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An N-channel spinless p-wave superconducting wire is known to go through a series of N topological phase
transitions upon increasing the disorder strength. Here, we show that at each of those transitions the density of
states shows a Dyson singularity v(g) o< ~!|Ing|~3, whereas v(e) o ¢/*/~! has a power-law singularity for small
energies ¢ away from the critical points. Using the concept of “superuniversality” [Gruzberg et al., Phys. Rev. B
71, 245124 (2005)], we are able to relate the exponent « to the wire’s transport properties at zero energy and,
hence, to the mean free path / and the superconducting coherence length &.
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I. INTRODUCTION

Though stable against moderate amounts of disorder,
topological phases are typically susceptible to strong disorder.
This is particularly true for topological phases in one and
two dimensions, for which strong disorder eventually leads
to a localization of all electronic states. However, there are
examples in which the effect of disorder may not be simply
the transition from the topological into a topologically trivial
localized phase, but more diverse physics appears.

The most prominent such example is the quantum Hall
effect where disorder is an essential element needed to stabilize
the topological phase and, hence, to explain the quantization of
the conductance [1]. In the context of time-reversal invariant
topological insulators, an initially topologically trivial, metal-
lic system may be driven into a nontrivial phase by disorder,
as it happens for topological Anderson insulators [2-5]. Also,
when disorder preserves certain symmetries on the average,
the disorder itself may drive a topological insulator into a new
type of topological phase [6-9]. Topological superconductors,
finally, can display thermal metal [10] or glassy phases [11] or
enter a topologically nontrivial phase upon increasing disorder
strength [12].

Anexample where disorder leads to a particularly rich phase
diagram is that of a multichannel spinless superconducting
wire. In Ref. [13], the authors, together with Adagideli, showed
that upon increasing the disorder strength such a wire goes
through a series of topological phase transitions, alternating
between states with and without a Majorana bound state at the
wire’s end [13]. For a wire with N transverse channels, there
are N such transitions, which take place at mean free path

m _ _n§
crit N + 1 2

n=12,...,N, 1

where £ is the superconducting coherence length [14].
Whereas Ref. [13] identified the location of the topological
phase transitions, it did not discuss the system’s spectral and
transport properties in the vicinity of the critical point. A
theoretical framework in which this question can be addressed
was provided by Gruzberg, Read, and Vishveshwara, [17]
who argued that there exists a “superuniversality,” according
to which all disorder-induced critical points in (quasi-)one
dimension are of the same type as the critical point in the
one-dimensional nonsuperconducting chiral class. For the
chiral class, at the critical point the density of states displays
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a Dyson singularity [18] v(e) o< ¢ !'|Ing|~3, whereas away
from the transition, a power law v(g) oc £/I=! is expected as
& — 0, where « is a dimensionless parameter that measures
the distance to the critical point. The statistics of wave
functions and transmission probabilities (in the case of a
system coupled to source and drain leads) is parametrized by
the same parameter «. The density-of-states singularity and the
associated wave function or transmission statistics occur in a
wide range of physical systems, including lattice models with
random hopping [19,20], quantum XY chains [21], narrow-
gap semiconductors [22], dimerized polymer chains [23-25],
and single-channel spinless superconductors [17,26,27]. Fol-
lowing the reasoning of Ref. [17] the same critical behavior
is expected to apply to the multichannel Majorana wire. It
remains to express the nonuniversal dimensionless parameter
« in terms of the model parameters, the mean free path /, and
the coherence length .

II. MULTICHANNEL MAJORANA WIRE

We consider a disordered spinless p-wave superconducting
wire in two dimensions, in a wire geometry with width W and
length L — oco. The Hamiltonian for such a system has the
form

