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Abstract

Excessive mucin degradation by intestinal bacteria may contribute to inflammatory bowel diseases because access of
luminal antigens to the intestinal immune system is facilitated. This study investigated how the presence of a mucin
degrading commensal bacterium affects the severity of an intestinal Salmonella enterica Typhimurium-induced gut
inflammation. Using a gnotobiotic C3H mouse model with a background microbiota of eight bacterial species (SIHUMI) the
impact of the mucin-degrading commensal bacterium Akkermansia muciniphila (SIHUMI-A) on inflammatory and infectious
symptoms caused by S. Typhimurium was investigated. Presence of A. muciniphila in S. Typhimurium-infected SIHUMI mice
caused significantly increased histopathology scores and elevated mRNA levels of IFN-c, IP-10, TNF-a, IL-12, IL-17 and IL-6 in
cecal and colonic tissue. The increase in pro-inflammatory cytokines was accompanied by 10-fold higher S. Typhimurium
cell numbers in mesenteric lymph nodes of SIHUMI mice associated with A. muciniphila and S. Typhimurium (SIHUMI-AS)
compared to SIHUMI mice with S. Typhimurium only (SIHUMI-S). The number of mucin filled goblet cells was 2- to 3- fold
lower in cecal tissue of SIHUMI-AS mice compared to SIHUMI-S, SIHUMI-A or SIHUMI mice. Reduced goblet cell numbers
significantly correlated with increased IFN-c mRNA levels (r2 = 20.86, ***P,0.001) in all infected mice. In addition, loss of
cecal mucin sulphation was observed in SIHUMI mice containing both A. muciniphila and S. Typhimurium compared to
other mouse groups. Concomitant presence of A. muciniphila and S. Typhimurium resulted in a drastic change in microbiota
composition of SIHUMI mice: the proportion of B. thetaiotaomicron in SIHUMI-AS mice was 0.02% of total bacteria compared
to 78% – 88% in the other mouse groups and the proportion of S. Typhimurium was 94% in SIHUMI-AS mice but only 2.2%
in the SIHUMI-S mice. These results indicate that A. muciniphila exacerbates S. Typhimurium-induced intestinal inflammation
by its ability to disturb host mucus homeostasis.
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Introduction

The intestinal mucus layer provides a barrier against invasion of

the epithelium by intestinal bacteria. Recent studies suggest that

the pathophysiology of ulcerative colitis (UC) involves a disruption

of the mucus layer integrity followed by depletion of mucus

secretory goblet cells [1–4]. Besides serving as a barrier, mucus

also represents a growth substrate and a site of adhesion for

intestinal bacteria [2,5]. Excessive mucin degradation by intestinal

bacteria may contribute to inflammatory bowel diseases (IBD) by

facilitating the access of luminal antigens to the intestinal immune

system and by changes in the resident gut microbial community

[6–12].

Using IL-102/2 mice as a model of chronic gut inflammation,

we previously observed that intestinal inflammation was reduced

after 8 weeks of treatment with the probiotic bacterium Enterococcus

faecium NCIMB 10415. This reduction in inflammation coincided

with a lower abundance of Akkermansia muciniphila, a mucin-

degrading commensal and a member of the Verrucomicrobia,

from 108 to 104 cells g21, suggesting that this organism promoted

inflammation [13]. Moreover, in a T-cell transfer-mediated mouse

model of intestinal inflammation the proportion of bacteria

belonging to the phylum Verrucomicrobia was fivefold increased

compared to control mice [14]. A. muciniphila is the main intestinal

representative of this phylum [2], suggesting that A. muciniphila

numbers increased in response to inflammation [14]. A. muciniphila

is a commensal bacterium that colonizes the human gut early in

life [15–17]. Because of its ability to degrade mucins, we

hypothesized that this organism might contribute to intestinal

inflammation.

To test this hypothesis we took advantage of a well-defined

gnotobiotic mouse model associated with a defined simplified

human intestinal microbiota (SIHUMI) of eight bacterial species

[18], complemented with A. muciniphila or/and with Salmonella

enterica Serovar Typhimurium (S. Typhimurium). The latter is a

murine pathogen [19] that triggers acute inflammatory responses

[20] in TLR11 knock-out mice or streptomycin-treated mice

[21,22] and therefore represents a highly suitable model for
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investigating immune disorders [19]. We therefore used Salmonella

Typhimurium to induce intestinal inflammation in SIHUMI mice

to investigate whether A. muciniphila influences the infectious and

inflammatory symptoms caused by Salmonella Typhimurium in

these mice. Here we demonstrate that A. muciniphila exacerbates S.

Typhimurium-induced inflammation in the SIHUMI mouse

model indicating that the former organism turns into a harmful

bacterium under inflammatory conditions. Our experiments

suggest that this is at least in part based on A. muciniphila’s ability

to interfere with host mucus formation and production.

Results

A. muciniphila profoundly affects microbial community
composition of SIHUMI mice associated with S.
Typhimurium

To induce intestinal inflammation, mice associated with a

simplified intestinal microbiota (SIHUMI) were additionally colo-

nized with A. muciniphila and subsequently infected with S.

Typhimurium (SIHUMI-AS). SIHUMI mice and SIHUMI mice

associated with either A. muciniphila (SIHUMI-A) or S. Typhimur-

ium (SIHUMI-S) served as controls (Figure 1). Bacterial cell

numbers in the intestinal contents were quantified using qPCR

(Figure 2). Five days post infection (p.i.) S. Typhimurium became

the predominant species representing 94% of total bacteria in the

cecum of SIHUMI-AS mice. In contrast, in SIHUMI-S mice S.

Typhimurium made up merely 2.2% of total bacteria. A. muciniphila

accounted for 8.4% of total bacterial cells in the SIHUMI-A group,

but was as low as 1.3% in the SIHUMI-AS group. B. thetaiotaomicron

was dominant in SIHUMI, SIHUMI-A and SIHUMI-S mice

making up 80–90% of total bacteria but was reduced to 0.02% in

the SIHUMI-AS mice. The proportion of other community

members was also lower in the SIHUMI-AS group compared to

the other mouse groups. For example, E. coli became undetectable

in the SIHUMI-AS mice whereas this organism made up 0.14% of

total bacteria in the SIHUMI-S animals. This was less than the

initial E. coli proportion of 0.52% and 0.88% in the uninfected

control groups SIHUMI and SIHUMI-A, respectively. Interesting-

ly, there was no significant difference in the absolute S. Typhimur-

ium cell numbers between SIHUMI-S and SIHUMI-AS mice but

all other members of the community were 1 to 5 logs lower when

both S. Typhimurium and A. muciniphila were present (SIHUMI-AS)

suggesting that the latter organism caused a decrease of all other

community members except S. Typhimurium (Table 1). Bacterial

cell numbers in the colon revealed a pattern similar to that observed

for cecum (Figure S1 and Table S1).

