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Abstract—This paper is concerned with the analysis of labeled Thomas networks using discrete time series. It focuses on refining the

given edge labels and on assessing the data quality. The results are aimed at being exploitable for experimental design and include the

prediction of new activatory or inhibitory effects of given interactions and yet unobserved oscillations of specific components in

between specific sampling intervals. On the formal side, we generalize the concept of edge labels and introduce a discrete time series

interpretation. This interpretation features two original concepts: 1) Incomplete measurements are admissible, and 2) it allows

qualitative assumptions about the changes in gene expression by means of monotonicity. On the computational side, we provide a

Python script, erda.py, that automates the suggested workflow by model checking and constraint satisfaction. We illustrate the

workflow by investigating the yeast network IRMA.

Index Terms—Time series analysis, model checking, temporal logic, biology and genetics, constraint satisfaction.
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1 INTRODUCTION

IN molecular biology, a regulatory network is a description
of interactions between components. By assigning activity

levels to the components and allowing interacting compo-
nents to influence their activities depending on parameter
values, such networks can be used to describe the system’s
dynamics in a state space. Since a full set of kinetic
parameters is often not available, discrete modeling frame-
works with finite parameter space have been suggested as
an alternative to systems of differential equations.

Formal methods can help in determining suitable values
for discrete parameters, translating available data into
constraints on the set of all possible parameter choices, see
e.g., Batt et al. [2] or Corblin et al. [8]. In this paper, we
employ similar ideas to test assumptions about component
interplay for consistency. In case of inconsistencies, new
hypotheses are systematically derived that then can be
investigated experimentally. We focus in particular on
exploiting discrete time series data. Our method is specifi-
cally tailored to be able to cope with incomplete measure-
ments resulting from experimental difficulties or low data
quality. In further contrast to related work, we additionally
use our method to evaluate the given experimental data by
analyzing time series for potential ranges of poor sampling,
making use of the notion of monotone transitions.

The paper is organized as follows: In Section 2 we recall
the logical framework for regulatory networks and
temporal logic. In Section 3 we introduce the notion of
discrete time series as an ordered sequence of partial states.
Section 4 elaborates a method of incorporating specific

assumptions about monotonicity in between partial states.
These are related to potential unobserved oscillations and
can be used to evaluate the sufficiency of the provided
data. In Section 5 we suggest a modeling workflow
utilizing our method, assessing the modeling assumptions
as well as the quality of a given time series in terms of
its temporal resolution. Scalability and computational
issues are discussed in Section 6. Here, we also introduce
a constraint satisfaction preprocessing to model checking
and discuss efficiency. Section 7 is a description of the
available Python script that automates the workflow. We
illustrate the procedure using an application example in
Section 8, and conclude the paper discussing perspectives
and future work. This paper is an extended version of the
conference paper [13].

2 PRELIMINARIES

This section formally introduces the concepts needed for our
method. These are based on the mathematical framework of
Thomas presented in [19]. Throughout, discrete intervals will
be denoted by

½a; b� :¼ fk 2 IN j a � k � bg; for a; b 2 IN:

The in- and out-degrees of a vertex of a graph are denoted by
d�ðvÞ and dþðvÞ, and its pre- and successor sets by V�ðvÞ and
VþðvÞ, respectively.

2.1 Regulatory Networks

The discrete framework for modeling regulatory systems as
introduced by Thomas in [19] consists of an edge-labeled
digraph called regulatory network and a set of integer
parameters.

Definition 2.1 (Regulatory Network). A regulatory network
G ¼ ðV ;E; tÞ is a directed graph with vertices V :¼ ½1; n� for
some fixed n 2 IN, edges E � V � V , maximal activity levels

p : V ! ½0;maxð1; dþðvÞÞ�;
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and a function

t : E ! IN; with tðu; vÞ 2 ½0; pðuÞ�;

that assigns thresholds to the edges e 2 E. Nodes are called

components and edges are called interactions. For a component

v 2 V , a predecessor w 2 V�ðvÞ is called a regulator of v, and

a subset of regulators R � V�ðvÞ is called a regulatory context

of v.

The vertices of the graph can be interpreted as variables

taking values in the respective activity level interval ½0; pðvÞ�.
In the simplest case all variables are boolean. The edge labels

are integers that represent thresholds above which regulatory

interactions become effective.

Definition 2.2 (Parameter Set). Given a regulatory network

ðV ;E; tÞ, a parameter setK ¼ fKv j v 2 V g is a set of functions

Kv : 2V�ðvÞ ! ½0; pðvÞ�:

Kv is also called v-parameter subset of K.

The network and parameter set in Fig. 1 will serve as a

running example throughout the paper. Here, we choose the

maximal activity levels pðvÞ ¼ dþðvÞ for all vertices. Any

collection of parameter sets of a regulatory network is called a

parameter pool. In particular, we define:

Definition 2.3 (Parameter Space). The collection of all

parameter sets of a regulatory network ðV ;E; tÞ is denoted by

KðV ;E; tÞ :¼ fK j K is a parameter set of ðV ;E; tÞg;

and called the parameter space of ðV ;E; tÞ.

The number of sets in the parameter space depends on

the maximal activity levels of the network components and

their in-degrees:

jKðV ;E; tÞj ¼
Y
v2V
ðpðvÞ þ 1Þ2

d�ðvÞ
:

The size of the parameter space of our running example is

jKðV ;E; tÞj ¼ 44 � 24 � 22 ¼ 16;384.
The dynamics of a regulatory network ðV ;E; tÞ with

parameters K is represented by a directed graph, called the

state transition graph. It can be thought of as the discrete

analogue to all possible trajectories in the phase space of an

ODE model. The nodes of this graph represent the discrete

states of the system.

Definition 2.4 (State Space). Given a regulatory network

ðV ;E; tÞ, the state space X is given by

X ¼
Y
v2V
½0; pðvÞ�:

To define the transitions between states it is convenient to
turn the parameter set K into a function F on the state space
X, where

F : X ! X; x 7! F ðxÞ ¼ ðf1ðxÞ; . . . ; fnðxÞÞ:

The image of x under component function fv is defined to
be a particular parameter KvðRÞ. To choose this parameter
we define the present regulators of v in a state x.

Definition 2.5 (Present Regulators). Given a regulatory
network ðV ;E; tÞ with parameters K and its associated state
space X, the present regulators RvðxÞ of a component v 2 V in
state x 2 X are

RvðxÞ :¼ fw 2 V j ðw; vÞ 2 E ^ xw � tðw; vÞg:

The present regulators of v in statex are componentsw that
regulate v and whose activity level in state x is above the
threshold tðw; vÞ. This definition is the one given by Chaouiya
et al. in [6]. With this notation the image of x under F is now
defined to be

F ðxÞ :¼ ðK1ðR1ðxÞÞ; . . . ; KnðRnðxÞÞÞ:

The present regulators of the components of the running
example in state x ¼ ð1; 1; 0Þ are R1ðxÞ ¼ f2g, R2ðxÞ ¼ ;, and
R3ðxÞ ¼ f1g. Thus, F ðxÞ ¼ ð2; 0; 1Þ according to the table
given in Fig. 1.

There are several strategies for obtaining transitions using
F . Most common are synchronous, asynchronous, or
priority strategies. The method described in this paper is
designed to work with unitary asynchronous transition
rules. A simple notation for the transitions of the unitary
asynchronous state transition graph is achieved with the
tendencies f 0v of the component functions fv of
F ¼ ðf1; . . . ; fnÞ, as suggested by Richard in [17].

