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ABSTRACT
This paper is concerned with the dynamics of asynchronous
logical models of regulatory networks as introduced by R.
Thomas. Available knowledge about the dynamics of a reg-
ulatory network is often limited to a sequence of snapshots
in the form of a discrete time series. Using CTL formulas
together with the concept of partially monotone paths, a
methodology is elaborated to investigate the compatibility
of a given time series and a Thomas model. The approach
can be used to revise the model, but also to evaluate the
given data. Additionally, suggestions are made to analyze
a model pool for common properties regarding component
behavior and interaction types, aiming at results exploitable
for experimental design.

Categories and Subject Descriptors
J.3 [LIFE AND MEDICAL SCIENCES]: Biology and
genetics; F.4.1 [Mathematical Logic]: Temporal logic

1. INTRODUCTION
In molecular biology, a regulatory network is a description

of interactions between components. By assigning activity
levels to the components and allowing interacting compo-
nents to influence their activities depending on parameter
values, such networks can be used to describe the system’s
dynamics in a state space. Since a full set of kinetic param-
eters is often not available, discrete modeling frameworks
with finite parameter space have been suggested as an alter-
native to systems of differential equations.

Formal methods can help in determining suitable values
for discrete parameters, translating available data into con-
straints on the set of all possible parameter choices, see e.g.
Batt et al. [9] or Corblin, Fanchon, Trilling [4]. In this arti-
cle, we employ similar ideas to test assumptions about com-
ponent interplay for consistency. In case of inconsistencies,
new hypotheses are systematically derived that then can be
investigated experimentally. In contrast to related work, we
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additionally use our methods to evaluate the given experi-
mental data by analyzing time series for potential ranges of
poor sampling.

The paper is organized as follows. In Section 2 we recall
the logical framework for regulatory networks and temporal
logic. In Section 3 we introduce the notion of discrete time
series as an ordered sequence of partial states. Section 4
elaborates a method of incorporating specific assumptions
about monotonicity in between partial states. These are re-
lated to potential unobserved oscillations and can be used
to evaluate the sufficiency of the provided data. In Section 5
we suggest a modeling workflow utilizing our methods, as-
sessing the modeling assumptions as well as the quality of
a given time series in terms of its temporal resolution, and
discuss scalability and computational issues. We illustrate
the procedure using an application example in Section 6,
and conclude the paper discussing perspectives and future
work.

2. PRELIMINARIES
This section introduces our discrete modeling framework

and model checking terminology. Throughout, discrete in-
tervals will be denoted by

[a, b] := {k ∈ N | a ≤ k ≤ b}, for a, b ∈ N.

The in- and out-degrees of a vertex of a graph are denoted
by d−(v) and d+(v) and its pre- and successor sets by V−(v)
and V+(v), respectively.

2.1 Regulatory Networks
The discrete framework for modeling regulatory systems

as introduced by Thomas in [1] consists of an edge-labeled
digraph called regulatory network and a set of integer pa-
rameters.

Definition 2.1 (Regulatory Network). A regula-
tory network G = (V,E, t) is a directed graph with vertices
V := [1, n] for some fixed n ∈ N, edges E ⊆ V ×V , maximal
activity levels

p : V → [0,max(1, d+(v))],

and a function

t : E → N, such that t(u, v) ∈ [0, p(u)]

that assigns thresholds to the edges e ∈ E. Nodes are called
components and edges are called interactions. For a compo-
nent v ∈ V , a predecessor w ∈ V−(v) is called a regulator of
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ABSTRACT
Statistical model selection has become an essential step for
the estimation of phylogenies from DNA sequence align-
ments. The program jModelTest offers different strategies
to identify best-fit models for the data at hand, but for large
DNA alignments, this task can demand vast computational
resources.
This paper presents a High Performance Computing (HPC)

adaptation of jModelTest for shared memory multi-core sys-
tems and distributed memory cluster platforms. The perfor-
mance evaluation of this HPC version on a shared memory
system and on a cluster shows significant performance ad-
vantages, with speedups up to 39. This could represent a
reduction in the execution time of some analyses from al-
most one day to half an hour.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; J.3 [Computer Applications]:
Life and Medical Sciences
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1. INTRODUCTION
In recent years, DNA sequence data has been accumulated

in databases (e.g., GenBank) at an exponential rate. These
DNA sequences can be used for example to study the his-
tory of the different species that inhabit our planet, for ex-
ample estimating phylogenetic trees from multiple sequence
alignments. All phylogenetic methods make assumptions,
whether explicit or implicit, about the process of DNA sub-
stitution [7]. It is well known that the use of one or another
probabilistic model of nucleotide substitution can change the
outcome of the analysis [2][10][3], and model selection has
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become a routinary step for the estimation of molecular phy-
logenies.

The most popular bioinformatic tool to select appropri-
ate models of DNA substitution for a given DNA sequence
alignment is jModelTest [11]. This program calculates the
likelihood score for each model and uses different model se-
lection techniques to choose the “best” one according to the
likelihood and number of parameters. The model selection
strategies implemented in jModelTest are the Akaike Infor-
mation Criterion (AIC) [1], Bayesian Information Criterion
(BIC) [13] and dynamic Likelihood Ratio Tests (dLRTs)
[12].

Table 1 shows the 88 candidate substitution models sup-
ported by jModelTest. In top of different substitution schemes
and ACGT frequencies, each of these models can assume
that some nucleotides do not change (i.e., are invariant; “+I”
parameter), or they do it at different rates (approximated
with a discrete gamma distribution “+G”). The estimation
of the α shape parameter of the gamma distribution can be
complicated, and models that include this parameter (“+G”
models) carry an extra computational burden.

jModelTest makes an extensive use of third party bioin-
formatics libraries and software, aggregating multiple tasks
in a pipeline and providing a high-level view of the analysis.
Figure 1 shows the workflow of jModelTest, where the most
time-consuming part of the process is the calculation of the
likelihood scores (carried out by the Phyml program [9]).
Because this calculation represents more than 99% of the
execution time in most cases, our parallel adaptation is fo-
cused in this part of the model selection process.