2
"= [f_m +V(x,y) - u}& + Al proy + Al pyo,,  (2)

where 0 < x < L and 0 < y < W are longitudinal and trans-
verse coordinates, respectively, the matrices o, , . are Pauli
matrices in electron/hole space, p is the chemical potential,
m is the electron mass, A/ | are the p-wave superconducting
pairing terms in the longitudinal and transversal directions,
and V(x,y) is the disorder potential, which is characterized
through the elastic mean free path /. The number of channels
N is defined as the number of propagating modes at the
Fermi level in the absence of superconductivity, in particular,
N = int(2W/Ag), where Ap is the Fermi wavelength. The
model (2) is an effective low-energy description of a system in
which the superconducting correlations come from proximity
coupling to a nearby s-wave spinfull superconductor [28-33],
so that no self-consistency condition for A, and A/, needs
to be accounted for. The Hamiltonian H of Eq. (2) has no
other symmetries than particle-hole symmetry, implying that
the system is in symmetry class “D” according to the Cartan
classification [34-36].
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For thin wires W « &, with the superconducting coherence
length & = h/mA], the term A|p,o, only has a small
effect on the wave functions and the spectrum and can be
treated in perturbation theory. Without it, H obeys the chiral
symmetry o, Ho, = —H [37,38]. In the Cartan classification
this corresponds to symmetry class “BDI.” Since the presence
of the chiral symmetry significantly simplifies the calculation
of the Majorana end states, Ref. [13] first analyzes the
model (2) without the term A/ p,o,. Here we take the same
approach. )

In the absence of disorder, and without the term A’ p, oy,
there are N Majorana bound states at each end of the wire, with
a wave function that decays exponentially with decay length
& upon moving away from the wire’s end. With disorder, but
still in symmetry class “BDI,” a suitable basis of transverse
channels can be chosen, such that the wave-function envelope
of the nth Majorana state at the wire’s left end decays as [13]

w(") (.X) o e—x/é-ﬁ-xn/(N-H)l

L/R n=1,2,...,N, (3)

where [ is the mean free path for scattering from the disorder
potential V. At the critical disorder strengths léﬁ)t the wave
function of the nth Majorana end state becomes delocalized,
indicating a (topological) phase transition. At the phase
transition, the nth Majorana end states at the two ends of the
wire hybridize and annihilate. Increasing the disorder strength
therefore leads to a series of NV topological phase transitions in
which the N Majorana bound states at the wire’s end disappear
one by one until the system reaches the topologically trivial
state without Majorana end states.

The effect of including the term Al pyo, is that Majorana
end states at the same end of the wire can annihilate pairwise.
Hence, one Majorana end state remains if the number of
Majorana end states before including A p,o, was odd, and
no Majorana end state remains if the number of Majorana
end states was even. Thus, for the full Hamiltonian (2),
the number of Majorana end states alternates between zero
and one upon increasing the disorder strength, with the
transitions approximately (with corrections that vanish in the
limit W/& — 0) taking place at the critical disorder strengths
specified in Eq. (1).

In Ref. [13] this conclusion was reached by attaching source
and drain leads to the Majorana wire with Hamiltonian (2) and
formally mapping the scattering matrix of this problem to
that of the disordered wire in the normal state (at a slightly
renormalized chemical potential). In this mapping, the total
quasiparticle conductance T of the Majorana wire in the limit
L > &, Nl canbe easily expressed in terms of the transmission
eigenvalues 1, of the disordered wire in the normal state

L& et
7= 2 [ et

n=1

“

The probability distribution of the transmission eigenvalues 1,
for large L and weak disorder is known in the literature [39],

2nL 4L

-, logty=——. (5
EEY var log 1, R &)

(log7,) =

For a mean free path / near the critical value léfi)t =n&/(N +

1), the quasiparticle transmission is dominated by the nth
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transmission eigenvalue 7,,. Using the parametrization

T = l/coshzz, (6)
one finds
(z) = (ﬁ — £>£ varz = # @)
& &)1 (N + 1l

Indeed, at the critical disorder strength (and at the critical
disorder strength only) quasiparticle wave functions are
delocalized throughout the sample [40].

The mapping between the scattering matrices of the
disordered wire with and without superconductivity that was
used in Ref. [13] exists for zero energy only. For that reason,
Ref. [13] could not access the density of states v(g) of the
multichannel Majorana wire in the vicinity of the critical
points. We now show how the density of states can be obtained
from the transmission statistics of Egs. (6) and (7) using the
“superuniversality” argument of Ref. [17].