Definition 2.6 (Tendencies). The tendency f 0 of a component
function fv : X ! IN is defined to be

f 0vðxÞ ¼
1 : fvðxÞ � xv > 0
0 : fvðxÞ � xv ¼ 0
�1 : fvðxÞ � xv < 0:

8<
:

The tendency of component 2 in state ð0; 1; 0Þ of the
example parameter set is f 02ð0; 1; 0Þ ¼ �1.

Definition 2.7 (State Transition Graph). Given a regulatory
network ðV ;E; tÞ with parameter set K, the (unitary)
asynchronous state transition graph is a directed graph
ðX;T Þ, where the nodes X are the elements of the state space
associated with the regulatory network and the edges T are
transitions between states. We have ðx; yÞ 2 T iff either y ¼
x ¼ F ðxÞ or

9v : f 0vðxÞ 6¼ 0 ^ y ¼ xþ evf 0vðxvÞ;

where ev is the vth unit vector.

The behavior represented in such a state transition graph
is nondeterministic. In a given state x there may be several
v 2 V with f 0vðxÞ 6¼ 0, and therefore several y with ðx; yÞ 2 T .
An example of this construction is given in Fig. 2.
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Fig. 1. Example network and parameter set.



2.2 Edge Constraints

Now we consider information about the interaction type in
the form of edge constraints. For example, interactions may
be characterized as activating or inhibiting. Formally, edge
constraints are additional edge labels that constrain the pool
of feasible parameter sets for a regulatory network. Defini-
tions for such edge constraints exist and are based on the
observability or monotonicity of an interaction sign, usually
either aþ or a�. We use a more extensive set of edge
constraints to allow for a more precise characterization of
individual interactions. Similar ideas can be found in [8].

The more general form of edge constraint is based on the
observation that for a parameter set K, we can note for each
interaction ðw; vÞ if there is a regulatory context R � V�ðvÞ
such that adding w to R increases or decreases the value of
K (as in [3]).

Definition 2.8 (Increase and Decrease). Given a v-parameter
subset Kv of a regulatory network ðV ;E; tÞ, we define the
boolean propositions þ and � on the set of edges ðw; vÞ 2 E by

þðw; vÞ :¼ 9R � V�ðvÞ : KvðRÞ < KvðR [ fwgÞ
�ðw; vÞ :¼ 9R � V�ðvÞ : KvðRÞ > KvðR [ fwgÞ:

It has been remarked by Richard in the context of
deriving global interaction graphs from dynamics (see
[17]) that such a comparison of parameter values with and
without a regulator w is too weak to guarantee an effect
observable in the state transition graph. For stronger results,
a slightly more technical definition of increase and decrease
could be introduced here. For boolean networks and for
components vwithout self-regulation, i.e., ðv; vÞ 62 E, the two
definitions coincide.

For the parameter set of the running example, the values
of þ and � for each edge are the following:

þð1; 1Þ ¼ 1; þð3; 2Þ ¼ 1; þð1; 3Þ ¼ 1;
þð2; 1Þ ¼ 1; þð1; 2Þ ¼ 1; �ð1; 3Þ ¼ 0;
�ð1; 1Þ ¼ 1; �ð3; 2Þ ¼ 0;
�ð2; 1Þ ¼ 1; �ð1; 2Þ ¼ 0:

Instead of : þ and : � we write þ and �. Simple logical
expressions of these propositions are used to select parameter
sets, by defining the following constraints:

Definition 2.9 (Edge Constraints). A labeling function

s : E0 � E ! fþ;þ;�;�;þ ^ �;þ _�;þ ^�;þ ^�g;

on a subset E0 � E of the edge set of a regulatory network
ðV ;E; tÞ is called edge constraint. A parameter set K satisfies
the edge constraint s, if sðw; vÞ is true for all ðw; vÞ 2 E0. In
particular KðV ;E; t; sÞ denotes all K 2 KðV ;E; tÞ that satisfy
the edge constraint s.

If an edge is not labeled by s, then no constraints are placed
on the respective parameter values. The different labels can
be interpreted as follows:þ and� signify that an activating or
inhibiting effect has been experimentally observed. It is not
precluded that the respective opposite effect may also occur,
depending on specific cofactors. In contrast,þ ^� andþ ^�
are used if the target is strictly activated or inhibited.þ and�
allow for the possibility that there is no interaction at all, but if
so it is not activating, respectively, inhibiting. If the character
of an interaction is not known or questionable but some effect
is assumed, e.g., based on binding site properties, þ _ � is
used. Finally, þ ^ � applies when the target is activated in
some context and inhibited in another, reflecting the
importance of cofactors. In a drawing of a regulatory
network, we place edge constraints on top of the correspond-
ing edges, as in Fig. 3.

Other logical combinations or types of edge constraints
could be considered, for example, labeling the components
by max or min:

maxðvÞ :¼ 9R � V�ðvÞ : KvðRÞ ¼ dþðvÞ ;
minðvÞ :¼ 9R � V�ðvÞ : KvðRÞ ¼ 0 :

However, the increase and decrease edge constraints already
allow for a detailed description of interactions and suffice to
illustrate the underlying method.

2.3 Model Checking

In this section, model checking is introduced as a means to
analyze the state transition graph associated with a
regulatory network. This has been proposed by various
groups, see e.g., [3], [5], [8], [11], [15]. A Kripke structure or
transition system is a state transition graph together with a
labeling function that assigns atomic formulas to each node
of the graph, which are defined to be true in this node.
Computation Tree Logic (CTL) is a language that extends
boolean propositions by temporal operators (see [12]).
Boolean propositions can be evaluated at a node and so
can CTL formulas. But, the temporal operators allow
making statements about atoms that belong to other states,
if there is a directed path in the transition graph from the
first to the latter. Symbolic model checking is a fast method
for finding the states in which a given CTL formula is true.
We now will shortly review how to label the states of a
transition graph, define the syntax of CTL and describe the
semantics of CTL formulas.

A state transition graph ðX;T Þ can naturally be interpreted
as a Kripke structure. Each state x ¼ ðx1; . . . ; xnÞ has n labels
of the form vi ¼: xi. Here, we write ¼: to distinguish syntactic
from semantic equality. This labeling is extended to make the
formula constructions in Section 4 possible.
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Fig. 2. The state transition graph of the example parameter set.
Fig. 3. Edge constraints, for example network, which lead to

jKðV ;E; t; sÞj ¼ 432.



Definition 2.10 (State Transition System). Given a state

transition graph ðX;T Þ with variables V :¼ fvi j i 2 ½1; n�g,
the set of atomic formulas consists of equalities

P :¼
X

1�i�n
kivi ¼: k j vi 2 V ; k 2 ½�N;N�; ki 2 f�1; 0; 1g

( )
;

where N :¼
P

v2V pðvÞ. Then, ðX;T; LÞ, with L : X ! 2P

and

LðxÞ ¼
X

1�i�n
kivi ¼: k j ki 2 f�1; 0; 1g; k ¼

X
1�i�n

kixi

( )
;

is the Kripke structure associated with the state transition

graph ðX;T Þ.

A label
P

1�i�n kivi ¼
:
k captures simple expressions in the

variables vi that are true in state x. Model checking software
like NuSMV (see [7]) can handle such expressions. The
numberN is included in the definition to emphasize that each
node is only labeled with finitely many atoms. Here, are a few
atoms of the state x ¼ ð0; 2; 11Þ: v1 ¼: 0, v1 þ v2 ¼: 2, �v1 �
v2 þ v3 ¼: 9.