2. JAVAFORHIGHPERFORMANCECOM-
PUTING

Java Shared Memory Programming. As Java has
built-in multithreading support, the use of threads is quite
extended due to its portability and high performance, al-
though it is a rather low-level option. Nevertheless, Java
now provides concurrency utilities, such as thread pools,
tasks, blocking queues, and low-level high-performance prim-
itives (e.g., CyclicBarrier), for a higher level programming.
However, this option is limited to shared memory machines,
which generally provide less computational power than dis-
tributed memory architectures such as clusters.

Java Distributed Memory Programming. Message-
passing is the preferred programming model for distributed
memory architectures due to its portability, scalability and
usually good performance, although it generally requires
significant development efforts. Among currently available
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v and a subset of regulators R ⊆ V−(v) is called a regulatory
context of v.

The vertices of the graph can be interpreted as variables
taking values in the respective activity level interval [0, p(v)].
In the simplest case all variables are boolean. The edge
labels are integers that represent thresholds above which
regulatory interactions become effective.

Definition 2.2 (Parameter Set). Given a regula-
tory network (V,E, t), a parameter set K = {Kv | v ∈ V } is
a set of functions

Kv : 2V−(v) → [0, p(v)].

Kv is also called v-parameter subset of K.

The network and parameter set in Fig. 1 will serve as a
running example throughout the paper. Here we choose the
maximal activity levels p(v) = d+(v) for all vertices. Any

R K1(R) R K2(R) R K3(R)
∅ 0 ∅ 0 ∅ 0
{1} 2 {1} 0 {1} 1
{2} 3 {3} 0
{1, 2} 1 {1, 3} 1

Figure 1: Example network and parameter set

collection of parameter sets of a regulatory network is called
a parameter pool. In particular, we define:

Definition 2.3 (Parameter Space). The collection
of all parameter sets of a regulatory network (V,E, t) is de-
noted by

K(V,E, t) := {K | K is a parameter set of (V,E, t)}

and called the parameter space of (V,E, t).

The number of sets in the parameter space depends on the
maximal activity levels of the network components and their
in-degrees:

|K(V,E, t)| =
∏
v∈V

(p(v) + 1)2
d−(v)

.

The size of the parameter space of our running example is
|K(V,E, t)| = 44 · 22 · 24 = 16384.

The dynamics of a regulatory network (V,E, t) with pa-
rameters K is represented by a directed graph, called the
state transition graph. It can be thought of as the discrete
analogue to all possible trajectories in the phase plane of an
ODE model. The nodes of this graph represent the discrete
states of the system.

Definition 2.4 (State Space). Given a regulatory
network (V,E, t), the state space X is given by

X =
∏
v∈V

[0, p(v)].

To define the transitions between states it is convenient to
turn the parameter set K into a function F on the state
space X, where

F : X → X, x 7→ F (x) = (f1(x), . . . , fn(x)).

The image of x under component function fv is defined to
be a particular parameter Kv(R). To choose this particular
parameter we define the present regulators of v in a state x.

Definition 2.5 (Present Regulators). Given a
regulatory network (V,E, t) with parameters K and its
associated state space X, the present regulators Rv(x) of a
component v ∈ V in state x ∈ X are

Rv(x) := {w ∈ V | (w, v) ∈ E ∧ xw ≥ t(w, v)}.

The present regulators of v in state x are components w
that regulate v and whose activity level in state x is above
the threshold t(w, v). This definition is the one given by
Chaouiya et al. in [3]. With this notation the image of x
under F is now defined to be

F (x) := (K1(R1(x)), . . . ,Kn(Rn(x))).

The present regulators of component 3 of the running ex-
ample in state x = (1, 1, 0) are R1(x) = {2}, R2(x) = ∅ and
R3(x) = {1}. Thus F (x) = (2, 0, 1) according to the table
given in Fig. 1.

There are several strategies for obtaining transitions using
F . Most common are synchronous, asynchronous or priority
strategies. The method described in this article is designed
to work with unitary asynchronous transition rules. A sim-
ple notation for the transitions of the unitary asynchronous
state transition graph is achieved with the tendencies f ′v of
the component functions fv of F = (f1, . . . , fn), as suggested
by Richard in [2].

Definition 2.6 (Tendencies). The tendency f ′ of a
component function fv : X → N is defined to be

f ′v(x) =


1 : fv(x)− xv > 0

0 : fv(x)− xv = 0

−1 : fv(x)− xv < 0

.

The tendency of component 2 in state (0, 1, 0) of the example
parameter set is f ′2(0, 1, 0) = −1.

Definition 2.7 (State Transition Graph). Given
a regulatory network (V,E, t) with parameter set K, the
(unitary) asynchronous state transition graph is a directed
graph (X,T ), where the nodes X are the elements of the
state space associated with the regulatory network and the
edges T are transitions between states. We have (x, y) ∈ T
iff either y = x = F (x) or

∃v : f ′v(x) 6= 0 ∧ y = x+ evf
′
v(xv),

where ev is the v-th unit vector.

The behavior represented in such a state transition graph
is non-deterministic. In a given state x there may be several
v ∈ V with f ′v(x) 6= 0, and therefore several y with (x, y) ∈
T .
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Figure 2: The state transition graph of the example
parameter set.

2.2 Edge Constraints
Now, we consider information about the interaction type

in the form of edge constraints. For example, interactions
may be characterized as activating or inhibiting. Formally,
edge constraints are additional edge labels that constrain
the pool of feasible parameter sets for a regulatory network.
Definitions for such edge constraints exist and are based on
the observability or monotonicity of an interaction sign, usu-
ally either a ’+’ or a ’-’. We use a more extensive set of edge
constraints to allow for a more precise characterization of
individual interactions. Similar ideas can be found in [4].