III. MAPPING TO ONE-DIMENSIONAL MODEL WITH
CHIRAL SYMMETRY

According to the “superuniversality” argument of Gruzberg
et al. [17], the quasiparticle transmission distribution 7" and
the density of states v(e) in the vicinity of the critical point
should be the same as that of a one-dimensional disordered
wire in the chiral symmetry class. (In this respect, the three
chiral classes BDI, AIll, and CII are interchangeable.) Such
systems have been analyzed abundantly in the literature (see,
e.g.,Refs. [15,19,20,41-44]), and we here summarize the main
results of relevance to the present problem.

A prototype of the disordered wire with chiral symmetry in
one dimension is described by the Hamiltonian [41]

Hhiral = —VEpo; + w(X)0oy, (8)

where v is the Fermi velocity and w is a random potential
with mean (w(x)) = (hvpa)/(2]) and variance (w(x)w(x")) =
(hzv% /Dé(x — x’)._ The parameter o measures the distance to
the critical point; / is the mean free path in this system. In the
vicinity of the critical point, the transmission 7 = 1/ cosh? z of
such a disordered one-dimensional wire of length L, coupled
to ideal source and drain leads has a distribution given by

(2) L L (€))

=0—=, varz = —.

ST T
The density of states v(e) has a singularity at zero energy,
which is best described through the integrated density of states

N(e) = / V(). (10)
0

Extending the zero-« calculation of Ref. [44] to the case of
nonzero «, we find the integrated density of states (see the
Appendix for details)

L

N(e) = — __
©) = Ko pQico/FDP

an

where K, (x) is the Bessel function of the second kind. For
a =0 Eq. (11) reproduces the Dyson singularity v(e) o
1/[e In’(svp /Rl)], whereas for nonzero o one has the asymp-
totic dependence v(g) o |¢|'*I=!. Near the critical point & = 0

205404-2



DENSITY OF STATES AT DISORDER-INDUCED PHASE ...

08l

0.6

0.4+

"o, Ine

O‘.6 6.8 1
E/(N+1)1

FIG. 1. (Color online) Dimensionless distance to the critical
point as a function of the ratio £/1 of superconducting coherence
length and mean free path. The red dots show the exponent « obtained
by fitting the numerically computed integrated density of states to
the functional form in Eq. (11) for a single-channel wire (top) and
a three-channel wire (bottom). The dashed curve is the exponent
expected from the mapping onto a single channel hopping model [see
Eq. (13)]. Inset: Example of a fit of the integrated density of states
normalized by the wire length as a function of energy. The squares
show the numerically obtained data and the continuous curve is the
analytical result, Eq. (11), using the value & = 0.0906 obtained from
the fitting procedure. The value of / can be obtained directly from the
model parameters and need not be fitted [see Eqs. (12) and (15)].

Eq. (11) is to be preferred over the asymptotic power-law

dependence, because it applies to a much wider range of

energies than the simple asymptotic power law v(g) o< ||~
Comparing Eqgs. (7) and (9), one immediately identifies

2N+ D)
&

as the dimensionless distance to the nth critical point for the
disordered multichannel Majorana wire, and the equivalent
mean free path in the model (8), respectively. The density of
states and transmission statistics are governed by the distance
to the closest critical point,

On

(1% —1), T=(N+1I,  (12)

ol = min fa . (13)

IV. NUMERICS

We now compare our predictions to numerical simulations
of a disordered multichannel Majorana wire. For technical
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FIG. 2. (Color online) Dimensionless distance « to the critical
point for the model (2) with A’ = A/ and N = 2 transverse channels.
The dashed line is the analytical prediction (13). The continuous line
is the analytical prediction, Eq. (12), corrected for the slight shift
of the critical disorder strength at the second phase transition by

inserting the value of lg'i)l observed in the numerics.

reasons, we first present numerical calculations for a slight
variation of the model (2), in which the Majorana wire is
represented by N coupled one-dimensional channels with
Hamiltonian

h2
H,, = 8mn|:<__8f — M)UZ - iA;axO'x] + upmn(x)0,

2m
(14)
with a disorder term u,,,(x) that has zero mean and variance
, (hvg)? ,
(uij(ug(x")) = mfs(x — x)(6ikbj1 + 8ibji), (15)

I being the mean free path. The technical advantage of Eq. (14)
is that the normal-state distribution (5) of the transmission
eigenvalues also holds up to moderately strong disorder
strengths, so that numerical calculations can be performed for
(comparatively) smaller system sizes. The Hamiltonian (14)
anticommutes with o, i.e., it is in symmetry class BDI.