The following definition of the syntax of CTL formulas is

restricted to the temporal operators EF and E½ U � that are

needed for the method described here.

Definition 2.11 (Syntax of CTL Fragment). A CTL formula �

is defined inductively using the Backus Naur form. Let p be an

element of the set of atomic formulas P. Then,

� ::¼ p j � ^ � j EF� j E½�U��:

Definition 2.12 (Semantics of CTL). Given a Kripke structure

ðX;T; LÞ, a state x 2 X and a CTL formula �, the following

rules determine whether � is true in x:

. An atomic formula p 2 P is true in x, if p is a label of
x, i.e., p 2 LðxÞ.

. � ^ �0 is true in x, if � is true in x and �0 is true in x.

. EF� is true in x, if � is true in x or if there is a path
ðx; x1; . . . ; xnÞ in ðX;T Þwithn � 1 and � is true in xn.

. E½� U �0� is true inx, if�0 is true inx or if there is a path
ðx; x1; . . . ; xnÞ in ðX;T Þwith n � 1 such that � is true
in x and xi for 1 � i � n� 1 and �0 is true in xn.

In the following sections, CTL formulas will be used to

select parameter sets from given parameter pools. The

selection is based on the existence of a state satisfying the

formula.

Definition 2.13 (�-Acceptable Parameter Sets). Given a CTL

formula �, the collection of parameter sets of a regulatory

network ðV ;E; tÞ whose associated transition system contains

a state in which � is true is denoted by

KðV ;E; t; �Þ :¼ fK 2 KðV ;E; tÞ j 9x 2 X : � is true in xg:

Sometimes a transition system is said to satisfy a CTL

formula �, if � is true in all states. Since we want to query the

existence of paths starting in some state of the graph, the

above definition is used.

3 DISCRETE TIME SERIES

A discrete time series for a regulatory network can be
obtained by discretizing real-valued experimental data or by
qualitative observations about regulatory components. The
issue of choosing a suitable discretization method for
experimental data is crucial (see, e.g., [10]), but is not the
subject of this paper. Under the assumption that the
regulation behaves switch like regarding the regulator
concentration, one ideally has to estimate the threshold
below which the regulator is not effective and above which it
becomes effective.

If estimation is not possible, statistical approaches can be
used, for example, mean clustering, scan-statistic, or edge
gradient methods as described by Shmulevich and Zhang in
[18]. There is also a software implementation for the GNU
project R called BoolNet by Müssel et al. [16] which
automates such discretization. BoolNet will be used in
Section 8 to discretize the expression data of the IRMA
network [4].

Including qualitative observations in the time series is a
strength of discrete modeling as it may be hard to translate
such assumptions into quantitative data required for con-
tinuous models.

Mathematically, a discrete time series is a matrix where
rows are measurements and columns are observations for
one component. Data points with questionable discretization
results for certain components or observations known to be
imprecise may be recorded as uncertain by the sign ? . In
practice, this has the advantage of deriving results based on
varying levels of certainty.

Definition 3.1 (Time series). A discrete time series with m

measurements of n substances is a matrix A 2 Nm�n, where
the entries of A are elements of N :¼ IN [ f?g and

additionally 8i 2 ½1;m� : 9j 2 ½1; n� : ai;j 6¼? .

The condition ensures that measurements without sup-
portable entries are not included in the time series. It should
also be remarked that throughout we are using matrices
merely as a means to presenting data and do not perform any
algebraic manipulation on them.

As a discrete time series for the running example,
including four measurements and three imprecise observa-
tions, we choose

A ¼

0 1 0
2 ? 1
? 1 0
3 0 ?

0
BB@

1
CCA:

A time series will be interpreted as encoding discrete paths.
To define these paths, the partial state formulas, one for each
measurement, are derived. The definition uses the set of
indices whose variables are not equal to �1. Thus, uncertain
variables will be excluded from the description of the paths.

Definition 3.2 (Partial states). Given a time series A 2 Nm�n,

the partial state formula of measurement i 2 ½1;m� is

�i :¼
^
j2Mi

ðvj ¼
:
ai;jÞ; where
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Mi :¼ fj 2 ½1; n� j ai;j 6¼?g:

A partial state formula may be true in a set of states,
depending on how many variables are uncertain. The paths
encoded in a time series are then all paths that connect the
partial states in the given order. A state transition graph that
contains at least one such path is said to be able to reproduce
the time series.

Definition 3.3 (Reproducing a Time Series). A state
transition graph ðX;T Þ can reproduce a time seriesA ¼ ðai;jÞ 2
Nm�n if there is a path ðx1; . . . ; xkÞ in ðX;T Þ such that the index
sequence ð1; . . . ; kÞ has a subsequence ðr1; . . . ; rmÞ satisfying for
each 1 � i � m that �i is true in xri .

We say a parameter set can reproduce a time series, if this
holds for the corresponding state transition graph.

The sequence of states ðx1; . . . ; xkÞ can be thought of as a
simulation of the regulatory network from the initial state
x1. An intuitive CTL formula can be used to check if a
parameter set can reproduce a time series. Such a formula is
a nested sequence of partial state formulas connected via the
predicates EF:

�1 ^EF½�2 ^EF½. . .�m�1 ^EF½�m� . . .��:

Since a time series is a linear sequence of states, an equivalent
LTL encoding is possible. The same is true for the construc-
tion in the next section. This may be computationally
exploited by using LTL model checkers, or even colored
LTL model checking as suggested by Barnat et al. [1].

4 THE MONOTONE PATH FORMULAS

In this section, the paths encoded in a time series are
characterized with regard to monotonicity in between
successive measurements. The motivation for this is to take
into account assumptions about the ratio of time elapsed
between measurements on the one hand, and rates of
change of components on the other. Intuitively, if for a
substance the time elapsed between successive measure-
ments is small compared to its rate of change, then we
would expect its concentration to change monotonously, i.e.,
without oscillations.

To encode these ratios for each variable and at each
measurement, we define a matrix to specify exactly which
parts of the path should be monotone.

Definition 4.1 (Monotonicity Matrix). Given a discrete time
series A 2 Nm�n, a monotonicity matrix of A is any matrix
B ¼ ðbi;jÞ 2 f0; 1gm�1�n such that

8i; j : bi;j ¼ 1 ¼) ðai;j 6¼? ^ aiþ1;j 6¼?Þ:

We say that variable j is specified to be monotone at
measurement i, iff bi;j ¼ 1.

A time series and a monotonicity matrix define the
following partially monotone paths. For technical reasons
regarding the CTL construction in Definition 4.5, we require
that the path begins in a state representing the first and ends
in one representing the last measurement.

Definition 4.2 (A-B-Monotone Paths). Given a discrete time
series A 2 Nm�n together with a monotonicity matrix B, and
a state transition graph ðX;T Þ, a path ðx1; . . . ; xrÞ in ðX;T Þ
is A-B-monotone, if there is a subsequence ðr1; . . . ; rmÞ of

ð1; . . . ; rÞ with r1 ¼ 1; rm ¼ r such that the following two
properties hold. First

ai;j 6¼? ¼) xrij ¼ ai;j:

Second, for the variables j specified to be monotone at
measurement i

8t 2 ½ri; riþ1 � 1� :
xtj � xtþ1

j : ifxrij � x
riþ1

j

xtj � xtþ1
j : ifxrij > xriþ1

j :

(

A monotonicity matrix for the example time series A is

B ¼
1 0 1
0 0 1
0 0 0

0
@

1
A;

and an example of an A-B-monotone path is

ðð0; 1; 0Þ; ð1; 1; 0Þ; ð1; 1; 1Þ; ð2; 1; 1Þ; ð2; 1; 0Þ; ð3; 1; 0Þ; ð3; 0; 0ÞÞ:

Again, a CTL formula is constructed to check the existence
of anA-B-monotone path in a transition system. This formula
is specifically designed for asynchronous transition graphs. It
exploits the observation that for each couple of successive
measurements, there is an expression

P
kivi in the marked

monotone variables vi that is increasing along any A-B-
monotone path. To determine this expression we need to
consider the variables that increase and decrease separately.