This more general form of edge-constraint is based on the
observation that for a parameter set K, we can note for each
interaction (w, v) if there is a regulatory context R ⊆ V−(v),
such that adding w to R increases or decreases the value of
K (as in [8]).

Definition 2.8 (Increase and Decrease). Given a
parameter subset K of a regulatory network (V,E, t), we de-
fine the boolean propositions + and − on the set of edges
(w, v) ∈ E by

+(w, v) := ∃R ⊆ V−(v) : Kv(R) < Kv(R ∪ {w})
−(w, v) := ∃R ⊆ V−(v) : Kv(R) > Kv(R ∪ {w}) .

It has been remarked by Richard in the context of deriv-
ing global interaction graphs from dynamics (see [2]) that
such a comparison of parameter values with and without a
regulator w is too weak to guarantee an effect observable
in the state transition graph. For stronger results a slightly
more technical definition of increase and decrease could be
introduced here. For boolean networks and for components
v without self-regulation, i.e. (v, v) /∈ E, the two definitions
coincide.

For the parameter set of the running example, the values
of + and − for each edge are the following:

+(1, 1) = 1, +(3, 2) = 1, +(1, 3) = 1,
+(2, 1) = 1, +(1, 2) = 1, −(1, 3) = 0,
−(1, 1) = 1, −(3, 2) = 0,
−(2, 1) = 1, −(1, 2) = 0.

Instead of ¬+ and ¬− we write + and −. Simple logical
expressions of these propositions are used to select parame-
ter sets, by defining the following constraints.

Definition 2.9 (Edge Constraints).
A labeling function

s : E′ ⊆ E → {+,+,−,−,+ ∧ −,+ ∨ −,+ ∧ −,+ ∧ −}

on a subset E′ ⊆ E of the edge set of a regulatory network
(V,E, t) is called edge constraint. A parameter set K satis-
fies the edge constraint s, if s(w, v) is true for all (w, v) ∈ E′.
In particular K(V,E, t, s) denotes all K ∈ K(V,E, t) that
satisfy the edge constraint s.

If an edge is not labeled by s, then no constraints are placed
on the respective parameter values. The different labels can
be interpreted as follows. + and − signify that an activating
or inhibiting effect has been experimentally observed. It is
not precluded that the respective opposite effect may also
occur, depending on specific co-factors. In contrast, + ∧
− and + ∧ − are used if the target is strictly activated or
inhibited. + and − allow for the possibility that there is no
interaction at all, but if so it is not activating respectively
inhibiting. If the character of an interaction is not known
or questionable but some effect is assumed, e.g., based on
binding site properties, +∨− is used. Finally, +∧− applies
when the target is activated in some context and inhibited
in another, reflecting the importance of co-factors.

Other logical combinations or types of edge constraints
could be considered, for example, labeling the components
by max or min:

max(v) := ∃R ⊆ V−(v) : Kv(R) = d+(v) ,
min(v) := ∃R ⊆ V−(v) : Kv(R) = 0 .

However, the increase and decrease edge constraints already
allow for a detailed description of interactions and suffice to
illustrate the underlying method.

The parameter set pool K(V,E, t, s) can be efficiently
computed with a backtracking algorithm.

Figure 3: Edge constraints for example network,
which lead to |K(V,E, t, s)| = 432.

2.3 Model Checking
In this section, model checking is introduced as a means to

analyze the state transition graph associated with a regula-
tory network. This has been proposed by various groups, see
e.g. [8, 5, 7, 6, 4]. A Kripke structure or transition system
is a state transition graph together with a labeling func-
tion that assigns atomic formulae to each node of the graph,
which are defined to be true in this node. Computation Tree
Logic (CTL) is a language that extends boolean propositions
by temporal operators (see [15]). Boolean propositions can
be evaluated at a node and so can CTL formulae. But, the
temporal operators allow making statements about atoms
that belong to other states, if there is a directed path in the
transition graph from the first to the latter. Symbolic model
checking is a fast method for finding the states in which a
given CTL formula is true. We now will shortly review how

123



to label the states of a transition graph, define the syntax
of CTL and describe the semantics of CTL formulae.

A state transition graph (X,T ) can naturally be inter-
preted as a Kripke structure. Each state x = (x1, . . . , xn)
has n labels of the form “vi

.
= xi”. Here, we write “

.
=” to

distinguish syntactic from semantic equality. This labeling
is extended to make the formula constructions in Section 4
possible.

Definition 2.10 (State Transition System).
Given a state transition graph (X,T ) with variables
V := {vi | i ∈ [1, n]}, the set of atomic formulas consists of
equalities

P := {
∑

1≤i≤n

kivi
.
= k | vi ∈ V, k ∈ [−N,N ], ki ∈ {−1, 0, 1}},

where N :=
∑

v∈V p(v). Then (X,T, L), with L : X → 2P

and

L(x) = {
∑

1≤i≤n

kivi
.
= k | ki ∈ {−1, 0, 1}, k =

∑
1≤i≤n

kixi},

is the Kripke structure associated with the state transition
graph (X,T ).

A label
∑

1≤i≤n kivi
.
= k captures simple expressions in

the variables vi that are true in state x. Model checking
software like NuSMV (see [16]) can handle such expressions.
The number N is included in the definition to emphasize
that each node is only labeled with finitely many atoms.
Here are a few atoms of the state x = (0, 2, 11): v1

.
= 0,

v1 + v2
.
= 2, −v1 − v2 + v3

.
= 9.

The following definition of the syntax of CTL formulas is
restricted to the temporal operators EF and E[ U ] that are
needed for the method described here.

Definition 2.11 (Syntax of CTL fragment). A
CTL formula φ is defined inductively using the Backus Naur
form. Let p be an element of the set of atomic formulas P.
Then

φ ::= p | φ ∧ φ | EFφ | E[φ U φ].