Presence of A. muciniphila aggravates inflammatory
symptoms caused by S. Typhimurium in SIHUMI mice

Histopathological analysis revealed that 5 days p.i. SIHUMI-AS

mice showed a 24% higher cecal histopathology score compared

to the SIHUMI-S mice and more than 4.5- to 5-fold higher scores

compared to the SIHUMI and the SIHUMI-A mice (Figure 3).

This result indicates that A. muciniphila exacerbates the symptoms

of cecal inflammation caused by S. Typhimurium infection in

SIHUMI-AS mice. The colon of the infected mice did not display

histopathological signs of inflammation (data not shown).

In line with the histopathology scores, mRNA levels of selected

pro-inflammatory cytokines in cecal mucosa were up-regulated in

the SIHUMI-AS mice 5 days p.i. compared to all other groups

(Figure 4A). Interferon-gamma (IFN-c) expression was approxi-

mately 2.5-fold higher in SIHUMI-AS mice compared to

SIHUMI-S mice and approximately 40-fold higher compared to

SIHUMI or SIHUMI-A mice. Essentially similar patterns were

observed for IFN-c-induced protein 10 (IP-10), tumor necrosis

factor-a (TNF-a), interleukin (IL)-6 and IL-17. The pattern for IL-

12 differed from that of the other cytokines investigated, with 1.5-

and 2- fold higher IL-12 mRNA levels in the SIHUMI-A and

SIHUMI-AS groups compared to the other two groups. In spite of

these minor differences, the presence of A. muciniphila in the S.

Typhimurium-infected SIHUMI mice coincided with significantly

higher mRNA expression levels of the pro-inflammatory cytokines

except IL-18, which was significantly down-regulated. The mRNA

expression patterns of IFN-c, IL-17, IL-6, TNF-a, IL-12 and IP-

10 in colonic tissue were very similar to those observed in cecal

tissue (Figure S2).

To check for systemic effects of infection, we also quantified the

protein levels of pro-inflammatory cytokines in serum (Figure 4B).

Five days p.i. SIHUMI-AS mice had 1.5- to 3- fold higher serum

levels of IFN-c compared to SIHUMI-S mice, SIHUMI mice or

SIHUMI-A mice. However, TNF-a and IL-6 protein levels in

serum were below the detection limit.

The increased intestinal inflammation in the SIHUMI-AS mice

compared to the SIHUMI-S mice coincided with a predominance

of S. Typhimurium cells in the SIHUMI-AS mice suggesting that

A. muciniphila exacerbated the pathogen-induced inflammation. To

investigate whether the increased inflammation was accompanied

by an enhanced translocation of S. Typhimurium into host tissue,

S. Typhimurium was enumerated in mesenteric lymph nodes

(mLN) and spleen. Five days p.i. the cell number of S.

Typhimurium in the mLN of SIHUMI-AS mice was 10-fold

higher compared to that observed for SIHUMI-S mice (Figure 5).

However, S. Typhimurium was not detectable in the spleens of the

mice infected with the pathogen.

Infection by S. Typhimurium involves its survival within host

macrophages [23] and promotes macrophage recruitment [24,25].

To investigate whether the presence of A. muciniphila enhanced this

process, we scored macrophage infiltration in cecal tissue by

immunohistochemical detection of the F4/80 receptor present on

mouse macrophages [26]. The degree of macrophage infiltration

into cecal lamina propria and submucosa was evaluated by a score

ranging from 0 to 3 (as defined in the methods section). SIHUMI-

AS mice displayed a significantly higher infiltration score for both

lamina propria and submucosa than the SIHUMI-S, SIHUMI-A

or SIHUMI mice (Figure 6). In addition, FISH analysis

(Information S1) revealed that A. muciniphila was in close contact

with the cecal epithelium in SIHUMI-A mice. In SIHUMI-S mice

S. Typhimurium was also detected mostly on the epithelial surface

whereas in SIHUMI-AS mice S. Typhimurium was detected deep

inside the cecal tissues (Figure S4).

Presence of A. muciniphila in S. Typhimurium-infected
SIHUMI mice facilitates pathogen translocation by
interfering with mucus formation

Since A. muciniphila is capable of degrading mucins, we

hypothesized that this organism modified the mucus layer, which

in turn enhanced exposure of the mucosa to S. Typhimurium,

resulting in enhanced translocation of the pathogen. Stronger

inflammatory and infectious symptoms in SIHUMI-AS mice

compared to SIHUMI-S mice were characterized by increased cell

numbers of S. Typhimurium in mLN, suggesting that the presence

of A. muciniphila facilitated the translocation of the pathogen from

the intestinal lumen into host tissue. We therefore investigated how

the presence of A. muciniphila affected mucin formation, mucus

thickness, mucus composition and number of mucin-filled goblet

cells. Therefore, mRNA expression levels of cecal MUC2 were

determined and cecum tissue sections were stained with alcian

blue (AB) for quantification of goblet cells filled with acidic mucin.

A. muciniphila in Salmonella-Induced Inflammation
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MUC2 gene expression was twofold higher in mice associated with

A. muciniphila (SIHUMI-AS and SIHUMI-A mice) compared to

SIHUMI-S mice or SIHUMI mice. MUC2 gene expression in the

latter two groups was not significantly different (Figure 7A).

Higher MUC2 expression in the SIHUMI-AS mice suggested

that these mice produced more mucin than the mice of the other

groups. This was evaluated by staining of cecum tissue sections

with AB. Microscopic examination of thin sections from cecum

tissue collected 5 days p.i. revealed striking differences in the

number of acidic mucin-containing goblet cells between the

groups. In spite of showing the highest MUC2 expression,

SIHUMI-AS mice displayed significantly lower numbers of

mucin-filled goblet cells than SIHUMI-S mice or SIHUMI mice.

Moreover, the cecal mucosa from SIHUMI-A mice showed the

highest number of mucin-filled goblet cells compared to the mice

from the other three groups (Figure 7B, 7C). Essentially the same

results were obtained for colonic tissue where we observed the

highest number of mucin-filled goblet cells in the SIHUMI-A

group and lowest in the SIHUMI-AS group compared to the other

groups (Figure S3). The cytokine patterns observed in cecum

(Figure 4A) and colon (Figure S2) mucosa were very similar. Since

only colonic tissue had been fixed with Carnoy’s we used colonic

tissue sections for investigating the impact of A. muciniphila on

mucus layer thickness (Information S1): SIHUMI-A mice

(22.3 mm63.8 mm) had the thickest mucus layer compared to

SIHUMI (9.8 mm61.1 mm), SIHUMI-S (10.7 mm60.8 mm) and

SIHUMI-AS mice (7.5 mm60.9 mm), whereas SIHUMI-AS mice

showed 2-fold reduced mucus thickness compared to SIHUMI-A

mice (Figure S3). In addition, thin sections from cecum tissue

stained with high iron diamine (HID)/AB revealed a reduction in

sulphated mucins in SIHUMI-AS mice compared to the mice

from the other mouse groups (Figure 8).