Definition 4.3 (Index Sets). Given a discrete time series A 2
Nm�n and a monotonicity matrix B 2 f0; 1gm�1�n, we define
for each i 2 ½1;m� 1� the index sets Mþ

i and M�
i of

increasing and decreasing variables, respectively:

Mþ
i :¼ fj 2 ½1; n� j bi;j ¼ 1 ^ ai;j � aiþ1;jg;

M�
i :¼ fj 2 ½1; n� j bi;j ¼ 1 ^ ai;j > aiþ1;jg:

Now we can construct the increasing expression men-
tioned before, define its initial value and by how much it has
to increase in between measurements.

Definition 4.4 (Increasing Expression). The increasing

expression Vi ¼ Viðv1; . . . ; vnÞ, the initial value Ci and the
distance di for i 2 ½1;m� 1� are defined to be

Vi :¼
X
j2Mþ

i

vj þ
X
j2M�

i

ðai;j � vjÞ;

Ci :¼
X
j2Mþi

ai;j;

di :¼
X

j2Mþi [M�i

jai;j � aiþ1;jj:

In a state satisfying the partial state formula �i, the atomic
formula Vi ¼: Ci is true. The following A-B-monotone path
formula asserts that Vi ¼: Ci increases one by one until
Vi ¼: Ci þ di and �iþ1 are true. To deal with the nested
structure of the formula, it is defined recursively.

Definition 4.5 (A-B-Monotone Path Formula). The A-B-
monotone path formula �A;B for a time series A 2 Nm�n and
monotonicity matrix B is constructed recursively using the
formulas �i; i 2 ½1;m�. Let

�1 :¼ �m;
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and for i 2 ½1;m� 1�

�iþ1 :¼ �m�i ^EF½�i� if Mþ
m�i [M�

m�i ¼ ;
�m�i ^ �m�idm�iþ1 if Mþ

m�i [M�
m�i 6¼ ;:

�

Here

�m�i1 :¼ E½ðVm�i ¼
:
Cm�i þ dm�iÞ U�i�;

and if dm�i � 1 then

�m�itþ1 :¼ E½ðVm�i ¼: Cm�i þ dm�i � tÞ U �m�it �;

for t 2 ½1; dm�i�. Finally, define �A;B :¼ �m.

From the above definition, a pseudocode algorithm for

the construction of an A-B-monotone path formula is

derived:

�1 :¼ �m
for i ¼ 1 to m� 1 do

if Mþ
m�i [M�

m�i ¼ ; then

�iþ1 :¼ �m�i ^EF½�i�
else

�m�i1 :¼ E½ðVm�i ¼: Cm�i þ dm�iÞU�i�
if dm�i � 1 then

for t ¼ 1 to dm�i do

�m�itþ1 :¼ E½ðVm�i ¼: Cm�i þ dm�i � tÞU �m�it �
end for

end if

�iþ1 :¼ �m�i ^ �m�idm�iþ1

end if

end for

Next we show that this formula characterizes the existence

of an A-B-monotone path.

Theorem 4.6 (Correctness). Given an asynchronous state

transition graph ðX;T Þ, its associated state transition system

ðX;T; LÞ, and a discrete time series A 2 Nm�n together with a

monotonicity matrixB 2 f0; 1gm�1�n, theA-B-monotone path

formula is true in ðX;T; LÞ if and only if there is an A-B-

monotone path in ðX;T Þ.
Proof. By the recursive structure of �m it is sufficient to

consider a matrix A with just two rows. For further

simplicity assume there are only increasing variables

ðM�
1 ¼ ;Þ. The mixed case follows the same reasoning,

because every j 2M�
1 appears as v0j :¼ x1

j � vj in V1 and v0j
increases, if vj decreases.

First, we want to show that the existence of an A-B-

monotone path ðx1; . . . ; xrÞ in ðX;T Þ implies that �2 is true

in x1. For each t 2 ½1; r� 1� we have V1ðxtÞ � V1ðxtþ1Þ,
because V1 is the sum of variables that increase along that

path. The difference V1ðxtþ1Þ � V1ðxtÞ is at most 1 since T

contains only unitary asynchronous transitions. So there

must be a partition of ½1; r� into d1 þ 1 intervals, where

d1 :¼
P

j2Mþ
1
ðxrj � x1

j Þ, such that V1 is constant on each
interval and increases by 1 from one interval to the next. On

all states x of the first interval the formula V1ðxÞ ¼: C1 is

true and on all states x of the last interval the formula

V1ðxÞ ¼: C1 þ d1 is true. Therefore �1
t for t 2 ½1; d1 þ 1� is

true on the tth interval, counted from right to left and hence
�2 is true in x1.

Second, we want to show that �2 is true in x 2 X
implies that there is an A-B-monotone path in ðX;T Þ.
Since �2 is true in x1 :¼ x there is a path ðx1; . . . ; xrÞ in
ðX;T Þ such that �1 is true in x1 and �1 ¼: �2 is true in xr,
which is the first property of an A-B-monotone path.
Furthermore, ½1; r� can be partitioned into d1 þ 1 intervals
such that �1

t is true in the tth interval counted from right
to left. Therefore, V1 increases by 1 from one interval to
the next. Since T contains only unitary asynchronous
transitions, there is exactly one variable j 2Mþ

1 that
increases by 1 from one interval to the next. Therefore,
xkj � xkþ1

j for all k 2 ½1; r� 1� and j 2Mþ
1 which is the

second property of an A-B-monotone path. So the path
ðx1; . . . ; xrÞ is A-B-monotone. tu

5 WORKFLOW

In this section, we introduce a methodology to analyze

compatibility of a regulatory network and a given time series.
Let us consider a regulatory network, possibly including

edge constraints, a time series, and a monotonicity matrix

(consisting only of zero entries in case no monotonicity

assumptions are made). As a first step, we check whether
there are parameter sets that reproduce the time series, i.e.,

we compute the parameter pool KðV ;E; t; s; �A;BÞ. This

parameter pool, computed for our running example, consists
of eight parameter sets. If the model checking procedure

returns a unique parameter set, we can proceed with the
analysis of the model. However, this case will only occur very

rarely. More commonly, the procedure either returns a large

pool of parameter sets or no set at all. In the following, we look
at both cases more closely.

5.1 Characterizing Model Pools

If the parameter pool contains many parameter sets, the

information encoded in the network and the time series was

not sufficient to determine a unique specified model. One
possibility to deal with this difficulty is to choose a model

from the pool using meaningful criteria, e.g., some notion of

minimality as in [9]. A different approach is to characterize
the parameter pool in order to derive information about the

system strongly supported by the available data. We
propose ideas in line with the second approach. One

characteristic of a model pool are parameter values that

are identical across all parameter sets. Such values may
allow for new insights into how a component behaves under

the influence of several regulators, clarifying synergies and

redundancies in the network.