Given a Kripke structure (X,T, L), a state x ∈ X and a
CTL formula φ, the following rules determine whether φ is
true in x.

Definition 2.12 (Semantics of CTL).

• An atomic formula p ∈ P is true in x, if p is a label
of x, i.e., p ∈ L(x).

• φ ∧ φ′ is true in x, if φ is true in x and φ′ is true in
x.

• EFφ is true in x, if φ is true in x or if there is a path
(x, x1, . . . , xn) in (X,T ) with n ≥ 1 and φ is true in
xn.

• E[φ U φ′] is true in x, if φ′ is true in x or if there is
a path (x, x1, . . . , xn) in (X,T ) with n ≥ 1 such that φ
is true in x and xi for 1 ≤ i ≤ n− 1 and φ′ is true in
xn.

In the following sections, CTL formulas will be used to
select parameter sets from given parameter pools. The se-
lection is based on the existence of a state satisfying the
formula.

Definition 2.13 (φ-Acceptable Parameter Sets).
Given a CTL formula φ, the collection of parameter sets of
a regulatory network (V,E, t) whose associated transition
system contains a state in which φ is true is denoted by

K(V,E, t, φ) := {K | K ∈ K(V,E, t)∧∃x ∈ X : φ is true in x}.

Sometimes a transition system is said to satisfy a CTL
formula φ, if φ is true in all states. Since we want to query
the existence of paths starting in some state of the graph,
the above definition is used.

3. DISCRETE TIME SERIES
A discrete time series for a regulatory network can be ob-

tained by discretizing real-valued experimental data or by
qualitative observations about regulatory components. The
issue of choosing a suitable discretization method for exper-
imental data is crucial (see e.g. [12]), but is not the subject
of this article. Under the assumption that the regulation be-
haves switch-like regarding the regulator concentration, one
ideally has to estimate the threshold below which the regu-
lator is not effective and above which it becomes effective.

If estimation is not possible, statistical approaches can
be used, for example mean clustering, scan-statistic or edge
gradient methods as described by Shmulevich and Zhang
in [11]. There is also a software implementation for the
GNU project R called BoolNet by Muessel et al. [14] which
automates such discretization. BoolNet is used in Section 6
to discretize the expression data of the IRMA network [10].

Including qualitative observations in the time series is a
strength of discrete modeling as it may be hard to translate
such assumptions into quantitative data required for contin-
uous models.

Mathematically, a discrete time series is a matrix where
rows are measurements and columns are observations for one
component. Data points with questionable discretization
results for certain components or observations known to be
imprecise may be recorded as uncertain by the value −1. In
practice this has the advantage of deriving results based on
varying levels of certainty.

Definition 3.1 (Time Series). A discrete time series
with m measurements of n substances is a matrix A ∈
Nm×n, where the entries of A are elements of N := N∪{−1}
and additionally

∀i ∈ [1,m] : ∃j ∈ [1, n] : ai,j ≥ 0.

The condition ensures that measurements without support-
able entries are not included in the time series.

As a discrete time series for the running example, includ-
ing 4 measurements and 3 imprecise observations, we choose

A =


0 1 0
2 −1 1
−1 1 0
3 0 −1

 .

A time series will be interpreted as encoding discrete
paths. To define these paths, the partial state formulas,
one for each measurement, are derived. The definition uses
the set of indices whose variables are not equal to −1. Thus,
uncertain variables will be excluded from the description of
the paths.
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Definition 3.2 (Partial States). Given a time se-
ries A ∈ Nm×n, the partial state formula of measurement
i ∈ [1,m] is

σi :=
∧

j∈Mi

(vj
.
= ai,j), where

Mi := {j ∈ [1, n] | ai,j ≥ 0}.

A partial state formula may be true in a set of states, de-
pending on how many variables are uncertain. The paths
encoded in a time series are then all paths that connect the
partial states in the given order. A state transition graph
that contains at least one such path is said to be able to
reproduce the time series.

Definition 3.3 (Reproducing a Time Series). A
state transition graph (X,T ) can reproduce a time series
A = (ai,j) ∈ Nm×n if there is a path (x1, . . . , xk) in (X,T )
such that the index sequence (1, . . . , k) has a subsequence
(r1, . . . , rm) satisfying for each 1 ≤ i ≤ m that σi is true in
xri .

We say a parameter set can reproduce a time series, if this
holds for the corresponding state transition graph.

The sequence of states (x1, . . . , xk) can be thought of as
a simulation of the regulatory network from the initial state
x1. An intuitive CTL formula can be used to check if a
parameter set can reproduce a time series. Such a formula
is a nested sequence of partial state formulas connected via
the predicates EF :

σ1 ∧EF[σ2 ∧EF[. . . σm−1 ∧EF[σm] . . . ]].

4. THE MONOTONE PATH FORMULAS
In this section, the paths encoded in a time series are char-

acterized with regard to monotonicity in between successive
measurements. The motivation for this is to take into ac-
count assumptions about the ratio of time elapsed between
measurements on the one hand, and rates of change of com-
ponents on the other. Intuitively, if for a substance the time
elapsed between successive measurements is small compared
to its rate of change, then we would expect its concentration
to change monotonously, i.e., without oscillations.

To encode these ratios for each variable and at each mea-
surement, we define a matrix to specify exactly which parts
of the path should be monotone.

Definition 4.1 (Monotonicity Matrix). Given a
discrete time series A ∈ Nm×n, a monotonicity matrix of
A is any matrix B = (bi,j) ∈ {0, 1}m−1,n such that

∀i, j : bi,j = 1 =⇒ (ai,j ≥ 0 ∧ ai+1,j ≥ 0).

We say that variable j is specified to be monotone at mea-
surement i, iff bi,j = 1.

A time series and a monotonicity matrix define the following
partially monotone paths. For technical reasons regarding
the CTL construction in 4.5, we require that the path begins
in a state representing the first and ends in one representing
the last measurement.