Discussion

A commensal intestinal bacterium may turn into a
pathobiont and contribute to an aggravation of disease
symptoms

The majority of bacteria in the gastrointestinal tract are

considered commensals, i.e. they do not harm the host. Our data

show that the commensal A. muciniphila exacerbates S. Typhimur-

ium-induced intestinal inflammation. However, this detrimental

effect on the host can only arise under certain circumstances, in

this case in the presence of both a commensal mucin degrader and

a pathogen. In our study, S. Typhimurium-triggered inflammation

turned A. muciniphila into a pathobiont (a resident intestinal

bacterium that under certain circumstances causes disease)

[27,28]. The experiments presented here indicate that the

concomitant presence of these two organisms in SIHUMI mice

disturbs mucus layer homeostasis, which in turn aggravates

infectious and inflammatory symptoms. The molecular interac-

tions between a mucin-degrading commensal bacterium and a

pathogenic bacterium on host health have not yet been studied

and are not well understood.

The current study was triggered by previous observations in

conventional IL-102/2 mice treated with a probiotic E. faecium

strain. In these mice, a significant increase in pro-inflammatory

cytokine expression levels was associated with an increase in cell

numbers of A. muciniphila [13]. The results presented herein are in

accordance with these observations because the latter organism

also affected inflammatory parameters in our present study. For

example, mRNA expression levels of IFN-c, IP-10, TNF-a, IL-6,

IL-12 and IL-17 were increased in SIHUMI-AS compared to

SIHUMI-S mice. It may be concluded that S. Typhimurium alone

leads to a considerably weaker gut inflammation as compared to

when A. muciniphila is also present.

IL-12 and IL-18 have been described to increase in response to

a S. Typhimurium infection and in turn to induce the production

of IFN-c which enhances the ability of macrophages to kill

intracellular pathogens [25,29]. Interestingly, in our experiment,

we only observed an up-regulation of IL-12 in the SIHUMI-AS

mice, while IL-18 was significantly down-regulated in these mice

compared to the other groups. IL-12 formation by infected

macrophages is an important defense against Salmonella because it

leads to the recruitment of Natural Killer (NK) cells to the infected

site, a higher production of IFN-c, and in turn an enhanced

differentiation of monocytes to macrophages [30–32]. In line with

these studies, we observed significantly higher numbers of cecal

macrophages accompanied by higher cecal and colonic mRNA

levels of IL-12 and IFN-c in SIHUMI-AS compared to SIHUMI-

Figure 1. Design of the animal experiment. Fourty C3H mice associated with a defined microbial community of 8 bacterial species (SIHUMI)
were allocated to four different groups (10 mice per group). Each mouse was associated with 8 bacterial species (SIHUMI). Twelve weeks-old SIHUMI
mice were subsequently associated with A. muciniphila (SIHUMI-A) or S. Typhimurium (SIHUMI-S) or with both A. muciniphila and S. Typhimurium
(SIHUMI-AS). SIHUMI mice received only sterile medium. Times of association, infection and killing are as indicated. ` - killed.
doi:10.1371/journal.pone.0074963.g001
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Figure 2. Presence of A. muciniphila renders S. Typhimurium the dominant species in gnotobiotic SIHUMI mice. Cecal contents were
collected from gnotobiotic C3H mice, differing in their microbial status: (A) Mice with a defined microbial community of eight bacterial species
(SIHUMI), (B) SIHUMI mice additionally colonized with A. muciniphila (SIHUMI-A), (C) SIHUMI mice infected with S. Typhimurium (SIHUMI-S) and (D)
SIHUMI mice colonized with A. muciniphila and 10 days later infected with S. Typhimurium (SIHUMI-AS) (see Figure 1). Total DNA was extracted and
bacterial cell numbers were quantified by qPCR with primers targeting the HSP60 gene of the SIHUMI members, the 16S rRNA gene of A. muciniphila

A. muciniphila in Salmonella-Induced Inflammation
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S mice. S. Typhimurium survives and grows inside macrophages

from where the pathogen invades host tissues [33]. In accordance

with the elevated IL-12 and IFN-c mRNA levels S. Typhimurium

cell numbers were 10 fold higher in mLN of SIHUMI-AS

compared to SIHUMI-S mice. IL-18 in conjunction with IL-12 is

involved in phagocytosis of intracellular pathogens [29]. The

observed suppression of IL-18 in SIHUMI-AS compared to

SIHUMI-S mice, led us to speculate that the concomitant

presence of A. muciniphila and S. Typhimurium facilitates growth

of the pathogen in the infected macrophages because down-

regulation of IL-18 protects S. Typhimurium from being killed. In

addition, SIHUMI-AS mice showed significantly higher cecal

histopathology scores compared to SIHUMI-S infected mice.

Contrary to cecum, the colon displayed 5 days p.i. no elevated

histopathology scores in SIHUMI-AS mice and SIHUMI-S mice.

This may be explained by the fact that it takes several days for the

inflammation to spread from cecum to colon [34].

A. muciniphila’s ability to disturb host mucus-
homeostasis appears crucial for its ability to exacerbate
infectious and inflammatory symptoms caused by S.
Typhimurium

Commensal bacterium A. muciniphila is known for its ability to

degrade mucins [16,17]. Recent studies propose that excessive

mucin degradation facilitates the access of pathogen to the mucosa

[12,35]. The experiments presented in this paper support the view

that the presence of the mucin-degrading A. muciniphila causes an

aggravation of intestinal inflammatory symptoms caused by S.

Typhimurium infection. Using a consortium of eight bacterial

species [18] as a background microbiota we observed that the

concomitant presence of A. muciniphila and S. Typhimurium

resulted in mucus-related differences that were absent or less

pronounced if either one of the strains was present. For example,

the number of mucin-filled goblet cells in SIHUMI-AS mice was

2.5- to 4- fold lower than in any other of the mouse groups.

Paradoxically, the MUC2 gene expression level in the SIHUMI-

AS mice was higher than that in the SIHUMI-S or the SIHUMI

mice. Why higher mRNA levels of MUC2 in mucosal tissue did

not coincide with higher numbers of mucin-filled goblet cells is not

quite clear. Two explanations are conceivable: 1. Previous studies

indicate that severe inflammation causes endoplasmic reticulum

(ER) stress in intestinal epithelial cells and in goblet cells [36–40].

For example, a ribotoxic stress response caused apoptosis of

intestinal epithelial cells triggered by Shiga toxin-producing E. coli

[41] and of goblet cells [42,43]. Such stress acting on goblet cells

might result in increased expression of the MUC2 gene to

compensate for the loss of mucin-filled goblet cells. However,

owing to cellular stress, decoration of the mucin polypeptide

backbone with carbohydrates would remain fragmentary. Since

AB does not stain the mucin polypeptide backbone, undecorated

mucin would therefore not be detectable with AB in goblet cells. 2.