Definition 5.1 (Determined Parameter Values). Given a

parameter pool K, the value of a component v in a regulatory

context R � V�ðvÞ is determined if there is a p 2 ½0; pðvÞ� such

that

8K 2 K : KvðRÞ ¼ p:

This idea can be extended to finding the range of values

for each component and regulatory context.
For our running example, Fig. 4 displays these ranges.
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Even if the parameters for a given component are not

completely determined, we can still try to extract further

information. To get an idea about the different behaviors that

a component can have in a parameter pool, we count the v-

local parameter sets in K.

Definition 5.2 (Behaviors). Given a parameter pool K of a

regulatory network ðV ;E; tÞ, the behaviors Kv of component

v 2 V are the set of v-local parameter sets in K,

Kv :¼ fKv j K 2 Kg:

This information can be used to study how components

are tuned to work together in reproducing a time series. If any

combination of component behaviors is a parameter set in the

pool, then the components are said to be independent.

Definition 5.3 (Independence). A parameter pool K consists of

independent components, ifY
v2V
jKvj ¼ jKj:

In case dependencies exist, the behavior of one component

may rule out or enforce a certain behavior of another

component. In most cases, time series will create dependent

parameter pools, as in the application example in Section 8.
For our running example, there are four behaviors for

component 1, two behaviors for component 2, and one

behavior for component 3. This pool is therefore indepen-

dent, since 8 ¼ 4 � 2 � 1.
Further characterization of the parameter pool could

study which behaviors do not appear together and try to

identify components and regulatory contexts, which, if

determined, would lead to the steepest reduction in feasible

parameter sets. Identifying such contexts could be used to

design experiments that reduce the number of feasible

parameter sets in the fastest possible way.
Characterization of the parameter pool can also focus on

the edge labels. They can be arranged into a logical

implication hierarchy. For example, þ ^ � implies � and

we thus place þ ^� above � in the hierarchy diagram in

Fig. 5. For each unlabeled edge of the regulatory network

and edges carrying one of the constraints that may be

strengthened (þ;�;þ _�;�;þ), we determine the strictest

label that is true for all parameter sets. This may lead to

determining an effect of a regulator on its target that was

formerly not known. An edge may, for example, be included

in a network, because the source component is known to

bind to the target component’s promoter, but without any

knowledge of the effect this binding has (i.e., with label

þ _ �). With a time series this label may be sharpened to þ
and thus hypothesize an activation.

For the running example there are two edge refinements:

the previously unconstrained self-interaction of component 1

is hypothesized to be activating and inhibiting, i.e., þ ^ �.

The interaction between components 2 and 3, which we

assumed to be observable (þ _�), is sharpened to be

inhibiting only, i.e., � ^þ.

5.2 Evaluating the Time Series

An ideal sampling frequency would result in a discrete time

series capturing all value changes of the components, but

usually data points are rather sparse. In order to understand

the underlying system, we need to know whether the

sampling was sufficient to capture its essential behavior.

Here, we focus on determining potential oscillatory behavior

not inferable from the time series due to coarse sampling.
Consider a network, a time series and a monotonicity

matrix that are compatible, i.e., the corresponding parameter

pool is not empty. We start with the assumption that the time

series is sufficient to exclude the possibility of undetected

oscillatory behavior. Intuitively, if sufficiently many mea-

surements were made, it can be assumed that all variables are

monotone at all measurements.

Definition 5.4 (Best Fit). Given a regulatory network ðV ;E; tÞ,
a time series A and the monotonicity matrix B, where

bi;j ¼
1: ai;j; aiþ1;j 6¼?
0: else;

�

a parameter set that satisfies the A-B-monotone path formula

is called a best fit of ðV ;E; tÞ to A.

The eight parameter sets in KðV ;E; t; s; �A;BÞ of our

running example all turn out to be best fits to A.
Recall that the entries or positions ði; jÞ of B represent the

value transition of the jth component from measurement i to

measurement ðiþ 1Þ, and that the entry 1 signifies a

monotone value change. If no best fits of ðV ;E; tÞ to A exist,

we can be sure that there is a set of positions ofB, such that all

parameter sets in the considered pool produce at least one

unobserved oscillation in one of the positions. In these

positions the temporal resolution ofA is too coarse to capture

the behavior of the network. A trivial such set is the set of all

positions, but there may be a smaller set, ideally with only a

single position. Starting with the originally considered

monotonicity matrix B, a heuristic approach to finding a

nontrivial set is to introduce additional monotonicity con-

straints position by position. If such an added constraint does

not result in a reduction of the parameter pool, we discard the

corresponding position, since all models agree with the

assumed monotonicity for that position, and we need no

extra sampling between the corresponding data points. We
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introduce a measure for the impact of an additional

monotonicity constraint as follows:

Definition 5.5 (Selectivity). Given a regulatory network

ðV ;E; tÞ, a time series A and a monotonicity matrix B, we

define for each 1 � i � m; 1 � j � n such that

bi;j ¼ 0 and ai;j; aiþ1;j 6¼?;

the monotonicity matrix B0 by

b0i0;j0 :¼ 1: i0 ¼ i; j0 ¼ j
bi;j: else;

�

and the selectivity of position ði; jÞ by

Sði; jÞ :¼ 1� jKðV ;E; t; �A;B
0 Þj

jKðV ;E; t; �A;BÞj
:

All positions that have selectivity 1 hypothesize obliga-
tory oscillations of component j in between measurements i
and iþ 1, which indicates the need for additional data
points between the measurements. If no such positions exist,
we choose the set fði; jÞ j Sði; jÞ > 0g as places of interest for
new measurements.

Since there are best fits for our running example, we can

conclude without model checking that there is no position

with selectivity 1. In fact, the matricesA andB allow deriving

only one monotonicity matrix B0. It places the additional

monotonicity condition on position ð3; 1Þ, i.e., B3;1 ¼ 1. The

selectivity of this position is Sð3; 1Þ ¼ 0, which means that all

parameter sets in the pool support a path that is monotone for

component 2 in between measurements 3 and 4.
To illustrate the concept of selectivity for a more

interesting case, we change the matrix A slightly to A0:

A0 ¼

0 1 0
2 0 1
0 1 0
3 0 1

0
BB@

1
CCA:

The corresponding parameter pool KðV ;E; t; �A0;BÞ contains

only four parameter sets. Now, there are six positions for

which we can compute the respective selectivities. In matrix

notation, they are

SðBÞ ¼
? 0 ?
1 1 ?
0 0 0

0
@

1
A:

These results are exploitable for experimental design, as they
predict yet unobserved oscillations at positions with selec-
tivity 1, i.e., of the components 1 and 2 each in between the
measurements 2 and 3.

5.3 Reviewing Structure and Data

So far we have considered the case that we have no

contradictions in our modeling assumptions and data,

resulting in viable choices of parameter sets. If a network is

not compatible with a time series and the possibly

additionally provided monotonicity matrix, i.e., the corre-

sponding parameter pool is empty, there are two possible

lines of investigation, depending on whether the correct-

ness of the network structure or of the data is questioned. In

both cases, the idea is to check what minimal changes can
lead to compatibility.

Regarding the structure, we may in a first step relax the
constraints on the interactions and instead label every edge
with the observability label þ _�. Thus, we include no
assumptions on the character of an interaction, but only
require it to be observable. We then test if the weakened
assumptions result in a nonempty parameter pool. Regard-
ing the data, we proceed similarly by first lifting mono-
tonicity constraints in B (if there are any) and then replacing
particular values in A to be imprecise.

6 EFFICIENCY AND SCALABILITY

6.1 Scalability

The computational steps in the workflow are 1) to exhaus-
tively generate all parameter sets satisfying the edge
constraints (not the whole parameter space), 2) to translate
a parameter set into a model checker input file, and 3) to pass
it to a model checker, together with the A-B-monotone path
formula. For model checking we use NuSMV ([7], see also [3]
and [2]). For computation of the parameter sets, we apply a
backtracking algorithm with failure on edge label violation.

