current
from the much larger normal current, which would require the
application of a small in-plane magnetic field. We contrast
this with the Nernst effect, where the normal background is
significantly smaller. Therefore, we suggest that such field-
dependent measurements be done in the future; this would not
only help identify effects due to the vertex, but also would test
the validity of Eq. (5) in the context of specific theories for the
pseudogap phase.20

ACKNOWLEDGMENTS

This work was supported by the US Department of Energy,
Office of Science, Basic Energy Sciences, under Contract
No. DE-AC02-06CH11357. A.L. acknowledges support from
Michigan State University.

1T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).
2M. R. Norman, D. Pines, and C. Kallin, Adv. Phys. 54, 715 (2005).

3B. Janko, I. Kosztin, K. Levin, M. R. Norman, and D. J. Scalapino,
Phys. Rev. Lett. 82, 4304 (1999).

024503-4

http://dx.doi.org/10.1088/0034-4885/62/1/002
http://dx.doi.org/10.1080/00018730500459906
http://dx.doi.org/10.1103/PhysRevLett.82.4304


INCOHERENT PAIR TUNNELING IN THE PSEUDOGAP . . . PHYSICAL REVIEW B 87, 024503 (2013)

4N. Bergeal, J. Lesueur, M. Aprili, G. Faini, J. P. Contour, and
B. Leridon, Nature Phys. 4, 608 (2008).

5A. Levchenko, M. R. Norman, and A. A. Varlamov, Phys. Rev. B
83, 020506 (2011).

6M. R. Norman, M. Randeria, H. Ding, and J. C. Campuzano, Phys.
Rev. B 57, R11093 (1998).

7M. R. Norman, A. Kanigel, M. Randeria, U. Chatterjee, and J. C.
Campuzano, Phys. Rev. B 76, 174501 (2007).

8D. J. Scalapino, Phys. Rev. Lett. 24, 1052 (1970).
9S. R. Shenoy and P. A. Lee, Phys. Rev. B 10, 2744 (1974).

10X. Dai, T. Xiang, T.-K. Ng, and Z.-B. Su, Phys. Rev. Lett. 85, 3009
(2000).

11A. Levchenko, Phys. Rev. B 78, 104507 (2008).
12J. T. Anderson and A. M. Goldman, Phys. Rev. Lett. 25, 743 (1970).

13In the above experiment, it is assumed that tunneling takes place via
direct or resonant processes through localized states in the barrier,
and 〈|V AB |2〉 is the impurity-averaged single-electron transfer
through the diffusive tunneling barrier.

14H. Takayama, Progr. Theor. Phys. 46, 1 (1971).
15A. Perali, P. Pieri, G. C. Strinati, and C. Castellani, Phys. Rev. B

66, 024510 (2002).
16J. Maly, B. Janko, and K. Levin, Physica C 321, 113 (1999).
17A. Levchenko, T. Micklitz, M. R. Norman, and I. Paul, Phys. Rev.

B 82, 060502 (2010).
18M. Weihnacht, Phys. Stat. Sol. 32, K169 (1969).
19R. Kleiner and P. Müller, Phys. Rev. B 49, 1327 (1994).
20J.-H. She, B. J. Overbosch, Y.-W. Sun, Y. Liu, K. E. Schalm, J. A.

Mydosh, and J. Zaanen, Phys. Rev. B 84, 144527 (2011).

024503-5

http://dx.doi.org/10.1038/nphys1017
http://dx.doi.org/10.1103/PhysRevB.83.020506
http://dx.doi.org/10.1103/PhysRevB.83.020506
http://dx.doi.org/10.1103/PhysRevB.57.R11093
http://dx.doi.org/10.1103/PhysRevB.57.R11093
http://dx.doi.org/10.1103/PhysRevB.76.174501
http://dx.doi.org/10.1103/PhysRevLett.24.1052
http://dx.doi.org/10.1103/PhysRevB.10.2744
http://dx.doi.org/10.1103/PhysRevLett.85.3009
http://dx.doi.org/10.1103/PhysRevLett.85.3009
http://dx.doi.org/10.1103/PhysRevB.78.104507
http://dx.doi.org/10.1103/PhysRevLett.25.743
http://dx.doi.org/10.1143/PTP.46.1
http://dx.doi.org/10.1103/PhysRevB.66.024510
http://dx.doi.org/10.1103/PhysRevB.66.024510
http://dx.doi.org/10.1016/S0921-4534(99)00326-3
http://dx.doi.org/10.1103/PhysRevB.82.060502
http://dx.doi.org/10.1103/PhysRevB.82.060502
http://dx.doi.org/10.1002/pssb.19690320259
http://dx.doi.org/10.1103/PhysRevB.49.1327
http://dx.doi.org/10.1103/PhysRevB.84.144527