Previous findings demonstrated that infection with S. Typhimur-

ium enhances mucin excretion from goblet cells by increased

expression of IFN-c [44]. Therefore, the 2.5- fold higher IFN-c
expression level in SIHUMI-AS mice relative to SIHUMI-S mice

may have led to an emptying of goblet cells to restrict the load of

pathogens in the host. In support of this assumption we observed a

significant inverse correlation (r2 = 20.86, P,0.001) between the

number of mucin filled goblet cells and IFN-c gene expression

levels (data not shown).

Mucus is constantly secreted into the intestine, where it forms a

protective gel-like structure of approximately 150 mm thicknesses

on the mucosal surface. Cecum and colon mucosa is covered with

a tightly packed inner mucus layer and a less dense outer layer.

The inner layer serves as a barrier that prevents bacterial access to

the epithelium [45]. Even though the inner mucus layer is usually

devoid of bacteria, we detected A. muciniphila in close contact with

the cecal epithelial surface in the SIHUMI-A mice. We speculate

that A. muciniphila promotes mucin formation and thereby supports

its own growth via mucin degradation similar to what has been

observed for B. thetaiotaomicron in NMRI mice; utilization of fucose

by this organism triggered the synthesis of fucosylated glycocon-

jugates by the host epithelium [5].

and the ttr-region of S. Typhimurium. Calculation of the cell numbers was based on DNA obtained from cell suspensions containing known cell
numbers of the targeted bacterial species (see materials and methods). Presence of A. muciniphila in SIHUMI-AS mice is attributed to an increase in
the proportion of S. Typhimurium cells at the expense of other community members showing reduced proportion of SIHUMI members. Ten animals
per group were used. The bacterial cell numbers and P-values for the differences between the groups are provided in Table 1.
doi:10.1371/journal.pone.0074963.g002

Table 1. S. Typhimurium becomes the dominant species in SIHUMI mice previously associated with A. muciniphila.

Cecum SIHUMI SIHUMI-A SIHUMI-S SIHUMI-AS

log 10 (g21 DW) log 10 (g21 DW) log 10 (g21 DW) log 10 (g21 DW)

A. caccae 8.2060.26 ab 8.5260.21 b 8.1560.31 ab 7.4561.26 a

B. longum 10.0360.44 b 10.1160.27 b 9.2260.55 ab 8.3762.10 a

B. product 10.1160.35 b 10.2360.29 b 10.1660.26 b 8.3461.34 a

B. thetaiotaomicron 11.2560.20 b 11.3860.22 b 11.2960.30 b 6.2960.75 a

C. ramosum 8.5560.27 a 8.9860.37 a 8.7660.28 a 7.3160.98 a

E. coli 9.0560.19 bc 9.4360.98 c 8.4860.28 bc 4.9060.41 a

C. butyricum 9.9760.25 b 9.9260.34 b 9.6160.35 b 4.1560.50 a

A. muciniphila n.d. 10.4160.20 b n.d. 8.1260.60 a

S. Typhimurium n.d. n.d. 9.6760.16 a 9.9960.45 a

Total bacteria 11.9960.54 bc 11.6560.62 b 11.9660.43 bc 10.6261.02 a

Data are expressed as mean6standard error. Different superscripts indicate statistically significant differences (P#0.05). n = 10 mice per group. DW: dry weight.
doi:10.1371/journal.pone.0074963.t001
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The reduced brown color observed after HID/AB (pH-2.5)

staining in cecal tissue sections of SIHUMI-AS mice compared to

those of the other mouse groups indicate a loss of mucin sulphation

in this group. Interestingly, changes in intestinal mucin compo-

sition characterized by a lower degree of sulphation [7,46] and a

higher degree of sialylation have previously been reported to occur

in UC, Crohn’s Disease (CD) and gastric ulcer caused by

Helicobacter pylori-induced inflammation [7,46,47]. These changes

might facilitate access of intraluminal antigens and thereby

possibly aggravate inflammatory symptoms.

Presence of both A. muciniphila and S. Typhimurium is
associated with drastic changes in microbiota
composition

The above findings indicate that the presence of A. muciniphila

within the SIHUMI-AS consortium is responsible for the exacer-

bation of inflammation observed in the corresponding mice. One of

the most prominent differences between S. Typhimurium-infected

SIHUMI mice with or without A. muciniphila relates to drastic

differences in microbiota composition. The data indicate that A.

muciniphila promotes the growth of S. Typhimurium, which reaches

a proportion of 94% in the presence of A. muciniphila compared to

2.2% in its absence, while other community members including B.

thetaiotaomicron and E. coli decreased dramatically from 88% to

0.02% and 0.14% to 0.01%, respectively. The reasons for this

dramatic change are not really known. It may be speculated that this

phenomenon is related to A. muciniphila’s ability to exacerbate S.

Typhimurium-induced inflammation whereas the presence of A.

muciniphila is without consequence when S. Typhimurium is absent.

Presence of either A. muciniphila or S. Typhimurium alone did not

lead to such a dramatic shift in the existing microbiota composition

as evident from a comparison of SIHUMI, SIHUMI-A and

SIHUMI-S mice, which showed no major differences in the relative

proportions of the SIHUMI community members between these

mouse groups. Enteropathogenic bacteria such as S. Typhimurium

are known to breach colonization resistance and to invade host

tissues by exploiting host inflammation [14,48,49]. Higher numbers

of S. Typhimurium in mesenteric lymph nodes of the SIHUMI-AS

mice compared to SIHUMI-S mice suggest that A. muciniphila

contributes to an impairment of colonization resistance and

enhances intestinal inflammation. In fact, we observed higher

mRNA levels of pro-inflammatory markers in SIHUMI-AS

compared to SIHUMI-S mice.

We propose that the enhanced inflammatory host response in

the SIHUMI-AS mice was responsible for the dramatic decrease

in the B. thetaiotaomicron population. We speculate that the

decimation of B. thetaiotaomicron might be due to the generation

of higher concentrations of reactive oxygen and nitrogen species

[25,50] in the more severely inflamed SIHUMI-AS mice

compared to SIHUMI-S mice.

The reduction of E. coli numbers in the SIHUMI-AS versus the

SIHUMI-S mice was moderate compared to that of B.

thetaiotaomicron and is in contradiction to previous studies where

an increase in E. coli was observed in conventional mice in

response to a S. Typhimurium-induced gut inflammation [14,50]

or in inflamed IL-102/2 mice [51]. One possible explanation for

reduced E. coli cell numbers in the SIHUMI-AS mice could be due

to the fact that we used a non-pathogenic laboratory strain of E.

coli which lacks fitness genes [52] and might therefore be more

susceptible to inflammatory conditions.