Definition 4.2 (A-B-Monotone Paths). Given a
discrete time series A ∈ Nm×n together with a mono-
tonicity matrix B, and a state transition graph (X,T ), a

path (x1, ..., xr) in (X,T ) is A-B-monotone, if there is a
subsequence (r1, ..., rm) of (1, ..., r) with r1 = 1, rm = r and
the following two properties hold. First

0 ≤ ai,j =⇒ xrij = ai,j .

Second, for the variables j specified to be monotone at mea-
surement i

∀t ∈ [ri, ri+1 − 1] :

{
xtj ≤ xt+1

j : if xrij ≤ x
ri+1

j

xtj ≥ xt+1
j : if xrij > x

ri+1

j

.

A monotonicity matrix for the example time series A is

B =

1 0 1
0 0 1
0 0 0

 ,

and an example of an A-B-monotone path is

((0, 1, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1), (2, 1, 0), (3, 1, 0), (3, 0, 0)).

Again, a CTL formula is constructed to check the exis-
tence of an A-B-monotone path in a transition system. This
formula is specifically designed for asynchronous transition
graphs. It exploits the observation that for each couple of
successive measurements, there is an expression

∑
kivi in

the marked monotone variables vi that is increasing along
any A-B-monotone path. To determine this expression we
need to consider the variables that increase and decrease
separately.

Definition 4.3 (Index Sets). Given a discrete time
series A ∈ Nm×n and a monotonicity matrix B ∈
{0, 1}m−1,n, we define for each i ∈ [1,m− 1] the index sets
M+

i and M−i of increasing and decreasing variables respec-
tively:

M+
i := {j ∈ [1, n] | bi,j = 1 ∧ ai,j ≤ ai+1,j},

M−i := {j ∈ [1, n] | bi,j = 1 ∧ ai,j > ai+1,j}.

Now we can construct the increasing expression mentioned
before, define its initial value and by how much it has to
increase in between measurements.

Definition 4.4 (Increasing Expression). The in-
creasing expression Vi = Vi(v1, . . . , vn), the initial value Ci

and the distance di for i ∈ [1,m− 1] are defined to be

Vi :=
∑

j∈M+
i

vj +
∑

j∈M−i

(ai,j − vj),

Ci :=
∑

j∈M+
i

ai,j ,

di :=
∑

j∈M+
i ∪M

−
i

|ai,j − ai+1,j |.

In a state satisfying the partial state formula σi, the
atomic formula Vi

.
= Ci is true. The following A-B-

monotone path formula asserts that Vi
.
= Ci increases one

by one until Vi
.
= Ci + di and σi+1 are true. To deal with

the nested structure of the formula, it is defined recursively.

Definition 4.5 (A-B-Monotone Path Formula).
The A-B-monotone path formula φA,B for a time series
A ∈ Nm×n and monotonicity matrix B is constructed
recursively using the formulae ρi, i ∈ [1,m]. Let

ρ1 := σm,
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and for i ∈ [1,m− 1]

ρi+1 :=

{
σm−i ∧ EF[ρi] if M+

m−i ∪M
−
m−i = ∅

σm−i ∧ γm−i
dm−i+1 if M+

m−i ∪M
−
m−i 6= ∅.

Here

γm−i
1 := E[(Vm−i

.
= Cm−i + dm−i) U ρi]

and if dm−i ≥ 1 then

γm−i
t+1 := E[(Vm−i

.
= Cm−i + dm−i − t) U γm−i

t ]

for t ∈ [1, dm−i]. Finally, define φA,B := ρm.

From the above definition, a pseudo code algorithm for the
construction of an A-B-monotone path formula is derived:

ρ1 := σm

for i = 1 to m− 1 do
if M+

m−i ∪M
−
m−i = ∅ then

ρi+1 := σm−i ∧EF[ρi]
else
γm−i
1 := E[(Vm−i

.
= Cm−i + dm−i) U ρi]

if dm−i ≥ 1 then
for t = 1 to dm−i do
γm−i
t+1 := E[(Vm−i

.
= Cm−i + dm−i − t) U γm−i

t ]
end for

end if
ρi+1 := σm−i ∧ γm−i

dm−i+1

end if
end for

Next we show that this formula characterizes the existence
of an A-B-monotone path.

Theorem 4.6 (Correctness). Given an asyn-
chronous state transition graph (X,T ), its associated
state transition system (X,T, L) and a discrete time
series A ∈ Nm×n together with a monotonicity matrix
B ∈ {0, 1}m−1,n, the A-B-monotone path formula is true
in (X,T, L) if and only if there is an A-B-monotone path
in (X,T ).

Proof. By the recursive structure of ρm it is sufficient
to consider a matrix A with just two rows. For further sim-
plicity assume there are only increasing variables (M−1 = ∅).
The mixed case follows the same reasoning, because every
j ∈ M−1 appears as v′j := x1j − vj in V1 and v′j increases, if
vj decreases.

First, we want to show that the existence of an A-B-
monotone path (x1, ..., xr) in (X,T ) implies that ρ2 is true
in x1. For each t ∈ [1, r − 1] we have V1(xt) ≤ V1(xt+1),
because V1 is the sum of variables that increase along that
path. The difference V1(xt+1)− V1(xt) is at most 1 since T
contains only unitary asynchronous transitions. So there
must be a partition of [1, r] into d1 + 1 intervals, where
d1 :=

∑
j∈M+

1
(xrj − x1j ), such that V1 is constant on each

interval and increases by 1 from one interval to the next.
On all states x of the first interval the formula V1(x)

.
= C1

is true and on all states x of the last interval the formula
V1(x)

.
= C1 + d1 is true. Therefore γ1

t for t ∈ [1, d1 + 1]
is true on the t-th interval, counted from right to left and
hence ρ2 is true in x1.