Regarding scalability and computation times, we first note
that the state space is exponential in the number of
components, which places a strong limit on the possible
number. Second, we compute a large part of the parameter
space, depending on how restricting the edge labels are.
Efficient algorithms considering partial parametrizations
only have been introduced for piecewise linear ODE models
(see [2]). Similar approaches would be desirable for the
Thomas formalism.

As standing, analysis is limited to structures of about
30,000 states, e.g., 15 binary components or nine ternary
components. For such models the time per model check is
impacted considerably by the nesting depth of a given CTL
formula, which in our case increases linearly with the length
of a time series and monotonicity constraints. Model
checking a 30,000 state model and a time series of five
measurements takes about 1 second on a 2.27 GHz Laptop.

Given these restrictions imposed by the time per model
check, the computation time for the parameter sets is
negligible. However, it should be noted that even with the
most restrictive edge labels (þ ^� and � ^þ) on edges
targeting a binary component, there are already 6,894 local
parameter sets for only five regulators. For a ternary
component, the number of such regulators is limited to 4,
resulting in 7,008 local parameter sets.

6.2 Constraint Satisfaction and Monotone Paths

As discussed, the computationally most expensive step in the
workflow is executing a model check. It is therefore desirable
to run a preprocessing that marks at least some parameter
sets correctly as either acceptable or rejectable with respect to
a given CTL specification. This is useful, if the time the
preprocessing needs to mark parameter sets is less than the
time required for a full model check.

In this section, we introduce such a method by deriving
from the matrices A and B and the regulatory network
ðV ;E; tÞ a necessary condition for a parameter set to be
able to reproduce an A-B monotone path. This condition is
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formulated as a constraint satisfaction problem on the
parameter values.

Before we define the constraints, we motivate the idea by
making two observations. The first observation is about the
existence of a parameter value that is a witness to an observed
behavior. The second is about the activity range of a
component along an A-B-monotone path. Then, we discuss
the effect that a restricted activity of a component has on the
witnesses of its targets in the regulatory network. Finally, we
proceed to define the constraints.

Assume that a regulatory network, a discrete time seriesA
with two measurements and a monotonicity matrix B are
fixed. The first observation is that if the two sampled activities
of a component v are precise but not equal, i.e., a1;v; a2;v 6¼?
and a1;v 6¼ a2;v, we deduce that there must be some regulatory
contextR � V�ðvÞ such thatKvðRÞ lies on the right side of the
second sample a2;v. By on the right side we mean that, if A
records an increase in v, we deduce 9R : KvðRÞ 2 ½a2;v; pðvÞ�,
and if a decrease is observed, then 9R : KvðRÞ 2 ½0; a2;v�. A
context R that fulfills this condition is called a witness to the
change observed in v. It is easy to see that each change in A
requires a witness.

On its own, this condition is not very strong. A parameter
set of a boolean network, e.g., fails this test only when all
parameter values are not on the right side. For example, if 0 is
not on the right side for v, then the condition is
8R : KvðRÞ ¼ 0, which is a single valuation of Kv, and all
other valuations remain feasible. We want to sharpen this
condition by restricting the set from which the witnessR can
be drawn by analyzing the corresponding regulators of v.

For each regulator u 2 V�ðvÞ that is marked as monotone
by b1;u ¼ 1 (which by definition implies precise measure-
ments for u), we can deduce that along an A-B monotone
path its activity remains in the interval ½umin; umax�, where

umin :¼ minða1;u; a2;uÞ; and umax :¼ maxða1;u; a2;uÞ:

The extreme cases for this interval are when umin ¼ umax,
and the activity of u is constant, and ½umin; umax� ¼ ½0; pðuÞ�
and no information about the activity can be obtained.

Now we compare the threshold tðu; vÞwith the lower and
upper end points of the interval. Whenever we find that the
threshold lies strictly below the lower end point (resp. is
equal to or above the upper end point), we deduce that u is an
effective (resp. ineffective) regulator of v along an admissible
path. Hence, a witness R to the observed change in v must
(resp. must not) contain u. Depending on the measurements
and network topology, this is a strong restriction, since each
such u halves the set of potential witnesses.

As an example, consider the 3-component network, time
series, and monotonicity matrix in Fig. 6.

The observed increase in 3 requires a witness R � V�ð3Þ
such that K3ðRÞ 2 ½1; 1�, i.e., K3ðRÞ ¼ 1. Since b1;1 ¼ 1 the

activity range of component 1 is restricted to the interval ½0; 1�.
Additionally, the threshold tð1; 3Þ ¼ 2 is strictly above the
upper end point of the interval and we deduce that a witness
R must not contain the regulator 1, i.e., it is ineffective. So
without performing a model check we can discard all
parameter sets K where K3ðRÞ ¼ 0 for R 2 ff2g; ;g. In the
example this means that instead of performing 2,304 model
checks, we solve the constraint satisfaction problem and
perform 1,728 model checks on the remaining parameter sets.

Let us now define the constraint satisfaction problem.

Definition 6.1 (Some-In-Set). A parameter set K satisfies the
constraint Some-In-Setðv; S;RÞ for a component v, a set
S � ½0; pðvÞ�, and contexts R � 2V�ðvÞ, iff KvðRÞ \ S 6¼ ;.

The suggested preprocessing performs the following
tasks. For each pair of consecutive measurements, we 1) select
the components that change, 2) compute the activity ranges of
each regulator of each changing component, and 3) add one
Some-In-Set constraint to the list of constraints that an
acceptable parameter set has to satisfy.

The reason why model checking cannot be avoided
altogether is, that the condition is not sufficient. So far we
have not found a compact constraint satisfaction formula-
tion on the parameter values of a parameter set that is
equivalent to the existence of an A-B monotone path in its
transition system.

6.3 Efficiency of Constraint Satisfaction

In this section, we investigate the efficiency of monotonicity
constraints in terms of avoided model checks. Given that
the constraint problems arising from the networks that we
deem computationally feasible (see Section 6.1) have at
most 32 variables, one for each context of the component,
and domains of size at most 4, solving a Some-In-Set
constraint is preferable to executing a model check. In
principle, each pair of consecutive rows in A may pose one
Some-In-Setðv; S;RÞ constraint for each v 2 V , which
reduces the set Kv. The number of model checks that need
to be executed without monotonicity constraints is equal to
the number of parameter sets

KðV ;E; t; sÞ ¼
Y
v

Kv:

Because of this product structure, the factor by which we
reduce Kv is equal to the factor by which we reduce the
required number of total model checks. So we have to ask by
what factor a Some-In-Setðv; S;RÞ constraint reduces jKvj.

In general this is a hard question, but for the special case
of independent parameter values, i.e., unlabeled interac-
tions targeting v, we can give a formula. To simplify
notation denote s :¼ jSj and r :¼ jRj. The reduction factor f
is then equal to

fðv; s; rÞ :¼ 1� 1� s

pðvÞ þ 1

� �r
:

To better understand this formula, we can interpret it as the
probability that at least one context from R hits the set S,
which is the complement of all contexts missing S.