Composition of the microbiota of IBD patients significantly

differs from that in healthy controls [53]. Currently, an imbalance

in gut microbiota is regarded as one possible factor triggering the

inflammation in UC and CD [3,6,10]. Our data suggest that the

presence of a dedicated mucin-degrading bacterium supports a

pathogen-induced inflammation, which in turn leads to alterations

in the existing gut microbiota composition.

A possible limitation of our mouse model lies in the use of a

simplified human intestinal microbiota, which does not completely

reflect the features of a conventional microbiota. Therefore, we

Figure 3. Concomitant presence of A. muciniphila and S. Typhimurium results in increased histopathology scores in SIHUMI mice. (A)
Gnotobiotic C3H mice containing 8 defined microbial species (SIHUMI) were subsequently inoculated with A. muciniphila or S. Typhimurium or
consecutively with both organisms (see Figure 1). SIHUMI and SIHUMI-A mice had the lowest histopathology scores (#4.0) with no signs of
inflammation and were therefore taken as baseline (dotted line). Data are expressed as median with range. *P,0.05, **P,0.01, ***P,0.001. n = 10
mice per group. (B) Representative microscopy images of pathological changes observed in cecum tissue sections fixed with formalin and stained
with hematoxylin and eosin (4 mm) of the four mouse groups. n = 10 mice per group; Magnification: 1000-fold.
doi:10.1371/journal.pone.0074963.g003
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Figure 4. Presence of both A. muciniphila and S. Typhimurium is accompanied by increased pro-inflammatory cytokines. (A) Cecal
mRNA levels of IFN-c, IP-10, TNF-a, IL-12, IL-6, IL-17 and IL-18 in gnotobiotic SIHUMI mice were measured. mRNA was extracted from cecum mucosa
of mice belonging to either one of four groups: SIHUMI, SIHUMI-A, SIHUMI-S and SIHUMI-AS (see Figure. 1). The mRNA was converted to cDNA for
quantitative real-time PCR measurement (see materials and methods). Inoculation of the gnotobiotic SIHUMI mice with A. muciniphila followed by S.
Typhimurium infection (SIHUMI-AS) caused an increase in mRNA levels of pro-inflammatory cytokines except IL-18. Data are expressed as
mean6standard error. n = 6 per group. Star indicates statistically significant differences (*P,0.05, **P,0.01, ***P,0.001). AU: Arbitrary units; Amuc: A.
muciniphila; S. Tm: S. Typhimurium. (B) Serum protein levels of IFN-c were increased in SIHUMI-AS mice compared to the other mouse groups. Data
are expressed as mean6standard error. n = 10 mice per group. *P,0.05, **P,0.01, ***P,0.001. Amuc: A. muciniphila; S. Tm: S. Typhimurium.
doi:10.1371/journal.pone.0074963.g004
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cannot directly extrapolate the observed effects from the SIHUMI-

AS mice to conventional mice. However, in spite of these

limitations this model offers the chance to identify the molecular

mechanisms underlying the interactions between a pathogen, a

commensal microbiota and the host because each SIHUMI

member is known and can be tracked.

Taken together our experiments indicate that A. muciniphila

facilitates infection by S. Typhimurium in mice colonized with a

simplified human intestinal microbiota and thereby exacerbates

infectious and inflammatory symptoms. This was not the case in

SIHUMI mice colonized with S. Typhimurium in the absence of

A. muciniphila (Figure 9). This is an impressive example on how a

community member changes its role in the ecosystem in response

to the presence of a pathogen and how it shifts from a commensal

to a harmful bacterium (pathobiont).

Figure 5. SIHUMI mice colonized with both A. muciniphila and S. Typhimurium display enlarged mLN and elevated S. Typhimurium
cell numbers. (A) Mesenteric lymph nodes (mLN) were obtained from four groups of gnotobiotic C3H mice. SIHUMI mice were subsequently
inoculated with A. muciniphila or S. Typhimurium or consecutively with both organisms (see Figure 1). The mLN tissue was homogenized and DNA
was isolated to quantify S. Typhimurium using quantitative PCR with primers targeting the ttr-region of S. Typhimurium. Absolute cell numbers were
calculated based on calibration curves with known concentrations of S. Typhimurium. The mLN of SIHUMI-AS mice contained 10-fold higher cell
numbers of S. Typhimurium compared to SIHUMI-S mice. Data are expressed as mean6standard error. n = 10 mice per group. *P,0.05, **P,0.01,
***P,0.001. n.d: not detected. Amuc: A. muciniphila; S. Tm: S. Typhimurium. (B) The photograph shows four lymph nodes, each representative of one
of the four mouse groups and a cm scale. Twelve week old gnotobiotic SIHUMI mice with both A. muciniphila and S. Typhimurium displayed an
increased size of their mesenteric lymph nodes compared to SIHUMI mice infected with S. Typhimurium only.
doi:10.1371/journal.pone.0074963.g005

Figure 6. SIHUMI mice colonized with both A. muciniphila and S. Typhimurium display an increased cecal macrophage infiltration.
(A) Formalin fixed paraffin embedded cecum tissue was thin sectioned at 2 mm. Macrophages were stained by targeting the F4/80 receptor expressed
on mouse macrophages using immunohistochemistry with specific antibodies. Brown color indicates positively stained macrophages. Magnification
400-fold. Bar = 100 mm. (B) Positively stained macrophages were enumerated along a stretch of 50 mm of lamina muscularis for both lamina propria
and sub-mucosa (see materials and methods). SIHUMI mice colonized with both A. muciniphila and S. Typhimurium had the highest macrophage
infiltration scores compared to the other groups (see Figure. 1). Data are expressed as median with range. n = 5 mice per group. *P,0.05, **P,0.01,
***P,0.001. Amuc: A. muciniphila; S. Tm: S. Typhimurium.
doi:10.1371/journal.pone.0074963.g006
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Materials and Methods