Second, we want to show that ρ2 is true in x ∈ X implies
that there is an A-B-monotone path in (X,T ). Since ρ2 is
true in x1 := x there is a path (x1, ..., xr) in (X,T ) such

that σ1 is true in x1 and ρ1
.
= σ2 is true in xr, which is the

first property of an A-B-monotone path. Furthermore, [1, r]
can be partitioned into d1 + 1 intervals such that γ1

t is true
in the t-th interval counted from right to left. Therefore V1

increases by 1 from one interval to the next. Since T contains
only unitary asynchronous transitions, there is exactly one
variable j ∈M+

1 that increases by 1 from one interval to the
next. Therefore xkj ≤ xk+1

j for all k ∈ [1, r− 1] and j ∈M+
1

which is the second property of an A-B-monotone path. So
the path (x1, ..., xr) is A-B-monotone.

5. WORKFLOW
In this section, we introduce a methodology to analyze

compatibility of a regulatory network and a given time se-
ries. After describing a possible workflow, we conclude the
section with remarks regarding computation methods and
costs. The procedures are illustrated in the next section.

Let us consider a regulatory network, possibly including
edge constraints, a time series and a monotonicity matrix
(consisting only of zero entries in case no monotonicity as-
sumptions are made). As a first step, we check whether
there are parameter sets that reproduce the time series, i.e.,
we compute the parameter pool K(V,E, t, s, φA,B). If the
model checking procedure returns a unique parameter set,
we can proceed with the analysis of the model. However,
this case will only occur very rarely. More commonly, the
procedure either returns a large pool of parameter sets or
no set at all. In the following, we look at both cases more
closely

5.1 Characterizing Model Pools
If the parameter pool contains many parameter sets, the

information encoded in the network and the time series was
not sufficient to determine a unique specified model. One
possibility to deal with this difficulty is to choose a model
from the pool using meaningful criteria, e.g., some notion
of minimality. A different approach is to characterize the
parameter pool in order to derive information about the sys-
tem strongly supported by the integrated data. We propose
ideas in line with the second approach. One characteristic of
a model pool are parameter values that are identical across
all parameter sets. Such values may allow for new insights
into how a component behaves under the influence of sev-
eral regulators, clarifying synergies and redundancies in the
network.

Definition 5.1 (Determined Parameter Values).
Given a parameter pool K, the value of a component v in
a regulatory context R ⊆ V−(v) is determined if there is a
p ∈ [0, p(v)] such that

∀K ∈ K : Kv(R) = p.

This idea can be extended to finding the range of values for
each component and regulatory context.

Even if the parameters for a given component are not
completely determined, we can still try to extract further
information. To get an idea about the different behaviors
that a component can have in a parameter pool, we count
the v-local parameter sets in K.

Definition 5.2 (Behaviors). Given a parameter pool
K of a regulatory network (V,E, t), the behaviors Kv of com-
ponent v ∈ V are the set of v-local parameter sets in K,

Kv := {Kv | K ∈ K}.
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This information can be used to study how components
are tuned to work together in reproducing a time series. If
any combination of component behaviors is a parameter set
in the pool, then the components are said to be independent.

Definition 5.3 (Independence). A parameter pool K
consists of independent components, if∏

v∈V

|Kv| = |K|.

Further characterization of the parameter pool could
study which behaviors do not appear together and try to
identify components and regulatory contexts, which, if de-
termined, would lead to the steepest reduction in feasible
parameter sets. Identifying such contexts could be used to
design experiments that reduce the number of feasible pa-
rameter sets in the fastest possible way.

Characterization of the parameter pool can also focus on
the edge labels. They can be arranged into a logical impli-
cation hierarchy. For example. “+∧− =⇒ −” and we thus
place +∧− above − in the hierarchy diagram in Fig. 4. For
each unlabeled edge of the regulatory network and edges
carrying one of the constraints that may be strengthened
(+,−,+ ∨ −,−,+), we determine the strictest label that is
true for all parameter sets. This may lead to determining
an effect of a regulator on its target that was formerly not
known. An edge may for example be included in a network,
because the source component is known to bind to the tar-
get component’s promoter, but without any knowledge of
the effect this binding has (i.e., with label + ∨ −). With
a time series this label may be sharpened to + and thus
hypothesize an activation.

Figure 4: Hierarchy of edge constraints with stricter
labels above weaker ones. “Not observable“ is used
to emphasize the meaning of + ∧ −.

5.2 Evaluating the Time Series
An ideal sampling frequency would result in a discrete

time series capturing all value changes of the components,
but usually data points are rather sparse. In order to un-
derstand the underlying system, we need to know whether
the sampling was sufficient to capture its essential behavior.
Here, we focus on determining potential oscillatory behavior
not inferable from the time series due to coarse sampling.

Consider a network, a time series and a monotonicity ma-
trix that are compatible, i.e., the corresponding parameter
pool is not empty. We start with the assumption that the
time series is sufficient to exclude the possibility of unde-
tected oscillatory behavior. Intuitively, if sufficiently many
measurements were made, it can be assumed that all vari-
ables are monotone at all measurements.

Definition 5.4 (Best Fit). Given a regulatory net-
work (V,E, t), a time series A and the monotonicity matrix

B, where

bi,j =

{
1 : 0 ≤ ai,j , ai+1,j

0 : else
,

a parameter set that satisfies the A-B-monotone path for-
mula is called a best fit of (V,E, t) to A.

Recall that the entries or positions (i, j) of B represent
the value transition of the j-th component from measure-
ment i to measurement (i+1), and that the entry 1 signifies
a monotone value change. If no best fits of (V,E, t) to A
exist, we can be sure that there is a set of positions of B,
such that all parameter sets in the considered pool produce
at least one unobserved oscillation in one of the positions.
In these positions the temporal resolution of A is too coarse
to capture the behavior of the network. A trivial such set is
the set of all positions, but there may be a smaller set, ide-
ally with only a single position. Starting with the originally
considered monotonicity matrix B, a heuristic approach to
finding a non-trivial set is to introduce additional mono-
tonicity constraints position by position. If such an added
constraint does not result in a reduction of the parameter
pool, we discard the corresponding position, since all mod-
els agree with the assumed monotonicity for that position,
and we need no extra sampling between the corresponding
data points. We introduce a measure for the impact of an
additional monotonicity constraint as follows.