A closed formula for the labeled case would include, as a
special case, the size of the set of all boolean monotonic
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functions in a fixed number of variables, which is an open

problem (computation of Dedekind number). In general, the

reduction factor f is neither an upper nor a lower bound of

the reduction in the edge labeled case, but as the following

tables illustrate, it may serve as a good indicator.
To cope with the many unknowns, pðvÞ, jV�ðvÞj, the edge

labels s, the contexts R and S, we decided to consider three

cases that differ in the edge labels, but have the other

parameters fixed to give an intuition about the efficiency of

the preprocessing. Throughout pðvÞ ¼ 1 and jV�ðvÞj ¼ 3. To

keep the tables concise, using symmetries, the three interac-

tions have the same label in each example. Recall that R is

defined by stating for each regulator of v, if it is effective,

ineffective, or undetermined (see Section 6.2). Instead of

distinguishing which particular regulator is in which of the

three conditions, we group cases by stating how many are in

each class. Because the three labels are identical, all sets R
with the same counts have the same reduction factor.

In Table 1, we are considering a component v that has three
activating regulators (interaction label þ). For such a
component there are 101 behaviors. Additionally, it is
symmetric under simultaneously swapping effective with
ineffective regulators andS ¼ f0gwith S ¼ f1g. Hence, rows
with S ¼ f1g are omitted. The table is ascending in the
reduction factor.

In Table 2, we are considering a component that has three
activating only regulators (labelþ ^�). For such a component
there are only nine behaviors. The same symmetry applies as
above, but we have also grouped rows with identical
reduction factors by specifying a range of ineffective
regulators. The first row, with reduction factor 0.00, shows
that the constraint satisfaction approach is suitable for
detecting local inconsistencies that prevent global compat-
ibility with a time series.

To illustrate this, we consider the following successive
measurements A and monotonicity matrix B

A :¼ 1 1 2 1
1 2 1 0

� �
; B :¼ 1 1 1 0ð Þ;

in a regulatory network whose vertex-induced subgraph of
the four respective vertices with interaction labels þ ^� is
given in Fig. 7.

Independently of how this subgraph is embedded in a
larger network, and independently of the values of the
remaining measurements, the resulting parameter set pool
will be empty. Without the constraint satisfaction preproces-
sing, a model check for each global parameter set would be
necessary to arrive at the same conclusion.

For the third and final example we consider three
regulators with observable effects on v (label þ _�). For such
a component there are 256 behaviors. This time, the
reduction factors are invariant under the sum of effective
and ineffective regulators in R. They are also identical for
S ¼ f0g and S ¼ f1g. See Table 3 for reduction factors of this
example.

In conclusion, under fairly weak local assumptions about
the time series and monotonicity matrix, the constraint
satisfaction preprocessing strongly reduces the required
model checks to determine the compatible parameter set
pool. The three tables above give the reduction factors in the
setting of a boolean component that is regulated by
interactions of identical type (activating, activating only,
observable). Similar tables could be given for larger values
pðvÞ and mixed interaction types targeting v.

The question remains how the reduction factors combine,
if there are several Some-In-Set constraints. In the first case,
for component disjunct constraints, the factors simply multi-
ply to give a global reduction factor. In the other case, the
product of a selection of disjunct reduction factors may give a
good lower bound.

7 SOFTWARE FOR WORKFLOW AUTOMATION

In this section, we describe a Python script that automates
the edge refinement of Section 5.1 and data assessment of
Section 5.2 for arbitrary regulatory networks and time series
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TABLE 1
Reduction of v-Behaviors, Depending on Effective and

Ineffective Regulators in R and Values in S

The interactions targeting v are labeled with þ.

TABLE 2
Reduction of v-Behaviors, Depending on Effective and

Ineffective Regulators in R and Values in S

The interactions targeting v are labeled with þ ^�.

Fig. 7. Vertex-induced subgraph of example network.

TABLE 3
Reduction of v-Behaviors, Depending on Sum of Effective and

Ineffective Regulators in R

The interactions targeting v are labeled with þ _�.



that are within the computational limitations mentioned in
Section 6.1. It is called erda.py (Edge Refinement and Data
Assessment) and available from sourceforge.1 The input to
the script is a regulatory network ðV ;E; s; tÞ, a time series A
and a monotonicity matrix B. The script then performs up to
seven tasks, depending on the outcome of the previous steps:

1. Computation of the parameter space KðV ;E; t; sÞ
Output: Size of parameter space

2. Selection of �A;B compatible parameter sets using
the constraint satisfaction preprocessing (see Sec-
tion 6.2).
Output: Preprocessing reduction factor, size of
compatible parameter space

3. Computation of the number of component behaviors
(see Definition 5.2)
Output: Number of behaviors of each component

4. Computation of the value ranges (see Definition 5.1)
Output: Value ranges for each context of each
component

5. Refinement of edge labels with respect to the
hierarchy in Fig. 5
Output: The new label of each refined edge

6. Check each position ði; jÞ in A for a necessary
oscillation (see Definition 5.5)
Output: The component and interval for which
oscillations are predicted

7. An existence test for best fits (see Definition 5.4)
Output: Whether or not best fits exist

The script is a single file of about 1,100 lines of code without
dependencies on packages other than the standard library. To
perform model checking an installation of NuSMV is
required. We will now describe the algorithms in more detail.

The computation of KðV ;E; t; sÞ is performed by
computing for each component v the set of behaviors Kv
that agree with the edge propositions of its regulators. By
definition, the parameter space consists of independent
components (Definition 5.3), so K is just the Cartesian
product of the component behaviors. The behaviors Kv are
computed by a backtracking algorithm with failure on
violation of a relevant edge proposition.

The next step, the computation of KðV ;E; t; s; �A;BÞ, is
performed in two steps. First, the constraint satisfaction,
discussed in Section 6.2, is checked for each behaviorKv 2 Kv
of each component. Behaviors not satisfying the constraints
are discarded, and the resulting total reduction factor is
returned. Then, �A;B compatibility is tested either by model
checking or a local state graph search. As shown by Meiers
[14], for the network sizes considered here and everywhere
precise time series, a best-first graph search with Hamming
distance as its cost heuristic can be faster than model
checking. If A is somewhere imprecise though, we must
resort to NuSMV instead.

If there is at least one �A;B compatible parameter set,
edges which are not already labeled with a label at the top of
the hierarchy are refined until they reach the top or there are
no more parameter sets for refinement. Algorithmically this
is achieved for each component v by a loop over all
compatible behaviors of v, which breaks if none of the

interactions targeting v can be further refined. The refine-
ment of a particular interaction is achieved by a (static)
mapping from the set of observed atomic propositions (see
Definition 2.8) to the resulting strictest admissible proposi-
tion. To illustrate this, assume that there are only two
behaviors of a component v that is regulated by a component
u in KðV ;E; t; s; �A;BÞ. For the first parameter set the
interaction ðu:vÞ is labeled with þ ^� and for the second
with þ ^ �. The mapping of this set of atomic observations
returns þ. Then, the possible behaviors of each component
are counted and displayed. In the same loop the value
ranges of each context are gathered and also displayed.

Next, the time series is assessed by checking the existence
of a �A;B0 compatible parameter set for each B0, where B0 is a
monotonicity matrix with exactly one more monotonicity
constraint than B, as suggested in Definition 5.5. If no such
parameter set exists the respective position ði; jÞ has
selectivity 1, which implies an unobserved oscillation
between measurements i and iþ 1 of component j.

Finally, if no unobserved oscillations were found, the
existence of a best fit, see Definition 5.4, is checked and the
results are given.

8 APPLICATION: THE IRMA NETWORK

We apply the workflow of the previous section to a
biological network called IRMA, for which several time
series are available. A corresponding search for consistent
parameters of a piecewise linear ODE model is described by
Batt et al. [2]. All analysis steps can be reproduced with the
software from Section 7.