Bacterial Strains
The bacterial strains used in this study were: A. muciniphila

ATCC BAA-835 and S. Typhimurium DT104 as well as members

of a simplified human intestinal microbiota (SIHUMI) consisting

of eight bacterial species (Bifidobacterium longum NCC 2705, Blautia

producta DSM 2950, Bacteroides thetaiotaomicron DSM 2079, Clostrid-

ium ramosum DSM 1402, Clostridium butyricum DSM 10702,

Escherichia coli K-12 MG1655, Lactobacillus plantarum DSM 20174

Figure 7. SIHUMI mice with both A. muciniphila and S. Typhimurium display increased MUC2 mRNA levels (A) and reduced numbers
of mucin filled goblet cells (B and C). (A) mRNA was extracted from cecum mucosa of mice belonging to either one of four groups: SIHUMI,
SIHUMI-A, SIHUMI-S and SIHUMI-AS. MUC2 mRNA from cecum mucosa was converted to cDNA and expression levels were quantified using real-time
PCR (see materials and methods). SIHUMI-A and SIHUMI-AS mice showed significantly higher MUC2 gene expression compared to the other two
groups, harboring no A. muciniphila. Data are expressed as mean6standard error. n = 6 per group. *P,0.05, **P,0.01, ***P,0.001. Amuc: A.
muciniphila; S. Tm: S. Typhimurium. (B) Formalin fixed cecal tissue sections from SIHUMI, SIHUMI-A, SIHUMI-S and SIHUMI-AS mice were stained with
alcian blue (pH-2.5) and haematoxylin. Images are representative of 5 mice per group. Magnification 400-fold. SIHUMI-AS mice display the lowest
number of positively stained mucin-filled goblet cells compared to the other three groups. The bar represents 100 mm. (C) Quantitative analysis of the
number of acidic mucin-filled goblet cells (blue) enumerated in cecal tissue sections from SIHUMI, SIHUMI-A, SIHUMI-S and SIHUMI-AS mice for a
50 mm stretch of lamina muscularis corresponding to approximately 30 cecal crypts per section. Two sections per mouse were analyzed. The number
of cecal mucin filled goblet cells was elevated when A. muciniphila was present (SIHUMI-A) but the concomitant presence of S. Typhimurium (SIHUMI-
AS) resulted in the lowest number of mucin filled goblet cells of gnotobiotic SIHUMI mice compared to the other mouse groups. Data are expressed
as mean6standard error. n = 5 mice. *P,0.05, **P,0.01, ***P,0.001. Amuc: A. muciniphila; S. Tm: S. Typhimurium.
doi:10.1371/journal.pone.0074963.g007
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and Anaerostipes caccae DSM 14662). All strains were routinely

cultured at 37uC. The SIHUMI members and S. Typhimurium

were cultured in yeast casitone fatty acid (YCFA) medium [18]

while A. muciniphila was cultured in Columbia broth (Difco). All

strains were cultured under strictly anoxic conditions using

N2:CO2 (80:20; v:v) as the gas phase.

Animal experiment
Germ-free C3H mice were bred in Trexler-type isolators. After

weaning, all mice were colonized by gavaging the fecal superna-

tant of SIHUMI mice [18]. Forty of these SIHUMI mice were

allocated to four groups (10 mice per group). The groups differed

in their microbial status: they were subsequently colonized with A.

muciniphila (SIHUMI-A) or with S. Typhimurium (SIHUMI-S) or

with both A. muciniphila and S. Typhimurium (SIHUMI-AS) as

indicated in Figure 1. The bacteria were grown anaerobically

overnight at 37uC and their cell numbers were determined using a

counting chamber. Mice were inoculated with: 5*107 cells of S.

Typhimurium suspended in 200 ml medium and 1*108 cells of A.

muciniphila suspended in 200 ml medium by gastric gavage. Mice

colonized with only SIHUMI members received 200 ml of sterile

medium. Successful bacterial colonization after inoculation was

validated in the feces by qPCR (see below).

The animals were killed by cervical dislocation at the times

indicated in Figure 1. Cecal and colonic contents were collected

and bacterial cells were enumerated by qPCR. Spleen and

mesenteric lymph nodes were collected for enumeration of S.

Typhimurium. Colon tissue samples were fixed in formalin and

Carnoy’s solution for histochemical analysis and measurement of

mucus thickness. Cecum tissue samples were fixed with formalin

and embedded in paraffin (p) for immunohistochemical analysis

(IHC-p), stained with haematoxylin and eosin (H&E) for

histopathology scoring and with alcian blue (AB) for enumeration

of mucin-filled goblet cells. Bacterial cells were detected by 16S

rRNA-targeted fluorescence in-situ hybridization (FISH). Five of

the 10 mice per group were used for colon mucosa scrapings while

colon tissue of the remaining 5 mice was subjected to Carnoy’s

fixation. In addition, cecal tissue from all 10 mice per group was

used in part for mucosa scrapings and in part subjected to formalin

fixation. Scraped mucosa samples were flash frozen in liquid

nitrogen and stored at 280uC until use. Approximately 25 mg of

the frozen intestinal mucosa scrapings were homogenized for RNA

extraction. Blood was collected for measuring serum inflammatory

biomarkers using ELISA. All samples were frozen at 280uC until

use.

Ethics statement
The protocol for the animal experiment was approved by the

Animal Welfare Committee of the Ministry of Environment,

Health and Consumer Protection of the Federal State of

Brandenburg (Germany), State Office of Environment, Health

and Consumer Protection (approval number: V3-2347-42-2011).

The regulations of the German Animal Welfare Act (TierSchG,

18, Abs.1) were strictly followed.

Quantification of bacterial cell numbers
Bacterial DNA was extracted from cecal, colonic and fecal

sample material using the PSP Spin Stool DNA plus Kit (Invitek,

Figure 8. SIHUMI mice colonized with both A. muciniphila and S. Typhimurium display reduced mucus sulphation. Formalin fixed thin
sections (4 mm) of cecal tissue of mice belonging to either one of four groups: SIHUMI, SIHUMI-A, SIHUMI-S and SIHUMI-AS (see Figure. 1) were
stained with high iron diamine (HID)/AB at pH-2.5 and subsequently analyzed. Brown color indicates sulphated mucins while blue color indicates
sialylated mucins. SIHUMI-AS mice display few sulphated mucins compared to the other mouse groups. Magnification 4006. Bars indicate 100 mm.
doi:10.1371/journal.pone.0074963.g008

A. muciniphila in Salmonella-Induced Inflammation

PLOS ONE | www.plosone.org 10 September 2013 | Volume 8 | Issue 9 | e74963



Figure 9. Hypothetical Scheme. The presence of A. muciniphila, leads to the exacerbation of S. Typhimurium-induced intestinal inflammation. We
propose that the presence of A. muciniphila causes changes in mucin composition and production, which in turn facilitates the invasion of S.
Typhimurium into the host. Increased inflammatory status was characterized by increased pro-inflammatory cytokines, increased macrophage
infiltration and invasion of the pathogen into the lymph nodes, reduced number of mucin-filled goblet cells in SIHUMI-AS mice (B) compared to
SIHUMI-S mice (A). Our data suggests that in the presence of both A. muciniphila and S. Typhimurium, mucus sulphation is diminished and this may
facilitate the access of S. Typhimurium to sialic acid in mucus. Sialic acid may serve as a substrate and adhesion site for S. Typhimurium in the gut
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Berlin, Germany) and used for the quantification of A. muciniphila,

S. Typhimurium and the members of the SIHUMI consortium

present in the gut contents. Bacteria were quantified using

quantitative Real-Time PCR targeting the 16S rRNA gene in

the case of A. muciniphila [13], the ttr (tetrathionate respiration) -

region in the case of S. Typhimurium, as described previously [54]

and the HSP-60 gene for each member of the SIHUMI

consortium [55]. All primers were purchased from MWG Eurofins

(Germany). Standard curves were obtained by spiking feces from

germfree mice with known cell numbers of A. muciniphila, S.