Definition 5.5 (Selectivity). Given a regulatory
network (V,E, t), a time series A and a monotonicity matrix
B, we define for each 1 ≤ i ≤ m, 1 ≤ j ≤ n such that

bi,j = 0 and 0 ≤ ai,j , ai+1,j ,

the monotonicity matrix B′ by

b′i′,j′ :=

{
1 : i′ = i, j′ = j

bi,j : else

and the selectivity of position (i, j) by

S(i, j) := 1− |K(V,E, t, φA,B′)|
|K(V,E, t, φA,B)| .

All positions that have selectivity 1 hypothesize obligatory
oscillations of component j in between measurements i and
i + 1, which indicates the need for additional data points
between the measurements. If no such positions exist, we
choose the set {(i, j) | S(i, j) > 0} as places of interest for
new measurements.

5.3 Reviewing Structure and Data
So far we have considered the case that we have no contra-

dictions in our modeling assumptions and data, resulting in
viable choices of parameter sets. If a network is not compat-
ible with a time series and the possibly additionally provided
monotonicity matrix, i.e., the corresponding parameter pool
is empty, there are two possible lines of investigation, de-
pending on whether the correctness of the network structure
or of the data is questioned. In both cases, the idea is to
check what minimal changes can lead to compatibility.

Regarding the structure, we may, in a first step, relax
the constraints on the interactions and instead label every
edge with the observability label + ∨ −. Thus we include
no assumptions on the character of an interaction, but only
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require it to be observable. We now test if the weakened
assumptions result in a non-empty parameter pool.

Definition 5.6 (Structural Compatibility). A
regulatory network (V,E, t) is structurally compatible with a
time series A and monotonicity matrix B, if for the labeling
function

s : E → {+ ∨ −},
there is a parameter set K ∈ K(V,E, t, s, φA,B) that can
reproduce the time series.

If the network is structurally compatible, we know that the
contradiction must be caused by the assumed edge con-
straints and so a review of the edge labels (see 5.1) of the
compatibility pool should reveal that there is an interaction
whose label has changed. If it is not, we may go further and
introduce additional edges or remove existing ones.

Regarding the data, we proceed similarly by first lifting
monotonicity constraints in B (if there are any) and then
replacing particular values in A with the imprecise −1.

5.4 Computation and Scalability
The computational steps in the workflow are (1) to ex-

haustively generate all parameter sets satisfying the edge
constraints (not the whole parameter space), (2) to translate
a parameter set into a model checker input file, and (3) to
pass it to a model checker, together with the A-B-monotone
path formula. For model checking we use NuSMV ([16], see
also [8] and [9]). For computation of the parameter sets, we
apply a backtracking algorithm with failure on constraint
violation.

Regarding scalability and computation times, we first note
that the state space is exponential in the number of compo-
nents, which places a strong limit on the possible number.
Second, we compute a large part of the parameter space,
depending on how restricting the edge labels are. Efficient
algorithms considering partial parametrizations only have
been introduced for PADE models (see [9]). Similar ap-
proaches would be desirable for the Thomas formalism.

As standing, analysis is limited to structures of about
30,000 states, e.g. 15 binary components or 9 ternary com-
ponents. For such models the time per model check is im-
pacted considerably by the nesting depth of a given CTL
formula, which in our case increases linearly with the length
of a time series and monotonicity constraints. Model check-
ing a 30,000 state model and a time series of 5 measurements
takes about 1 second on a 2.27GHz Laptop.

Given these restrictions imposed by the time per model
check, the computation time for the parameter sets is negli-
gible. However, it should be noted that even with the most
restrictive edge labels (+∧− and −∧+) on edges targeting
a binary component, there are already 6,894 local parame-
ter sets for only 5 regulators. For a ternary component, the
number of such regulators is limited to 4, resulting in 7,008
local parameter sets.

6. APPLICATION: THE IRMA NETWORK
We apply the workflow of the previous section to a biolog-

ical network called IRMA, for which several time series are
available. A corresponding search for consistent parameters
of a qualitative PADE model is described by Batt et al. [9].

The IRMA regulatory network consists of 5 genes with
gene control and protein-protein interactions, which has

been inserted into the genome of Saccharomyces cerevisiae
(see Cantone 2009 [10]). Several populations of this genet-

Figure 5: The IRMA regulatory network.

ically modified yeast were grown and subjected to pertur-
bations by adding or removing galactose from the growth
medium. Altogether 11 real-valued time series are avail-
able: 5 repetitions of the switch-on perturbation (adding
galactose) and 4 repetitions of the switch-off perturbation
(removing galactose) plus two averaged time series for each
category.

A comprehensive analysis would include all available time
series. Since we aim for a clear illustration of our approach,
we restrict analysis to the averaged switch-off time series.
In addition, we only consider a boolean model.

We binarized the expression data for the galactose removal
experiment using the scan-statistic method described in [14].
Additionally, we added values for gal based on qualitative
observations. The first entry of its profile is left uncertain,
because although the cells were washed, we are not sure if
galactose was still present in the cytoplasm or not. This
resulted in the discrete time series

A =



CBF1 ASH1 GAL4 GAL80 SWI5 gal
1 1 1 1 1 −1
1 1 0 1 0 0
1 1 0 1 1 0
1 1 1 1 0 0
1 1 1 0 0 0
1 0 1 1 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 1 0 1 0
0 0 1 0 0 0



.

Matching the binarized data, we chose a boolean represen-
tation, i.e., p(v) = 1 for every variable v. The state space is
then

X = [0, 1]6 with |X| = 64, and

|K(V,E, t)| = 22 · 22 · 24 · 22 · 22 · 28 = 220 = 1.048.576.