The IRMA regulatory network consists of five genes with
gene control and protein-protein interactions, which has been
inserted into the genome of Saccharomyces cerevisiae (see
Cantone et al. [4]) and the environment variable gal, see Fig. 8.
Several populations of this genetically modified yeast were
grown and subjected to perturbations by adding or removing
galactose from the growth medium. Altogether 11 real-
valued time series are available: five repetitions of the switch-
on perturbation (adding galactose) and four repetitions of the
switch-off perturbation (removing galactose) plus two aver-
aged time series for each category.

A comprehensive analysis would include all available
time series. Since we aim for a clear illustration of our
approach, we restrict analysis to the averaged switch-off time
series. In addition, we only consider a boolean model.

We binarized the expression data for the galactose
removal experiment using the scan-statistic method de-
scribed in [16]. Additionally, we added values for gal based
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Fig. 8. The IRMA regulatory network.



on qualitative observations. The first entry of its profile is left
uncertain, because although the cells were washed, we are
not sure if galactose was still present in the cytoplasm or not.
This resulted in the discrete time series

A ¼

CBF1 ASH1 GAL4 GAL80 SWI5 gal
1 1 1 1 1 ?
1 1 0 1 0 0
1 1 0 1 1 0
1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 0 0 0
1 0 1 1 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 1 0 1 0
0 0 1 0 0 0
0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

Although the analysis is not affected by removing
duplicate rows in A, we have kept duplicates in order to
relate the following results to the actual 19 measurements.
Matching the binarized data, we chose a boolean representa-
tion, i.e., pðvÞ ¼ 1 for every variable v. The state space is then

X ¼ ½0; 1�6 with jXj ¼ 64; and
jKðV ;E; tÞj ¼ 22 � 22 � 24 � 22 � 22 � 28 ¼ 220 ¼ 1;048;576:

The network edges and edge-constraints were adopted
from [4] and interpreted as þ and �, i.e., as observable
activations or inhibitions. We then computed all parameter
sets that satisfy the edge-constraints and reproduce the time
series without any monotonicity assumptions:

jKðV ;E; t; sÞj ¼ 404 and jKðV ;E; t; s; �A;0Þj ¼ 73:

We proceeded by characterizing the parameter pool
KðV ;E; t; s; �A;0Þ. All parameters of components with a
unique regulator, namely GAL4, ASH1, and GAL80,
coincide for all parameters sets, i.e., the component behavior
is completely determined. The labels of edges targeting
these components can be strengthened to þ ^ �, i.e., they
are recognized as nonambiguous activating influences. For
SWI5 one parameter is determined: KSWI5ðfGAL4gÞ ¼ 1,
suggesting that GAL4 alone is sufficient to activate SWI5,
as opposed to galactose which may require GAL4 for
upregulation of SWI5 as the parameter KSWI5ðfgalgÞ is in
the range ½0; 1�.

Regarding the behaviors of CBF1 and SWI5 as defined
in Section 5.1, there are four for the latter and 33 for the
former. The set KðV ;E; t; s; �A;0Þ is not independent, since
4 � 33 ¼ 132, but there are only 73 sets in the pool. Therefore,
not every behavior of SWI5 is compatible with every
behavior of CBF1. Identification of conflicting behaviors
can then be utilized for experimental design. Development
of strategies that allow one to identify a component and a

corresponding behavior whose parameter determination
would result in a maximal decrease of the parameter pool is
an issue for future work.

Continuing in the workflow, we assessed the quality of
the time series. There are no best fits of the IRMA network
to the time series, but computing the selectivity of positions
ði; jÞ in A we found eight positions to have a selectivity of 1
and hypothesize the following oscillations:

Name Begins oscillation at measurement

CBF1 1,9,13

SWI5 6,8,9,13,15

The real-valued expression profiles show that SWI5 does
indeed oscillate, but the oscillations are below the threshold
that the binarization method computed (see Fig. 9). In this
particular case, the result emphasizes the need of revising the
chosen threshold. However, it also illustrates nicely the
potential of our method to evaluate sufficiency of measure-
ments, since similar results would be obtained if the data
points between 5 and 15 in the SWI5 plot were simply
missing. Based on our analysis the importance of providing
additional measurements for that time span would be
highlighted.

For CBF1, the expression curve shows a decline with
two steady intervals around measurements 10 and 15 (see
Fig. 9). Here, the real-valued data shows no oscillation, but
rather different plateaus. Our results point out the time
points where changes of activity levels result in qualita-
tively observable effects, and thus indicate the need for a
finer representation of activity levels than a simple boolean
view. Investigating the relation between the predictions for
oscillations generated by our method and the need for an
expanded component value range will be an objective of
future work.

Since the boolean model for the IRMA network can
reproduce the chosen time series, we imposed additional
assumptions to illustrate the workflow in case of incon-
sistencies (Section 5.3). We considered that value changes in
GAL80 involve transcription processes. Let us assume that
the transcription of GAL80 is slow, so that it is not expected
to significantly change concentration within the sampling
rate of 10 minutes, i.e., there will be no oscillations between
the sampling points.

The entries of a monotonicity matrix B encoding this
assumption are 1 in the column corresponding to the
GAL80 expression profile. We set all remaining entries of B
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Fig. 9. Real-valued expression profiles of SWI5 and CBF1. The
horizontal lines are the binarization thresholds obtained by the scan-
statistic method.



to zero, imposing no further monotonicity constraints. The
corresponding parameter pool KðV ;E; t; s; �A;BÞ is empty.
We decided to proceed by revising the structure of the
internal components, taking the activating effect of gal on
SWI5 as given. The IRMA network is structurally compa-
tible with A and B. We now try to derive valid information
from the resulting parameter pool. Of the 12,960 parameter
sets in the pool where all internal edges of the network, i.e.,
not ðgal; galÞ and ðgal; SWI5Þ, are relaxed to þ _ �, 144
satisfy �A;B. Interestingly there are no determined para-
meter values in this pool, but two interactions are stricter
than assumed in every parameter set: sðASH1; CBF1Þ ¼
�; sðSWI5; CBF1Þ ¼ þ.

This illustrates how we can recover information from the
parameter pool supported by the available data. In summary,
we can observe that the reasonable assumption that the
switch-off series has captured all oscillations of GAL80
validates the original labels targeting CBF1.

9 CONCLUSION

In this paper, we study the compatibility of a model of a
regulatory network and its observed behavior in the form of a
discretized time series. On the formal level, we slightly extend
the usual edge labels (e.g., [3]) with boolean propositions on
edges (similar to [8]) and introduce time series that may be
partially exact or monotone. On the methodological level, a
workflow is suggested that branches in places where given
assumptions may or may not be satisfied.

In contrast to related work, we also use our method to
assess the quality of the considered time series. In case of
consistency of the network structure and the time series,
we investigate the temporal resolution of the time series by
defining a best fit. For such parameter sets additional
measurements would not reveal much further information,
because in between measurements all variables approach
their target activities without oscillating. However, if no
best fits exist, oscillations can be predicted for particular
variables in particular time intervals. We have shown the
potential of this approach using the IRMA network. In
addition, the results hint at the possibility of using the
same methods to assess the discretization threshold of
individual components, as well as the number of thresh-
olds used for a component. This will be further elucidated
in future work.

While we obtain satisfactory results for networks of small
and medium size, we certainly have to increase computa-
tional efficiency to tackle larger models. A first step in this
direction is the discussed constraint satisfaction preproces-
sing. Future research will focus on developing more power-
ful implementations of our ideas.
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