Typhimurium or individual SIHUMI bacteria. The Applied

Biosystems 7500 FAST Real-Time PCR (Life Technologies

GmbH, Darmstadt, Germany) was used for amplification and

fluorescent data collection. The supplied software was used to

calculate absolute cell numbers according to the calibration curves.

The master mix consisted of 12.5 ml QuantiFast SYBR Green

2000 (Qiagen, Hilden, Germany), 0.5 ml of each primer (10 mM),

1 ml of sample and adjusted with water to a final volume of 25 ml

per well. After PCR amplification, the specificity of the primers

was checked by inspecting the melting curve and determining the

size of the amplicon by agarose gel electrophoresis (1%). Bacterial

DNA from mesenteric lymph nodes (mLN) and spleen was

extracted with the Blood and Tissue DNA extraction kit (Qiagen)

and used for the quantification of S. Typhimurium. Standards

were obtained by spiking homogenized mLN or spleen of

SIHUMI mice with known cell numbers of S. Typhimurium.

Evaluation of intestinal inflammation
Formalin fixed cecal and colonic sample material was embed-

ded in paraffin and sectioned at 4 mm. After staining with

haematoxylin and eosin, gut inflammation was evaluated by an

experienced pathologist in a blinded fashion. The histopathology

scores was based on the following parameters: villous atrophy and

fusion: 1 = scant (ca. 10); 2 = moderate; 3 = dense, lymphocytes:

0 = one small; 1 = some (2–4); 3 = numerous (.5) or 1 large,

necrotic epithelial cells: 1 = scant (ca. 10); 2 = moderate; 3 =

dense, PMN: 0 = none; 1 = few extravascular PMNs; 2 = many

polymorph nuclear cells (neutrophils), neutrophils: 1 = Scant (1);

2 = moderate, 3 = dense, infiltration: 0 = none; 1 = rare (,15%);

2 = moderate; 3 = abundant (.50%), desquamation: 1 = Patchy

(,30%); 2 = diffuse (. 30%), edema: 0 = none to mild (,10 of

the mucosa); 1 = moderate; 2 = severe, ulceration: 0 = no; 1 =

present, Crypt abscesses: 0 = none; 1 = rare; 2 = moderate; 3 =

abundant, Peyer patch hyperplasia: 0 = none; 1 = present and

epithelial hyperplasia: 0 = none; 1: present.

mRNA levels of pro-inflammatory cytokines from
intestinal mucosa samples

To quantify the relative mRNA expression levels of interferon

(IFN)-c, tumor necrosis factor (TNF)-a, interferon gamma-

inducible protein (IP)-10, interleukin (IL)-6, IL-12, IL-23, IL-17,

IL-18 and IL-4, RNA was extracted from intestinal mucosa

samples using the miRNeasy mini kit (Qiagen, Hilden, Germany).

One mg of RNA was reverse-transcribed to single-stranded cDNA

using the RevertAid H minus First Strand cDNA Synthesis Kit

(Fermentas, St. Leon-Roth, Germany). Reverse transcriptase real-

time (RT) PCR was performed using the Applied Biosystems 7500

Fast Real-Time PCR system (Life Technologies GmbH). The RT-

PCR reaction mix (adjusted with H2O to a total volume of 25 ml)

contained 1 ml template DNA, 12.5 ml QuantiFast SYBR Green

PCR master mix (Qiagen), 0.5 ml of the respective primers (10 mM

each). The forward and reverse primers used for IFN-c, IP-10, IL-

12, IL-17, TNF-a, IL-6, IL-23, IL-18 and IL-4 quantification were

described previously [13]. MUC2 forward (5’-GTGGCTGCG

TGCCTAGTCCT-3’) and reverse primers (5’-AGGCCGGCCC-

GAGAGTAGAC-3’) were designed using Primer BLAST (NCBI).

Relative mRNA target gene expression levels (Ratio = [(Etarget)
dCPtarget (control-sample)]/[(Eref.)

dCPref. (control-sample)]) were normalized

to the house keeping gene glyceraldehyde 3-phosphate dehydro-

genase (GAPDH) and used as a reference. Subsequently, intestinal

mucosal cytokine and MUC2 gene expression values of the

SIHUMI group were set to 1.0 and used as the calibrator to

identify the relative mRNA fold difference between the SIHUMI,

SIHUMI-A, SIHUMI-S and SIHUMI-AS groups.

Measurement of cytokines in blood plasma using ELISA
Serum levels of IFN-c, TNF-a and IL-6 concentrations were

measured in duplicate by enzyme-linked immunosorbent assay

(ELISA) using a commercially available kit (Abcam, Cambridge,

UK). The concentrations were calculated from standard curves

according to the manufacturer’s instruction. The detection limits

for the aforementioned cytokines were 46.9 pg/ml, 31.3 pg/ml

and 8.06 pg/ml, respectively.

Immunohistochemical analysis
Formalin-fixed, paraffin-embedded cecal sections (2 mm) were

incubated overnight at 4uC with a primary antibody targeting the

mouse macrophage-specific receptor F4/80 (Abcam, Cambridge,

UK) after antigen retrieval according to the manufacturer’s

instructions. Samples were washed and subsequently incubated

with Histofine (anti-rat secondary antibody fab‘ fragment from

Nichirei, Tokyo, Japan) for 30 min at RT. Immunoperoxidase

staining was performed with the diaminobenzidine substrate kit

(Sigma-Aldrich, Munich, Germany). Sections were counterstained

with haematoxylin and examined by light microscopy in a blinded

fashion. Approximately, 50 mm of cecal lamina muscularis

corresponding to approximately 30 crypts per mouse and per

section were scored. The scores represent positively stained cells in

lamina propria and sub-mucosa as follows, 0 = none (between 0

and 4), 1 = normal (between 5 and 8), 2 = moderate (between 9

and 12) and 3 = severe (between 13 and above). The scores are

shown individually for lamina propria and sub-mucosa.

Alcian blue staining of cecal tissue samples
The formalin-fixed cecal tissue was sectioned at 4 mm and

stained with alcian blue (AB) at pH-2.5, which stains acidic mucins

blue. Goblet cells were enumerated in a 50 mm stretch of the

lamina muscularis corresponding to approximately 30 crypts per

section and per mouse using an Eclipse E600 microscope

(NIKON, Germany) and inspecting the images captured with a

MV-1500 digital camera and Lucia G software version 4.51

(Laboratory imaging s.r.o.) for Windows 7 (Microsoft, Munich,

Germany) was used. To distinguish different mucins, colonic and

cecal tissue sections were stained with periodic acid Schiff (PAS)/

AB. Cecal tissue sections were additionally stained with high iron

diamine (HID)/AB at pH-2.5, which stains sulphated mucins

(sulphomucin) brown and sialylated mucins (sialomucin) blue.