The network edges and edge-constraints were adopted from
[10] and interpreted as ’+’ and ’−’, i.e., as observable acti-
vations or inhibitions. We then computed all parameter sets
that satisfy the edge-constraints and reproduce the time se-
ries without any monotonicity assumptions:

|K(V,E, t, s)| = 404 and |K(V,E, t, s, φA,0)| = 73.
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We proceeded by characterizing the parameter pool
K(V,E, t, s, φA,0). All parameters of components with a
unique regulator, namely GAL4, ASH1 and GAL80, co-
incide for all parameters sets, i.e., the component behav-
ior is completely determined. The labels of edges targeting
these components can be strengthened to + ∧ −, i.e., they
are recognized as non-ambiguous activating influences. For
SWI5 one parameter is determined: KSWI5({GAL4}) = 1,
suggesting that GAL4 alone is sufficient to activate SWI5,
as opposed to galactose which may require GAL4 for up-
regulation of SWI5 as the parameter KSWI5({gal}) is in
the range [0, 1].

Regarding the behaviors of CBF1 and SWI5 as defined
in Sect. 5.1, there are 4 for the latter and 33 for the for-
mer. The set K(V,E, t, s, φA,0) is not independent, since
4 · 33 = 132, but there are only 73 sets in the pool. There-
fore, not every behavior of SWI5 is compatible with every
behavior of CBF1. Identification of conflicting behaviors
can then be utilized for experimental design. Development
of strategies that allow to identify a component and cor-
responding behavior whose parameter determination would
result in a maximal decrease of the parameter pool is an
issue for future work.

Continuing in the workflow, we assessed the quality of the
time series. There are no best fits of the IRMA network to
the time series, but computing the selectivity of positions
(i, j) in A we found 8 positions to have a selectivity of 1 and
hypothesize the following oscillations.

Name Begins oscillation at measurement
CBF1 1,8,11
SWI5 5,7,8,11,12

The real-valued expression profiles show that SWI5 does
indeed oscillate, but that the oscillations are below the
threshold that the binarization method computed. In this
particular case, the result emphasizes the need of revising
the chosen threshold. However, it also illustrates nicely the
potential of our method to evaluate sufficiency of measure-
ments, since similar results would be obtained if the data
points between 5 and 15 in the SWI5 plot were simply
missing. Based on our analysis the importance of provid-
ing additional measurements for that time span would be
highlighted.

For CBF1 the expression curve shows a decline with two
steady intervals around measurements 10 and 15. Here,
the real-valued data shows no oscillation, but rather dif-
ferent plateaus. Our results point out the time points where
changes of activity levels result in qualitatively observable ef-
fects, and thus indicate the need for a finer representation of
activity levels than a simple boolean view. Investigating the
relation between the predictions for oscillations generated
by our method and the need for an expanded component
value range will be an objective of future work.

Since the boolean model for the IRMA network can re-
produce the chosen time series, we imposed additional as-
sumptions to illustrate the workflow in case of inconsisten-
cies (Sect. 5.3). We considered that value changes in GAL80
involve transcription processes. Let us assume that the tran-
scription of GAL80 is slow, so that it is not expected to
significantly change concentration within the sampling rate
of 10 minutes, i.e., there will be no oscillations between the
sampling points.

The entries of a monotonicity matrix B encoding this as-

Figure 6: Real-valued expression profile of SWI5
where the horizontal line is the binarization thresh-
old obtained by the scan-statistic method.

Figure 7: Real-valued expression profile of CBF1
where the horizontal line is the binarization thresh-
old obtained by the scan-statistic method.

sumption are 1 in the column corresponding to the GAL80
expression profile. We set all remaining entries of B to zero,
imposing no further monotonicity constraints. The corre-
sponding parameter pool K(V,E, t, s, φA,B) is empty. We
decided to proceed by revising the structure of the internal
components, taking the activating effect of gal on SWI5 as
given. The IRMA network is structurally compatible with
A and B. We now try to derive valid information from the
resulting parameter pool. Of the 12,960 parameter sets in
the pool where all internal edges of the network, i.e. not
(gal, gal) and (gal, SWI5), are relaxed to + ∨ −, 144 sat-
isfy φA,B . Interestingly there are no determined parameter
values in this pool, but two interactions are stricter than
assumed in every parameter set:

s(ASH1, CBF1) = −, s(SWI5, CBF1) = +.

This illustrates how we can recover information from the
parameter pool supported by the available data. In sum-
mary, we can observe that the reasonable assumption that
the switch-off series has captured all oscillations of GAL80
validates the original labels targeting CBF1.
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7. CONCLUSION
In this paper we study the compatibility of a model of a

regulatory network and its observed behavior in the form of
a discretized time series. On the formal level, we slightly
extend the usual edge labels (e.g. [8]) with boolean proposi-
tions on edges (similar to [4]) and introduce time series that
may be partially exact or monotone. On the methodological
level, a workflow is suggested that branches in places where
given assumptions may or may not be satisfied.

In contrast to related work, we also use our methods to
assess the quality of the considered time series. In case of
consistency of the network structure and the time series,
we investigate the temporal resolution of the time series by
defining a best fit. For such parameter sets additional mea-
surements would not reveal much further information, be-
cause in between measurements all variables approach their
target activities without oscillating. However, we show that
if no best fits exist, oscillations can be predicted for partic-
ular variables in particular time intervals. We have shown
the potential of this approach using the IRMA network. In
addition, the results hint at the possibility of using the same
methods to assess the discretization threshold of individual
components, as well as the number of thresholds used for a
component. This will be further elucidated in future work.

While we obtain satisfactory results for networks of small
and medium size, we certainly have to increase the computa-
tion efficiency to tackle larger models. Future research will
focus on development of more powerful implementations of
our ideas.
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