In order to determine the density of states, we couple one
end of the N-channel wire to an ideal lead, keeping the other
end closed. Following the method of Ref. [45] we calculate
the wire’s scattering matrix S(e, L) as a function of the length
L of the disordered wire. The integrated density of states N(g)
can be obtained by numerically integrating the relation

dN(¢e) 1 I d logdet S(e)

L 2x¢ oL

The integrated density of states obtained this way can be
fitted to the functional form (11), which allows us to obtain
the dimensionless parameter « as a function of the disorder
strength. Results for Majorana wires with N =1 and N =3
are shown in Fig. 1. The agreement is excellent and holds
throughout the entire range of disorder strengths, including
points far away from the critical disorder strengths.

We have also performed numerical calculations for the two-
dimensional Hamiltonian (2) in a strip geometry. We choose
the two pairing terms A} and A} to be equal. Since such a
system is no longer in class BDI, we expect slight deviations
in the quantitative estimates of the critical disorder strength and

(16)
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the dimensionless distance to the critical point. The numerical
results for a wire with N = 2 indeed show a slight deviation
of the critical disorder strength at the second phase transition,
although, within the accuracy of our numerical calculations,
no deviation for the dimensionless distance « can be discerned
(see Fig. 2).

V. CONCLUSIONS

We have investigated the density of states of a multichannel
spinless superconducting wire, as it goes through a series
of disorder-driven topological phase transitions. Using the
concept of “superuniversality” of Gruzberg et al. [17], we
could establish a relation between the known quasiparticle
transmission statistics at zero energy and the singular contri-
bution to the density of states at finite energies. A comparison
with a numerical solution of the problem is in excellent
agreement with these analytical results. Our results are a
powerful demonstration of the concept of superuniversality,
showing that in one dimension, as well as in quasi-one-
dimension, the scaling relations for the density of states remain
valid across boundaries between symmetry classes.
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APPENDIX: DENSITY OF STATES IN
THE CHIRAL MODEL

To the best of our knowledge, Eq. (11) is not known in
the literature, although it can be derived rather quickly by
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adapting existing calculations of the density of states in a
wire with chiral symmetry at the critical point « = 0. Here
we take Ref. [44] as our starting point, where the density of
states was calculated from the stationary distribution P(x)
of the reflection eigenvalue R = tanh?(x) of a wire with
Hamiltonian (8), evaluated at the imaginary energy ¢ = —iw,
w > 0, and in the limit of a large wire length L. In Ref. [44]
this distribution is found as the stationary solution of the
Fokker-Planck equation

0Px) _ i[ﬁ sinh 2x + iJiJ_I}P(x) (A1)

L dx | vr 217 dx ’

where J is a Jacobian which, for the case of a one-dimensional
wire with chiral symmetry takes the value J = 1 at the critical
point ¢ = 0. Solving Eq. (A1) gives the stationary solution

1
P(.x) — |J|e—¢l COShZX’
Z(a)
with a = wl/hvg and Z(a) a normalization factor. The key
result of Ref. [44] is a general relation between the integrated
density of states N(¢) and this normalization factor,

(A2)

L 3
N(e)= —Im [a% In Z(a)i| (A3)

[

a——ile/hvp

The calculation of Ref. [44] is easily generalized to the
case o # 0: Nonzero « gives rise to a constant drift term
in the Fokker-Planck equation (A1) [15] or, equivalently, an

exponential factor in the Jacobian J,
J =e % (A4)

The stationary solution and the integrated density of states are
then obtained in the same way as described above. One finds

Z(a) = Kop(a), (A5)

from which the result (11) follows directly.
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