Images were analyzed using an Eclipse E600 microscope and

[56,57]. Increased gene expression of IFN-c and IP-10 indicate an increased NK-cell recruitment. mLN - mesenteric lymph nodes, NK- Natural killer
cells. (q increased; Q decreased; grey dotted line: assumed processes including lectin-sialic acid binding [56], M-cells for pathogen transit [43,58,59];
black line: supported by data of the present study).
doi:10.1371/journal.pone.0074963.g009
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captured with a MV-1500 digital camera (NIKON, Düsseldorf,

Germany).

Statistical analysis
Data were tested for normal distribution using the Kolmo-

gorov–Smirnov test. Normally distributed data are presented as

means with standard error while the medians with their range are

given for non-normally distributed data. Significance of differences

between SIHUMI, SIHUMI-S, SIHUMI-A and SIHUMI-AS

mice were analyzed using the One-way analysis of variance test for

normally distributed data (or) the Kruskal-Wallis test for non-

normally distributed data, followed by either Bonferroni/Tukey or

Dunn’s comparison post-hoc tests. Differences between SIHUMI-

S and SIHUMI-AS mice were analyzed using students t-test

followed by the Mann-Whitney test for non-normally distributed

data. The correlation between IFN-c expression levels and

number of mucin filled goblet cells in the mice were analyzed by

the Pearson correlation coefficient test. Differences between the

groups were considered significant at *P , 0?05, **P,0.01,

***p,0.001. SPSS 16.0 (IBM, Munich, Germany) for Windows 7

was used for data analysis. Prism 5.0 software (Graph Pad

Software, Inc., La Jolla, CA, USA) for Windows, was used for data

presentation.

Supporting Information

Figure S1 Presence of A. muciniphila renders S.
Typhimurium the dominant species in colon of gnoto-
biotic SIHUMI mice. Colonic contents were recovered from

gnotobiotic C3H mice assigned to 4 groups, differing in their

microbial status: (A) Mice with a defined microbial community of

eight bacterial species (SIHUMI), (B) SIHUMI mice colonized

additionally with A. muciniphila (SIHUMI-A), (C) SIHUMI mice

infected with S. (SIHUMI-S) and (D) SIHUMI mice colonized

with A. muciniphila and 10 days later infected with S. Typhimurium

(SIHUMI-AS). Total DNA was extracted and bacterial cell

numbers were quantified by primers targeting the HSP60 gene

of the SIHUMI members, the 16S rRNA gene of A. muciniphila and

the ttr-region of S. Typhimurium using quantitative PCR.

Calculation of the cell numbers was based on DNA obtained

from cell suspensions containing known cell numbers of the

targeted bacterial species (see materials and methods). Reduced

proportion of SIHUMI members in SIHUMI-AS mice is

attributed to an increase in the proportion of S. Typhimurium

cells. Ten animals per group were used. The exact bacterial cell

numbers and P-values for the differences between the groups are

provided in Table S1.

(TIF)

Figure S2 Presence of both A. muciniphila and S.
Typhimurium is accompanied by increased colonic
pro-inflammatory cytokine mRNA levels. Colonic mRNA

levels of IFN-c, IP-10, TNF-a, IL-12, IL-6 and IL-17 in

gnotobiotic C3H mice were measured. mRNA was extracted

from colon mucosa of mice belonging to either one of four groups:

SIHUMI, SIHUMI-A, SIHUMI-S and SIHUMI-AS (see

Figure. 1). The mRNA was converted to cDNA for quantitative

real-time PCR measurement (see materials and methods).

Inoculation of the gnotobiotic SIHUMI mice with A. muciniphila

followed by S. Typhimurium infection (SIHUMI-AS) caused an

increase in mRNA levels of pro-inflammatory cytokines. Data are

expressed as mean6standard error. n = 6 per group. Star indicates

statistically significant differences (*P,0.05, **P,0.01,

***P,0.001). AU: Arbitrary units. (Amuc: A. muciniphila; S. Tm:

S. Typhimurium).

(TIF)

Figure S3 Presence of both A. muciniphila and S.
Typhimurium caused reduction in number of mucin
filled goblet cells in colon of SIHUMI mice. Carnoy-fixed

cecal tissue sections (4 mm) from SIHUMI, SIHUMI-A, SIHUMI-

S and SIHUMI-AS (see Figure. 1) mice were stained with periodic

acid Schiff/Alcian blue (PAS/AB) at both pH 2.5 and pH 1.0.

Images are representative of 5 mice per group. (A-i) All acidic

mucins are stained blue with AB at pH 2.5 whereas all neutral

mucins are stained magenta with PAS; (A-ii) highly sulphated

mucins are stained blue with AB at pH-1. All the images from (A-i

& A-ii) are obtained with a magnification of 1000-fold. Bars

indicate 20 mm. (B-i) colonic tissues stained with PAS/AB at

pH 2.5; (B-ii) colonic tissues stained with PAS/AB at pH 1.0

obtained with a magnification of 400-fold. Bars indicate 100 mm.

SIHUMI-AS mice display the lowest number of positively stained

colonic mucin-filled goblet cells compared to the other three

groups at any given pH. L: lumen.

(TIF)

Figure S4 Detection of A. muciniphila and S. Typhi-
murium attached to mucosa in cecal tissue section by
FISH. Thin sections (4 mm) of formalin fixed cecal tissue were

used for the detection of A. muciniphila and S. Typhimurium by

fluorescence in-situ hybridization (FISH) in gnotobiotic mice

belonging to either one of the four groups: SIHUMI, SIHUMI-A,

SIHUMI-S and SIHUMI-AS (see Figure. 1). Thin sections were

hybridized with Cy3 labeled oligonucleotide probes (see Informa-

tion S1) targeting A. muciniphila (S-S-MUC-1437-a-A-20) at 55uC
and S. Typhimurium (L-S-Sal-1713-a-A-18) at 45uC. DNA was

counterstained with 4’,6-diamidino-2-phenylindole (DAPI). (A) A.

muciniphila is in close contact to the epithelial surface in SIHUMI-A

mice. (B) S. Typhimurium cells are found mostly on the epithelial

cell surface of SIHUMI-S mice. (C) S. Typhimurium is in cecal

tissue of SIHUMI-AS mice. Magnification 10006. The scales

represent 20 mm. L: lumen.

(TIF)

Information S1 Supporting Materials and Methods.

(PDF)

Table S1 S. Typhimurium becomes the dominant species in

colon of SIHUMI mice previously associated with A. muciniphila.

(PDF)
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